TETANUS in ANIMALS — SUMMARY of KNOWLEDGE Malinovská, Z
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clostridium Species
CLOSTRIDIUM SPECIES Prepared by Assit. Prof.Dr. Najdat B. Mahdi clostridia The clostridia are large anaerobic, gram-positive, motile rods. Many decompose proteins or form toxins, and some do both. Their natural habitat is the soil or the intestinal tract of animals and humans, where they live as harmless saprophytes. Among the pathogens are the organisms causing botulism, tetanus, gas gangrene, and pseudomembranous colitis diseases :The remarkable ability of clostridia to cause is attributed to their (1) ability to survive adverse environmental conditions through spore formation. (2) rapid growth in a nutritionally enriched, oxygen- deprived environment. (3) production of numerous histolytic toxins, and neurotoxins.and enterotoxins, Morphology & Identification . Spores of clostridia are usually wider than the diameter of the rods in which they are formed. In the various species, the spore is placed centrally, subterminally, or terminally. Most species of clostridia are motile and possess peritrichous flagella . Culture Clostridia are anaerobes and grow under anaerobic conditions; a few species are aerotolerant and will also grow in ambient air. Anaerobic culture conditions . In general, the clostridia grow well on the blood-enriched media used to grow anaerobes and on other media used to culture anaerobes as well. Clostridium botulinum Typical Organisms etiologic agents of botulism are a heterogeneous collection of large (0.6 to 1.4 × 3.0 to 20.2 μm), fastidious, sporeforming, anaerobic rods Clostridium botulinum Clostridium botulinum, which causes botulism, is worldwide in distribution; it is found in soil and occasionally in animal feces. Types are distinguished by the antigenic type of toxins they produce. Spores of the organism are highly resistant to heat, with standing 100 °C for several hours. -
Hawaii State Department of Health Tetanus Factsheet
TETANUS ABOUT THIS DISEASE Tetanus is an infection caused by a bacterium called Clostridium tetani. Spores of tetanus bacteria are everywhere in the environment, including soil, dust, and manure. These spores develop into bacteria when they enter the body through breaks in the skin, usually through injuries from contaminated objects. Clostridium tetani produce a toxin (poison) that causes painful muscle contractions. Tetanus is often called “lockjaw” because the first sign is most commonly spasms of the jaw muscles. Tetanus can lead to serious health problems, including being unable to open the mouth and having trouble swallowing and breathing, possibly leading to death (10% to 20% of cases). Tetanus is uncommon in the United States, with an average of 30 reported cases each year. Nearly all cases of tetanus in the U.S. are among people who have never received a tetanus vaccine, or adults who don’t stay up to date on their 10-year booster shots. SIGNS AND SYMPTOMS Symptoms of tetanus include: • Jaw cramping • Sudden, involuntary muscle tightening (muscle spasms) – often in the stomach • Painful muscle stiffness all over the body • Trouble swallowing • Jerking or staring (seizures) • Headache • Fever and sweating • Changes in blood pressure and a fast heart rate. Serious health problems that can happen because of tetanus include: • Laryngospasm (uncontrolled/involuntary tightening of the vocal cords) • Fractures (broken bones) • Hospital-acquired infections (Infections caught by a patient during a hospital stay) • Pulmonary embolism (blockage of the main artery of the lung or one of its branches by a blood clot that has travelled from elsewhere in the body through the bloodstream) • Aspiration pneumonia (lung infection that develops by breathing in foreign materials) • Breathing difficulty, possibly leading to death (1 to 2 in 10 cases are fatal) TRANSMISSION Tetanus is different from other vaccine-preventable diseases because it does not spread from person to person. -
Safety and Immunogenicity of Capsular Polysaccharide–Tetanus Toxoid Conjugate Vaccines for Group B Streptococcal Types Ia and Ib
