Moraxella Catarrhalis and Haemophilus Influenzae

Total Page:16

File Type:pdf, Size:1020Kb

Moraxella Catarrhalis and Haemophilus Influenzae The Other Siblings: Respiratory Infections Caused by Moraxella catarrhalis and Haemophilus influenzae Larry Lutwick, MD, and Laila Fernandes, MD Corresponding author Moraxella catarrhalis Larry Lutwick, MD Infectious Diseases (IIIE), VA Medical Center, 800 Poly Place, Bacteriology Brooklyn, NY 11219, USA. M. catarrhalis is a Gram negative, aerobic diplococcus E-mail: [email protected] that was initially described by Anton Ghon and Rich- Current Infectious Disease Reports 2006, 8:215–221 ard Pfeiffer as Micrococcus catarrhalis at the end of the Current Science Inc. ISSN 1523-3847 19th century. For most of the first century of its rec- Copyright © 2006 by Current Science Inc. ognition, M. catarrhalis is considered to be a human mucosal commensal organism based on its common finding as an inhabitant of the oropharynx of healthy Respiratory infections remain substantial causes of mor- adults. During a significant amount of this time, based bidity and mortality globally. In this paper, two substantial on phenotypic characteristics as well as microbiologic players in bacterial-associated respiratory disease are colony appearances, the diplococcus was referred to assessed as to their respective roles in children and adults as Neisseria catarrhalis. Of note, in 1963, N. catarrhalis and in the developed and developing world. Moraxella was found to contain two distinct species, catarrhalis catarrhalis, although initially thought to be a nonpathogen, and cinerea [1]. continues to emerge as a cause of upper respiratory Reclassification of the genus of this microorganism disease in children and pneumonia in adults. No vaccine occurred in 1970 when significant phylogenetic dispari- is currently available to prevent M. catarrhalis infection. ties between N. catarrhalis and the generally considered Haemophilus influenzae type b, originally thought to be the “true” Neisseria species (such the meningococcus and cause of influenza, has now been limited epidemiologically gonococcus) were elucidated. These findings resulted in in the developed world due to an effective immunization the movement of the organism into the newly created but it continues to be a major player in the developing genus of Branhamella [2]. This genus was to honor Sara world. Nonencapsulated strains of H. influenzae still Branham whose pioneering work on N. meningitidis and remain as significant causes of respiratory infections in influenza virus helped introduce the importance of the the developing world especially in exacerbation of chronic bacteriology into public health. obstructive lung disease. Finally, and in brief, the spectrum Fourteen years later, the taxonomy of this organism of Brazilian purpuric fever due to a specific biotype of (neé Micrococcus) changed once more with its reassign- H. influenzae is discussed. ment into the genus Moraxella [3] based on DNA-DNA hybridization, rRNA-DNA hybridization, and 16S ribosomal DNA sequence and cell wall fatty acid com- Introduction parisons. This genus therefore contained the diplococcus Certainly Streptococcus pneumoniae is recognized as the “big M. catarrhalis and other moraxellae such as osloensis that brother” of respiratory infections, especially pneumonia. is bacillary in shape. Many other pyogenic bacteria like the pneumococcus, In blood agar, the organism produces nonhemolytic, however, are primary respiratory pathogens. This paper round, opaque, grayish-white colonies that remain intact addresses two of the other major bacterial causes of respi- when pushed across the surface of the agar [4••]. On Gram ratory infections throughout the world after Streptococcus stain, M. catarrhalis appears as a standard Neisseria organ- pneumoniae, Moraxella catarrhalis and Haemophilus influenzae, ism does, as a Gram negative diplococcus with adjacent the other siblings in the respiratory infection family. flattened sides. In addition to being oxidase positive, the 216 Pleuropulmonary and Bronchial Infections organism is generally DNase, nitrate and nitrite reduction, nary respiratory involvement with this organism has been and tributyrin hydrolysis positive [4••]. described. Not only cases of sinusitis and otitis media have been described in children [4••], but also the diplococcus Carriage has been linked to cases of laryngitis and tracheobronchitis, An inverse relationship between age and healthy carriage the latter often associated with an exacerbation of chronic rate is found with this organism. Up to 75% of children obstructive pulmonary disease (COPD). can be colonized