Anthroponoses, Zoonoses, and Sapronoses Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1

Total Page:16

File Type:pdf, Size:1020Kb

Anthroponoses, Zoonoses, and Sapronoses Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1 LETTERS Emerging Human indiscriminately, and an expert commit- seum), some bacterial diseases (e.g., tee decided to abandon these two terms legionellosis), and protozoan (e.g., pri- Infectious Diseases: and recommended “zoonoses” as “dis- mary amebic meningoencephalitis). Anthroponoses, eases and infections which are naturally Intracellular parasites of animals (virus- transmitted between vertebrate animals es, rickettsiae, and chlamydiae) cannot Zoonoses, and and man” (3). A limited number of be sapronotic agents. The term “saprono- Sapronoses zoonotic agents can cause extensive out- sis” was introduced in epidemiology as a breaks; many zoonoses, however, attract useful concept (6–8). For these diseases To the Editor: The source of infection the public’s attention because of the high the expert committee applied the term has always been regarded as an utmost death rate associated with the infections. “sapro-zoonoses,” defined as “having factor in epidemiology. Human commu- In addition, zoonoses are sometimes con- both a vertebrate host and a nonanimal nicable diseases can be classified accord- tagious for hospital personnel (e.g., hem- developmental site or reservoir (organic ing to the source of infection as anthro- orrhagic fevers). Zoonotic diseases can matter, soil, and plants)” (3,9). However, ponoses (when the source is an infectious be classified according to the ecosystem the term sapronoses is more appropriate human; interhuman transfer is typical), in which they circulate. The classifica- because animals are not the source of zoonoses (the source is an infectious ani- tion is either synanthropic zoonoses, infection for humans. While anthro- mal; interhuman transfer is uncommon), with an urban (domestic) cycle in which ponoses and zoonoses are usually the and sapronoses (the source is an abiotic the source of infection are domestic and domains for professional activities of substrate, nonliving environment; inter- synanthropic animals (e.g., urban rabies, human and veterinary microbiologists, human transfer is exceptional). The cat scratch disease, and zoonotic ring- respectively, sapronoses may be the source of infection is often the reservoir worm) or exoanthropic zoonoses, with a domain for environmental microbiolo- or, in ecologic terms, the habitat where sylvatic (feral and wild) cycle in natural gists. The underdiagnosis rate for the etiologic agent of the disease normal- foci (4) outside human habitats (e.g., sapronoses is probably higher than that ly thrives, grows, and replicates. A char- arboviroses, wildlife rabies, Lyme dis- for anthroponoses and zoonoses, and an acteristic feature of most zoonoses and ease, and tularemia). However, some increase should be expected in both inci- sapronoses is that once transmitted to zoonoses can circulate in both urban and dence and number of sapronoses. humans, the epidemic chain is usually natural cycles (e.g., yellow fever and Legionellosis, Pontiac fever, nontubercu- aborted, but the clinical course might be Chagas disease). A number of zoonotic lous mycobacterioses, and primary ame- sometimes quite severe, even fatal. An agents are arthropod-borne (5); others bic meningoencephalitis are a few ecologic rule specifies that an obligatory are transmitted by direct contact, alimen- sapronoses that have emerged in the past parasite should not kill its host to benefit tary (foodborne and waterborne), or decade. In addition, the number of from the adapted long-term symbiosis, aerogenic (airborne) routes; and some opportunistic infections in immunosup- whereas an occasionally attacked alien are rodent-borne. pressed patients has grown markedly; host, such as a human, might be subject- Sapronoses (Greek “sapros” = decay- many of these diseases and some nosoco- ed to a severe disease or even killed rap- ing; “sapron” means in ecology a decay- mial infections are, in fact, also idly by the parasite because no evolu- ing organic substrate) are human dis- sapronoses. tionary adaptation to that host exists (1). eases transmissible from abiotic environ- As with any classification, grouping In this letter, only microbial infections ment (soil, water, decaying plants, or ani- human diseases in epidemiologic cate- are discussed; metazoan invasion and mal corpses, excreta, and other substra- gories according to the source of infec- infestations have been