142 Safety and Immunogenicity of Capsular Polysaccharide±Tetanus Toxoid Conjugate Vaccines for Group B Streptococcal Types Ia and Ib Carol J. Baker, Lawrence C. Paoletti, Section of Infectious Diseases, Departments of Pediatrics and of Michael R. Wessels, Hilde-Kari Guttormsen, Microbiology and Immunology, Baylor College of Medicine, Houston, Marcia A. Rench, Melissa E. Hickman, Texas; Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Department of Microbiology and Molecular and Dennis L. Kasper Genetics, Harvard Medical School, Boston, Massachusetts About 40% of invasive group B streptococcal (GBS) isolates are capsular polysaccharide Downloaded from https://academic.oup.com/jid/article/179/1/142/877598 by guest on 01 October 2021 (CPS) types Ia or Ib. Because infant and maternal GBS infections may be preventable by maternal vaccination, individual GBS CPS have been coupled to tetanus toxoid (TT) to prepare vaccines with enhanced immunogenicity. Immunogenicity in rabbits and protective capacity in mice of a series of type Ia- and Ib-TT conjugates increased with the degree of polysaccharide-to-protein cross-linking. In total, 190 healthy, nonpregnant women aged 18±40 years were randomized in four trials to receive Ia- or Ib-TT conjugate (dose range, 3.75±63 mg of CPS component), uncoupled Ia or Ib CPS, or saline. All vaccines were well-tolerated. CPS-speci®c IgG serum concentrations peaked 4±8 weeks after vaccination and were signif- icantly higher in recipients of conjugated than of uncoupled CPS. Immune responses to the conjugates were dose-dependent and correlated in vitro with opsonophagocytosis. These re- sults support inclusion of Ia- and Ib-TT conjugates when formulating a multivalent GBS vaccine. -
Skin and Soft Tissue Infections Ohsuerin Bonura, MD, MCR Oregon Health & Science University Objectives
Difficult Skin and Soft tissue Infections OHSUErin Bonura, MD, MCR Oregon Health & Science University Objectives • Compare and contrast the epidemiology and clinical presentation of common skin and soft tissue diseases • State the management for skin and soft tissue infections OHSU• Differentiate true infection from infectious disease mimics of the skin Casey Casey is a 2 year old boy who presents with this rash. What is the best treatment? A. Soap and Water B. Ibuprofen, it will self OHSUresolve C. Dicloxacillin D. Mupirocin OHSUImpetigo Impetigo Epidemiology and Treatment OHSU Ellen Ellen is a 54 year old morbidly obese woman with DM, HTN and venous stasis who presented with a painful left leg and fever. She has had 3 episodes in the last 6 months. What do you recommend? A. Cefazolin followed by oral amoxicillin prophylaxis B. Vancomycin – this is likely OHSUMRSA C. Amoxicillin – this is likely erysipelas D. Clindamycin to cover staph and strep cellulitis Impetigo OHSUErysipelas Erysipelas Risk: lymphedema, stasis, obesity, paresis, DM, ETOH OHSURecurrence rate: 30% in 3 yrs Treatment: Penicillin Impetigo Erysipelas OHSUCellulitis Cellulitis • DEEPER than erysipelas • Microbiology: – 6-48hrs post op: think GAS… too early for staph (days in the making)! – Periorbital – Staph, Strep pneumoniae, GAS OHSU– Post Varicella - GAS – Skin popping – Staph + almost anything! Framework for Skin and Soft Tissue Infections (SSTIs) NONPurulent Purulent Necrotizing/Cellulitis/Erysipelas Furuncle/Carbuncle/Abscess Severe Moderate Mild Severe Moderate Mild I&D I&D I&D I&D IV Rx Oral Rx C&S C&S C&S C&S Vanc + Pip-tazo OHSUEmpiric IV Empiric MRSA Oral MRSA TMP/SMX Doxy What Are Your “Go-To” Oral Options For Non-Purulent SSTI? Amoxicillin Doxycycline OHSUCephalexin Doxycycline Trimethoprim-Sulfamethoxazole OHSU Miller LG, et al. -
NEUROCHEMISTRY A4b (1)
NEUROCHEMISTRY A4b (1) Neurochemistry Last updated: April 20, 2019 CLASSIFICATION OF NEUROTRANSMITTERS ............................................................................................ 2 CATECHOLAMINES .................................................................................................................................. 3 NORADRENALINE (S. NOREPINEPHRINE, LEVARTERENOL) ..................................................................... 4 EPINEPHRINE .......................................................................................................................................... 6 DOPAMINE ............................................................................................................................................. 6 SEROTONIN (S. 5-HYDROXYTRYPTAMINE, 5-HT) ................................................................................... 8 HISTAMINE ............................................................................................................................................. 10 ACETYLCHOLINE ................................................................................................................................... 11 AMINO ACIDS ......................................................................................................................................... 13 GLUTAMATE, ASPARTATE .................................................................................................................... 13 Γ-AMINOBUTYRIC ACID (GABA) ........................................................................................................ -
||||||||III US005562907A United States Patent (19 11 Patent Number: 5,562,907 Arnon 45 Date of Patent: Oct
||||||||III US005562907A United States Patent (19 11 Patent Number: 5,562,907 Arnon 45 Date of Patent: Oct. 8, 1996 54 METHOD TO PREVENT SIDE-EFFECTS AND Suen et al., "Clostridium argentinense, sp. nov: A Geneti INSENSTIVITY TO THE THERAPEUTIC cally Homogenous Group Composed of All Strains of Clostridium botulinum Toxin Type G and Some Nontoxi USES OF TOXINS genic Strains Previously Identified as Clostridium subtermi (76) Inventor: Stephen S. Arnon, 9 Fleetwood Ct., naleor Clostridium hastiforme' Int. J. System. Bacteriol. Orinda, Calif. 94563 (1988) 38(4):375-381. Van Ermengem, "Ueber einem neuen anaeroben Bacillus und seine Beziehungen zum Botulismus' Z. Hyg. Infektion (21) Appl. No.: 254.238 skrankh. (1897) 26:1-56. An English translation can be found in A New Anaerobic Bacillus and Its Relation to (22 Filed: Jun. 6, 1994 Botulism, Rev. Infect. Dis. (1979) 1(4):701-719. Koening et al., "Clinical and Laboratory Observations on Related U.S. Application Data Type E Botulism in Man' Medicine (1964) 43:517-545. Beller et al., “Repeated Type E Botulism in an Alaskan 63 Continuation-in-part of Ser. No. 62,110, May 14, 1993, Eskimo' N. Engl. J. Med. (1990) 322(12):855. abandoned. Schroeder et al., "Botulism from Fermented Trout' T. Nor ske Laegeforen (1962) 82:1084-1086. An English transla 30) Foreign Application Priority Data tion, beyond the title, is currently not available. Mar. 8, 1994 WO) WIPO ..................... PCT/US94/02521 Mandell et al., eds., Principles and Practice of Infectious Diseases, 3rd Edition, Churchill Livingstone, New York, (51 Int. Cl. .......................... A61K 39/08; A61K 39/38; (1990) pp. -
Lllostridium Botulinum Neurotoxinl I H
MICROBIOLOGICAL REVIEWS, Sept. 1980, p. 419-448 Vol. 44, No. 3 0146-0749/80/03-0419/30$0!)V/0 Lllostridium botulinum Neurotoxinl I H. WJGIYAMA Food Research Institute and Department ofBacteriology, University of Wisconsin, Madison, Wisconsin 53706 INTRODUCTION ........ .. 419 PATHOGENIC FORMS OF BOTULISM ........................................ 420 Food Poisoning ............................................ 420 Wound Botulism ............................................ 420 Infant Botulism ............................................ 420 CULTURES AND TOXIN TYPES ............................................ 422 Culture-Toxin Relationships ............................................ 422 Culture Groups ............................................ 422 GENETICS OF TOXIN PRODUCTION ......................................... 423 ASSAY OF TOXIN ............................................ 423 In Vivo Quantitation ............................................ 424 Infant-Potent Toxin ............................................ 424 Serological Assays ............................................ 424 TOXIC COMPLEXES ............................................ 425 Complexes 425 Structure of Complexes ...................................................... 425 Antigenicity and Reconstitution .......................... 426 Significance of Complexes .......................... 426 Nomenclature ........................ 427 NEUROTOXIN ..... 427 Molecular Weight ................... 427 Specific Toxicity ................... 428 Small Toxin .................. -