omitted. ta). The ability of the agent to grow tion has certain pitfalls. Some arthropod- Anthroponoses (Greek “anthrópos” = saprophytically and replicate in these borne diseases (urban yellow fever, man, “nosos” = disease) are diseases substrata (i.e., not only to survive or con- dengue, epidemic typhus, tickborne transmissible from human to human. taminate them secondarily) are the most relapsing fever, epidemic relapsing fever, Examples include rubella, smallpox, important characteristics of a sapronotic and malaria) might be regarded as diphtheria, gonorrhea, ringworm microbe. Sapronotic agents thus carry on anthroponoses rather than zoonoses (Trichophyton rubrum), and trichomoni- two diverse ways of life: saprophytic (in because the donor of the infectious blood asis. an abiotic substrate at ambient tempera- for the vector is an infected human and Zoonoses (Greek “zoon” = animal) are ture) and parasitic (pathogenic, at the not a vertebrate animal. However, the diseases transmissible from living ani- temperature of a homeotherm vertebrate human infection is caused by an (inverte- mals to humans (2). These diseases were host). Typical sapronoses are visceral brate) animal in which the agent repli- formerly called anthropozoonoses, and mycoses caused by dimorphic fungi cates, and the term zoonoses is preferred. the diseases transmissible from humans (e.g., coccidioidomycosis and histoplas- HIV is of simian origin with a sylvatic to animals were called zooanthro- mosis), “monomorphic” fungi (e.g., cycling among wild primates and acci- ponoses. Unfortunately, many scientists aspergillosis and cryptococcosis), certain dental infection of humans who hunted used these terms in the reverse sense or superficial mycoses (Microsporum gyp- or ate them; the human disease (AIDS) Emerging Infectious Diseases • Vol. 9, No. 3, March 2003 403 LETTERS might thus have been regarded as a 4. Pavlovsky EN. Natural nidality of trans- other regions of the world, especially in zoonosis in the very first phase but later missible diseases. Urbana (IL): Southeast Asia, low-level resistance to has spread in the human population as a University of Illinois Press; 1966. fluoroquinolones in Shigella spp. has typical anthroponosis and caused the 5. Beaty BJ, Marquardt WC, editors. The been observed for some time (4,5). present pandemic. Similarly, pandemic biology of disease vectors. Niwot (CO): After a lapse of almost 14 years, clus- University Press of Colorado; 1996. strains of influenza developed through an ters of patients with acute bacillary 6. Terskikh VI. Diseases of humans and ani- antigenic shift from avian influenza A mals caused by microbes able to repro- dysentery were seen at the subdivisional viruses. For some etiologic agents or duce in an abiotic environment that repre- hospital, Diamond Harbour, in eastern their genotypes, both animals and sents their living habitat (in Russian). India. No cases of dysentery had been humans are concurrent reservoirs (hepa- Zhurn Mikrobiol Epidemiol Immunobiol reported during the comparable period in titis virus E, Norwalk-like calicivirus, (Moscow) 1958;8:118–22. previous years. A total of 1,124 case- enteropathogenic Escherichia coli, 7. Somov GP, Litvin VJ. Saprophytism and patients were admitted from March Pneumocystis, Cryptosporidium, Giar- parasitism of pathogenic bacteria—eco- through June 2002. The startling feature dia, and Cyclospora); these diseases logical aspects (in Russian). Novosibirsk: of these infections was their unrespon- might conditionally be called anthropo- Nauka; 1988. siveness to even the newer fluoro- zoonoses. Other difficulties can occur 8. Krauss H, Weber A, Enders B, Schiefer quinolones such as norfloxacin and HG, Slenczka W, Zahner H. Zoonosen, 2. with classifying diseases caused by ciprofloxacin, the drugs often used to Aufl. Köln: Deutscher Ärzte-Verlag; sporulating bacteria (Clostridium and 1997. treat shigellosis. Clinicians tried various Bacillus): Their infective spores survive 9. Schwabe CV. Veterinary medicine and antibiotics, mostly in combinations, in the soil or in other substrata for very human health. Baltimore: Williams & without benefit. Clinicians also random- long periods, though they are usually pro- Wilkins; 1964. ly used anti-amoebic drugs without suc- duced after a vegetative growth in the abi- cess. otic environment, which can include ani- Address for correspondence: Zdenek Hubálek, An investigating team collected nine mal carcasses. These diseases should Institute of Vertebrate Biology, Academy of fresh fecal samples from dysentery therefore be called sapronoses. For some Sciences, Klásterní 2, CZ-69142 Valtice, Czech patients admitted to this hospital; 4 other etiologic agents, both animals and Republic; fax: 420-519352387; e-mail: zhubalek@ (44%) yielded S. dysenteriae type 1 on brno.cas.cz abiotic environment can be the reservoir culture. For isolation of Shigella spp., (Listeria, Erysipelothrix, Yersinia pseudo- stool samples were inoculated into tuberculosis, Burkholderia pseudomallei, MacConkey agar and Hektoen Enteric and Rhodococcus equi), and the diseases agar (Difco, Detroit, MI), and the charac- might be, in fact, called saprozoonosis Multidrug-Resistant
Recommended publications
  • A Review of Outbreaks of Infectious Disease in Schools in England and Wales 1979-88 C
    Epidemiol. Infect. (1990), 105, 419-434 419 Printed in Great Britain A review of outbreaks of infectious disease in schools in England and Wales 1979-88 C. JOSEPH1, N. NOAH2, J. WHITE1 AND T. HOSKINS3 'Public Health Laboratory Service, Communicable Disease Surveillance Centre, 61 Colindale Avenue, London NW9 5EQ 2Kings College School o Medicine and Dentistry, Bessemer Road, London SE5 9PJ 3 Christs Hospital, Horsham, Sussex (Accepted 20 May 1990) SUMMARY In this review of 66 outbreaks of infectious disease in schools in England and Wales between 1979-88, 27 were reported from independent and 39 from maintained schools. Altogether, over 8000 children and nearly 500 adults were affected. Most of the outbreaks investigated were due to gastrointestinal infections which affected about 5000 children; respiratory infections affected a further 2000 children. Fifty-two children and seven adults were admitted to hospital and one child with measles died. Vaccination policies and use of immunoglobulin for control and prevention of outbreaks in schools have been discussed. INTRODUCTION The prevention and control of infectious disease outbreaks in schools are important not only because of the number of children at risk but also because of the potential for spread of infection into families and the wider community. Moreover, outbreaks of infection in such communities may lead to serious disruption of children's education and the curtailment of school activities. Details made available of 66 school outbreaks to the Communicable Disease Surveillance Centre between 1979 and 1988 are analysed in this paper and policies for prophylaxis, for example immunoglobulin and vaccination are described. SOURCES OF INFORMATION Information on outbreaks in schools between 1979 and 1988 was obtained from reports of investigations in which the Public Health Laboratory Service (PHLS) Communicable Disease Surveillance Centre (CDSC) had been asked to assist [1] and Communicable Disease Report (CDR) inserts (Table 1).
    [Show full text]
  • Q Fever in Small Ruminants and Its Public Health Importance
    Journal of Dairy & Veterinary Sciences ISSN: 2573-2196 Review Article Dairy and Vet Sci J Volume 9 Issue 1 - January 2019 Copyright © All rights are reserved by Tolera Tagesu Tucho DOI: 10.19080/JDVS.2019.09.555752 Q Fever in Small Ruminants and its Public Health Importance Tolera Tagesu* School of Veterinary Medicine, Jimma University, Ethiopia Submission: December 01, 2018; Published: January 11, 2019 *Corresponding author: Tolera Tagesu Tucho, School of Veterinary Medicine, Jimma University, Jimma Oromia, Ethiopia Abstract Query fever is caused by Coxiella burnetii, it’s a worldwide zoonotic infectious disease where domestic small ruminants are the main reservoirs for human infections. Coxiella burnetii, is a Gram-negative obligate intracellular bacterium, adapted to thrive within the phagolysosome of the phagocyte. Humans become infected primarily by inhaling aerosols that are contaminated with C. burnetii. Ingestion (particularly drinking raw milk) and person-to-person transmission are minor routes. Animals shed the bacterium in urine and feces, and in very high concentrations in birth by-products. The bacterium persists in the environment in a resistant spore-like form which may become airborne and transported long distances by the wind. It is considered primarily as occupational disease of workers in close contact with farm animals or processing their be commenced immediately whenever Q fever is suspected. To prevent both the introduction and spread of Q fever infection, preventive measures shouldproducts, be however,implemented it may including occur also immunization in persons without with currently direct contact. available Doxycycline vaccines drugof domestic is the first small line ruminant of treatment animals for Q and fever.