Immune Effector Mechanisms and Designer Vaccines Stewart Sell Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
EXPERT REVIEW OF VACCINES https://doi.org/10.1080/14760584.2019.1674144 REVIEW How vaccines work: immune effector mechanisms and designer vaccines Stewart Sell Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA ABSTRACT ARTICLE HISTORY Introduction: Three major advances have led to increase in length and quality of human life: Received 6 June 2019 increased food production, improved sanitation and induction of specific adaptive immune Accepted 25 September 2019 responses to infectious agents (vaccination). Which has had the most impact is subject to debate. KEYWORDS The number and variety of infections agents and the mechanisms that they have evolved to allow Vaccines; immune effector them to colonize humans remained mysterious and confusing until the last 50 years. Since then mechanisms; toxin science has developed complex and largely successful ways to immunize against many of these neutralization; receptor infections. blockade; anaphylactic Areas covered: Six specific immune defense mechanisms have been identified. neutralization, cytolytic, reactions; antibody- immune complex, anaphylactic, T-cytotoxicity, and delayed hypersensitivity. The role of each of these mediated cytolysis; immune immune effector mechanisms in immune responses induced by vaccination against specific infectious complex reactions; T-cell- mediated cytotoxicity; agents is the subject of this review. delayed hypersensitivity Expertopinion: In the past development of specific vaccines for infections agents was largely by trial and error. With an understanding of the natural history of an infection and the effective immune response to it, one can select the method of vaccination that will elicit the appropriate immune effector mechanisms (designer vaccines). These may act to prevent infection (prevention) or eliminate an established on ongoing infection (therapeutic). -
Botulism Manual
Preface This report, which updates handbooks issued in 1969, 1973, and 1979, reviews the epidemiology of botulism in the United States since 1899, the problems of clinical and laboratory diagnosis, and the current concepts of treatment. It was written in response to a need for a comprehensive and current working manual for epidemiologists, clinicians, and laboratory workers. We acknowledge the contributions in the preparation of this review of past and present physicians, veterinarians, and staff of the Foodborne and Diarrheal Diseases Branch, Division of Bacterial and Mycotic Diseases (DBMD), National Center for Infectious Diseases (NCID). The excellent review of Drs. K.F. Meyer and B. Eddie, "Fifty Years of Botulism in the United States,"1 is the source of all statistical information for 1899-1949. Data for 1950-1996 are derived from outbreaks reported to CDC. Suggested citation Centers for Disease Control and Prevention: Botulism in the United States, 1899-1996. Handbook for Epidemiologists, Clinicians, and Laboratory Workers, Atlanta, GA. Centers for Disease Control and Prevention, 1998. 1 Meyer KF, Eddie B. Fifty years of botulism in the U.S. and Canada. George Williams Hooper Foundation, University of California, San Francisco, 1950. 1 Dedication This handbook is dedicated to Dr. Charles Hatheway (1932-1998), who served as Chief of the National Botulism Surveillance and Reference Laboratory at CDC from 1975 to 1997. Dr. Hatheway devoted his professional life to the study of botulism; his depth of knowledge and scientific integrity were known worldwide. He was a true humanitarian and served as mentor and friend to countless epidemiologists, research scientists, students, and laboratory workers. -
OBJECTIVES Spore-Forming Gram-Positive Bacilli: Clostridium