    [Show full text]
  • Hawaii State Department of Health Tetanus Factsheet
    TETANUS ABOUT THIS DISEASE Tetanus is an infection caused by a bacterium called Clostridium tetani. Spores of tetanus bacteria are everywhere in the environment, including soil, dust, and manure. These spores develop into bacteria when they enter the body through breaks in the skin, usually through injuries from contaminated objects. Clostridium tetani produce a toxin (poison) that causes painful muscle contractions. Tetanus is often called “lockjaw” because the first sign is most commonly spasms of the jaw muscles. Tetanus can lead to serious health problems, including being unable to open the mouth and having trouble swallowing and breathing, possibly leading to death (10% to 20% of cases). Tetanus is uncommon in the United States, with an average of 30 reported cases each year. Nearly all cases of tetanus in the U.S. are among people who have never received a tetanus vaccine, or adults who don’t stay up to date on their 10-year booster shots. SIGNS AND SYMPTOMS Symptoms of tetanus include: • Jaw cramping • Sudden, involuntary muscle tightening (muscle spasms) – often in the stomach • Painful muscle stiffness all over the body • Trouble swallowing • Jerking or staring (seizures) • Headache • Fever and sweating • Changes in blood pressure and a fast heart rate. Serious health problems that can happen because of tetanus include: • Laryngospasm (uncontrolled/involuntary tightening of the vocal cords) • Fractures (broken bones) • Hospital-acquired infections (Infections caught by a patient during a hospital stay) • Pulmonary embolism (blockage of the main artery of the lung or one of its branches by a blood clot that has travelled from elsewhere in the body through the bloodstream) • Aspiration pneumonia (lung infection that develops by breathing in foreign materials) • Breathing difficulty, possibly leading to death (1 to 2 in 10 cases are fatal) TRANSMISSION Tetanus is different from other vaccine-preventable diseases because it does not spread from person to person.
    [Show full text]
  • Safety and Immunogenicity of Capsular Polysaccharide–Tetanus Toxoid Conjugate Vaccines for Group B Streptococcal Types Ia and Ib
    142 Safety and Immunogenicity of Capsular Polysaccharide±Tetanus Toxoid Conjugate Vaccines for Group B Streptococcal Types Ia and Ib Carol J. Baker, Lawrence C. Paoletti, Section of Infectious Diseases, Departments of Pediatrics and of Michael R. Wessels, Hilde-Kari Guttormsen, Microbiology and Immunology, Baylor College of Medicine, Houston, Marcia A. Rench, Melissa E. Hickman, Texas; Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Department of Microbiology and Molecular and Dennis L. Kasper Genetics, Harvard Medical School, Boston, Massachusetts About 40% of invasive group B streptococcal (GBS) isolates are capsular polysaccharide Downloaded from https://academic.oup.com/jid/article/179/1/142/877598 by guest on 01 October 2021 (CPS) types Ia or Ib. Because infant and maternal GBS infections may be preventable by maternal vaccination, individual GBS CPS have been coupled to tetanus toxoid (TT) to prepare vaccines with enhanced immunogenicity. Immunogenicity in rabbits and protective capacity in mice of a series of type Ia- and Ib-TT conjugates increased with the degree of polysaccharide-to-protein cross-linking. In total, 190 healthy, nonpregnant women aged 18±40 years were randomized in four trials to receive Ia- or Ib-TT conjugate (dose range, 3.75±63 mg of CPS component), uncoupled Ia or Ib CPS, or saline. All vaccines were well-tolerated. CPS-speci®c IgG serum concentrations peaked 4±8 weeks after vaccination and were signif- icantly higher in recipients of conjugated than of uncoupled CPS. Immune responses to the conjugates were dose-dependent and correlated in vitro with opsonophagocytosis. These re- sults support inclusion of Ia- and Ib-TT conjugates when formulating a multivalent GBS vaccine.
    [Show full text]
  • Isolation of Oropouche Virus from Febrile Patient, Ecuador
    RESEARCH LETTERS Testing of tissues from vacuum aspiration and from chorionic 5. Driggers RW, Ho CY, Korhonen EM, Kuivanen S, villi sampling revealed that placenta and chorion contained Jääskeläinen AJ, Smura T, et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. Zika virus RNA. Isolation of Zika virus from the karyotype N Engl J Med. 2016;374:2142–51. http://dx.doi.org/10.1056/ cell culture confirmed active viral replication in embryonic NEJMoa1601824 cells. All the tests performed suggest that the spontaneous abortion in this woman was likely associated with a symp- Address for correspondence: Azucena Bardají, ISGlobal, Hospital Clínic, tomatic Zika virus infection occurring early in pregnancy. Universitat de Barcelona, Rosselló, 132, 5-1, 08036 Barcelona, Spain; These findings provide further evidence of the association email: [email protected] between Zika virus infection early in pregnancy and trans- placental infection, as well as embryonic damage, leading to poor pregnancy outcomes (2). Given that embryo loss had probably occurred days before maternal-related symp- toms, we hypothesize that spontaneous abortion happened early during maternal viremia. The prolonged viremia in the mother beyond the first week after symptom onset concurs with other recent reports (1,5). However, persistent viremia 3 weeks after pregnancy outcome has not been described Isolation of Oropouche Virus previously and underscores the current lack of knowledge from Febrile Patient, Ecuador regarding the persistence of Zika virus infection. Because we identified Zika virus RNA in placental tissues, our find- ings reinforce the evidence for early gestational placental Emma L. Wise, Steven T.
    [Show full text]
  • Skin and Soft Tissue Infections Ohsuerin Bonura, MD, MCR Oregon Health & Science University Objectives
    Difficult Skin and Soft tissue Infections OHSUErin Bonura, MD, MCR Oregon Health & Science University Objectives • Compare and contrast the epidemiology and clinical presentation of common skin and soft tissue diseases • State the management for skin and soft tissue infections OHSU• Differentiate true infection from infectious disease mimics of the skin Casey Casey is a 2 year old boy who presents with this rash. What is the best treatment? A. Soap and Water B. Ibuprofen, it will self OHSUresolve C. Dicloxacillin D. Mupirocin OHSUImpetigo Impetigo Epidemiology and Treatment OHSU Ellen Ellen is a 54 year old morbidly obese woman with DM, HTN and venous stasis who presented with a painful left leg and fever. She has had 3 episodes in the last 6 months. What do you recommend? A. Cefazolin followed by oral amoxicillin prophylaxis B. Vancomycin – this is likely OHSUMRSA C. Amoxicillin – this is likely erysipelas D. Clindamycin to cover staph and strep cellulitis Impetigo OHSUErysipelas Erysipelas Risk: lymphedema, stasis, obesity, paresis, DM, ETOH OHSURecurrence rate: 30% in 3 yrs Treatment: Penicillin Impetigo Erysipelas OHSUCellulitis Cellulitis • DEEPER than erysipelas • Microbiology: – 6-48hrs post op: think GAS… too early for staph (days in the making)! – Periorbital – Staph, Strep pneumoniae, GAS OHSU– Post Varicella - GAS – Skin popping – Staph + almost anything! Framework for Skin and Soft Tissue Infections (SSTIs) NONPurulent Purulent Necrotizing/Cellulitis/Erysipelas Furuncle/Carbuncle/Abscess Severe Moderate Mild Severe Moderate Mild I&D I&D I&D I&D IV Rx Oral Rx C&S C&S C&S C&S Vanc + Pip-tazo OHSUEmpiric IV Empiric MRSA Oral MRSA TMP/SMX Doxy What Are Your “Go-To” Oral Options For Non-Purulent SSTI? Amoxicillin Doxycycline OHSUCephalexin Doxycycline Trimethoprim-Sulfamethoxazole OHSU Miller LG, et al.