PHARMACEUTICAL MICROBIOLOGY Assoc.Prof. Müjde Eryılmaz OBJECTIVES Spore-Forming Gram-Positive Bacilli: ❑ Clostridium • Clostridium perfringens • Clostridium tetani • Clostridium botulinum • Clostridium difficile Clostridium • The genus Clostridium is extremely heterogeneous, and more than 200 species have been described. • Most clostridia are harmless saprophytes, but some are well-recognized human pathogens. • They are obligate anaerobes capable of producing endospores. Most species grow only in the complete absence of oxygen. Clostridium • Clostridium are found in soil, water, and the intestinal tracts of humans and other animals. • They cause several important toxin-mediated diseases. • The major toxins produced by the species are neurotoxins affecting nervous tissue, histotoxins affecting soft tissue and enterotoxins affecting the gut. Clostridium • Clostridium grows in anaerobic conditions; Bacillus grows in aerobic conditions. • Clostridium forms bottle-shaped endospores; Bacillus forms oblong endospores. • Clostridium does not form the enzyme catalase; Bacillus secretes catalase to destroy toxic by-products of oxygen metabolism. Clostridium • Clostridia can ferment a variety of sugars; many can digest proteins. These metabolic characteristics are used to divide the Clostridia into groups, saccharolytic or proteolytic. • Many clostridia produce a zone of β-hemolysis on blood agar. • C. perfringens characteristically produces a double zone of β- hemolysis around colonies. Anaerobic culture of Clostridium perfringens on blood agar https://www.pinterest.es/pin/291326669631450707/ Clostridium • Clostridium tetani is the cause of tetanus • C. botulinum is the cause of botulism • C. perfringens, C. septicum, C. histolyticum and C. novyi are the causes of gas gangrene and other infections. • C. perfringens is also associated with a form of food poisoning. • C. difficile is the cause of pseudomembranous colitis and antibiotic-associated diarrhea. -
Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins
Review Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins Wei Yuen Yap 1 and Jung Shan Hwang 2,* 1 Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; [email protected] 2 Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia * Correspondence: [email protected]; Tel.: +603-7491-8622 (ext. 7414) Academic Editor: Jean-Marc Sabatier Received: 23 August 2018; Accepted: 28 September 2018; Published: 4 October 2018 Abstract: A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. -
Question of the Day Archives: Monday, December 5, 2016 Question: Calcium Oxalate Is a Widespread Toxin Found in Many Species of Plants
Question Of the Day Archives: Monday, December 5, 2016 Question: Calcium oxalate is a widespread toxin found in many species of plants. What is the needle shaped crystal containing calcium oxalate called and what is the compilation of these structures known as? Answer: The needle shaped plant-based crystals containing calcium oxalate are known as raphides. A compilation of raphides forms the structure known as an idioblast. (Lim CS et al. Atlas of select poisonous plants and mushrooms. 2016 Disease-a-Month 62(3):37-66) Friday, December 2, 2016 Question: Which oral chelating agent has been reported to cause transient increases in plasma ALT activity in some patients as well as rare instances of mucocutaneous skin reactions? Answer: Orally administered dimercaptosuccinic acid (DMSA) has been reported to cause transient increases in ALT activity as well as rare instances of mucocutaneous skin reactions. (Bradberry S et al. Use of oral dimercaptosuccinic acid (succimer) in adult patients with inorganic lead poisoning. 2009 Q J Med 102:721-732) Thursday, December 1, 2016 Question: What is Clioquinol and why was it withdrawn from the market during the 1970s? Answer: According to the cited reference, “Between the 1950s and 1970s Clioquinol was used to treat and prevent intestinal parasitic disease [intestinal amebiasis].” “In the early 1970s Clioquinol was withdrawn from the market as an oral agent due to an association with sub-acute myelo-optic neuropathy (SMON) in Japanese patients. SMON is a syndrome that involves sensory and motor disturbances in the lower limbs as well as visual changes that are due to symmetrical demyelination of the lateral and posterior funiculi of the spinal cord, optic nerve, and peripheral nerves.