    [Show full text]
  • Bioterrorism Diseases Annex Infectious Disease Emergency Response (IDER) Plan
    Bioterrorism Diseases Annex Infectious Disease Emergency Response (IDER) Plan Contents I Background IV Activation & Notification II Response Organization V Operational Guidance III Purpose & Objectives VI Resources I. BACKGROUND A bioterrorism event is defined for the purposes of this annex as the deliberate introduction of pathogenic microorganisms or their products (bacteria, viruses, fungi or toxins) into a community. Potential bioterrorism agents are categorized by the Centers for Disease Control and Prevention (CDC) by category. Category A agents (highest priority) include organisms that pose a risk to national security because they can be easily disseminated or transmitted from person-to-person; result in high mortality rates and have the potential for major public health impact; might cause public panic and social disruption; and require special action for public health preparedness. These include: • Anthrax (Bacillus anthracis) • Smallpox (variola major) • Botulism (Clostridium botulinum • Tularemia (Franciscella tularensis) toxin) • Viral Hemorrhagic Fevers (filoviruses, • Plague (Yersinia pestis) arenaviruses) Of second highest priority are category B agents which are organisms that are moderately easy to disseminate; that result in moderate morbidity rates and low mortality rates; and that require enhanced diagnostic capacity and disease surveillance. • Brucellosis (Brucella species)* • Epsilon toxin of Clostridium perfringens • Food safety threats (Salmonella species, Escherichia coli O157:H7, Shigella) • Glanders (Burkholderia
    [Show full text]
  • CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
    CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites.
    [Show full text]
  • Early History of Infectious Disease 
    © Jones and Bartlett Publishers. NOT FOR SALE OR DISTRIBUTION CHAPTER ONE EARLY HISTORY OF INFECTIOUS 1 DISEASE Kenrad E. Nelson, Carolyn F. Williams Epidemics of infectious diseases have been documented throughout history. In ancient Greece and Egypt accounts describe epidemics of smallpox, leprosy, tuberculosis, meningococcal infections, and diphtheria.1 The morbidity and mortality of infectious diseases profoundly shaped politics, commerce, and culture. In epidemics, none were spared. Smallpox likely disfigured and killed Ramses V in 1157 BCE, although his mummy has a significant head wound as well.2 At times political upheavals exasperated the spread of disease. The Spartan wars caused massive dislocation of Greeks into Athens triggering the Athens epidemic of 430–427 BCE that killed up to one half of the population of ancient Athens.3 Thucydides’ vivid descriptions of this epidemic make clear its political and cultural impact, as well as the clinical details of the epidemic.4 Several modern epidemiologists have hypothesized on the causative agent. Langmuir et al.,5 favor a combined influenza and toxin-producing staphylococcus epidemic, while Morrens and Chu suggest Rift Valley Fever.6 A third researcher, Holladay believes the agent no longer exists.7 From the earliest times, man has sought to understand the natural forces and risk factors affecting the patterns of illness and death in society. These theories have evolved as our understanding of the natural world has advanced, sometimes slowly, sometimes, when there are profound break- throughs, with incredible speed. Remarkably, advances in knowledge and changes in theory have not always proceeded in synchrony. Although wrong theories or knowledge have hindered advances in understanding, there are also examples of great creativity when scientists have successfully pursued their theories beyond the knowledge of the time.
    [Show full text]
  • Typhus Fever, Organism Inapparently
    Rickettsia Importance Rickettsia prowazekii is a prokaryotic organism that is primarily maintained in prowazekii human populations, and spreads between people via human body lice. Infected people develop an acute, mild to severe illness that is sometimes complicated by neurological Infections signs, shock, gangrene of the fingers and toes, and other serious signs. Approximately 10-30% of untreated clinical cases are fatal, with even higher mortality rates in Epidemic typhus, debilitated populations and the elderly. People who recover can continue to harbor the Typhus fever, organism inapparently. It may re-emerge years later and cause a similar, though Louse–borne typhus fever, generally milder, illness called Brill-Zinsser disease. At one time, R. prowazekii Typhus exanthematicus, regularly caused extensive outbreaks, killing thousands or even millions of people. This gave rise to the most common name for the disease, epidemic typhus. Epidemic typhus Classical typhus fever, no longer occurs in developed countries, except as a sporadic illness in people who Sylvatic typhus, have acquired it while traveling, or who have carried the organism for years without European typhus, clinical signs. In North America, R. prowazekii is also maintained in southern flying Brill–Zinsser disease, Jail fever squirrels (Glaucomys volans), resulting in sporadic zoonotic cases. However, serious outbreaks still occur in some resource-poor countries, especially where people are in close contact under conditions of poor hygiene. Epidemics have the potential to emerge anywhere social conditions disintegrate and human body lice spread unchecked. Last Updated: February 2017 Etiology Rickettsia prowazekii is a pleomorphic, obligate intracellular, Gram negative coccobacillus in the family Rickettsiaceae and order Rickettsiales of the α- Proteobacteria.
    [Show full text]
  • Leptospirosis and Coinfection: Should We Be Concerned?
    International Journal of Environmental Research and Public Health Review Leptospirosis and Coinfection: Should We Be Concerned? Asmalia Md-Lasim 1,2, Farah Shafawati Mohd-Taib 1,* , Mardani Abdul-Halim 3 , Ahmad Mohiddin Mohd-Ngesom 4 , Sheila Nathan 1 and Shukor Md-Nor 1 1 Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia; [email protected] (A.M.-L.); [email protected] (S.N.); [email protected] (S.M.-N.) 2 Herbal Medicine Research Centre (HMRC), Institute for Medical Research (IMR), National Institue of Health (NIH), Ministry of Health, Shah Alam 40170, Selangor, Malaysia 3 Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia; [email protected] 4 Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Federal Territory of Kuala Lumpur, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +60-12-3807701 Abstract: Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, Citation: Md-Lasim, A.; Mohd-Taib, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with F.S.; Abdul-Halim, M.; Mohd-Ngesom, other pathogenic bacteria.
    [Show full text]
  • Rat Bite Fever Due to Streptobacillus Moniliformis a CASE TREATED by PENICILLIN by F
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Rat Bite Fever Due to Streptobacillus Moniliformis A CASE TREATED BY PENICILLIN By F. F. KANE, M.D., M.R.C.P.I., D.P.H. Medical Superintendent, Purdysburn Fever Hospital, Belfast IT is unlikely that rat-bite fever will rver become a public health problem in this country, so the justification for publishing the following case lies rather in its rarity, its interesting course and investigation, and in the response to Penicillin. PRESENT CASE. The patient, D. G., born on 1st January, 1929, is the second child in a family of three sons and one daughter of well-to-do parents. There is nothing of import- ance in the family history or the previous history of the boy. Before his present illness he was in good health, was about 5 feet 9j inches in height, and weighed, in his clothes, about 101 stone. The family are city dwellers. On the afternoon of 18th March, 1944, whilst hiking in a party along a country lane about fifteen miles from Belfast city centre, he was bitten over the terminal phalanx of his right index finger by a rat, which held on until pulled off and killed. The rat was described as looking old and sickly. The wound bled slightly at the time, but with ordinary domestic dressings it healed within a few days. Without missing a day from school and feeling normally well in the interval, the boy became sharply ill at lunch-time on 31st March, i.e., thirteen days after the bite.
    [Show full text]