with M. catarrhalis [4••] whereas the An association of laryngitis in the adult with Morax- carriage rate in healthy adults is generally regarded to ella has been made by Hol et al. [14] in the Netherlands. be 1% to 5% [4••,5••]. Carriage rates of the organism The group had previous observed that the organism appear to be higher during the fall and winter months. could be isolated from more than 50% of 40 cases of lar- Murphy [5••] states that colonization rates appear to be yngitis and none of 40 controls but it was not clear if the higher in adults with chronic respiratory diseases. This organism had a pathogenic role in the disease. The find- asymptomatic carriage appears to be a dynamic one with ing that the laryngitis isolates had a higher proportion individuals eliminating one strain and then acquiring a (57%) of complement-resistant strains than did carrier genetically distinct strain later. strains from healthy 8- to 13-year-old school children (16%) with a P < 0.001 the finding of complement-resis- Respiratory disease in childhood tant (virulence-associated) phenotype in adults with As has been recognized to be the case with meningococcal acute laryngitis supports the theory of an active role of disease, pediatric longitudinal studies have revealed M. catarrhalis in the pathogenesis of acute laryngitis. that newly acquired nasopharyngeal colonization with Just as the pneumococcus and H. influenzae (especially a strain of M. catarrhalis precedes the development of nontypeable strains) have been associated with acute exac- infection due to this strain [6]. Systemic infections such erbations of COPD with increasing amount and purulence as meningitis and/or bacteremia do occur (especially in of respiratory secretions, M. catarrhalis is now linked as the immunoincompetent individual [7] but are rare. In well. Murphy [5••] presents a number of lines of evidence cases of bacteremia as many as 50% of them may develop to link this organism to COPD exacerbations: a rash which can resemble that in meningococcemia [8]. Most cases of M. catarrhalis infection in children are 1. Some patients with exacerbations of COPD will represented by upper respiratory infections such as otitis have Gram stains of the expectorated sputum media, bacterial sinusitis, and bronchitis/tracheitis. revealing the predominant organism being a Gram Bacteriologically, Moraxella accounts for about 20% negative kidney bean-shaped diplococcus with of acute or subacute sinus infections in children with significant growth of the organism upon culture. Haemophilus influenzae also causing 20% and Streptococcus 2. Pure cultures of the organism have been pneumoniae 40% [9]. Similar numbers have been generated obtained in some cases of exacerbation in secre- for pediatric otitis media [10]. Verduin et al. [4••] suggest tions obtained through transtracheal aspiration that the incidence of M. catarrhalis causing these infec- to avoid the contamination of oral flora. tions may well be higher as it is not easily isolated from 3. Improvement of symptoms may occur only when, relatively low redox potential (anaerobic) environments. since most M. catarrhalis strains produce a beta- Studies have been published that suggest that the severity lactamase, antimicrobial treatment is modified to of symptoms and the bacterial load in the middle ear fluid a drug resistant to bacterial beta-lactamase. are lower for Moraxella infections as compared with the 4.. Antibodies may develop to the homologous strain other common bacterial causes of otitis media [11]. of the organism that was isolated during the event. Bacterial pneumonia due to this organism has been felt to be relatively uncommon with most of them Pneumonia due to this organism certainly appears occurring in pediatric patients younger than 1 year of to be more common in the elderly than in the pediat- age [12]. The co-morbidity of bronchopulmonary dys- ric cohort. One study from Belgium done prospectively plasia appears to be a predisposing problem in pediatric regarding community-acquired pneumonia in the elderly M. catarrhalis pneumonia [13]. Although uncommon reported that 8% of pneumonias in those older than 60 in most studies, good documentation of the diagnosis years of age were caused by this diplococcus [15]. The has been made by the isolation of the organism in pure same group reported that the asymptomatic carriage rate culture from tracheal aspirates as well as finding the appeared to increase in those older than 60 years of age organism in blood culture. to about 25% from 5% in those adults younger than 60 years of age. Most of the older individuals who develop Respiratory disease in adults M. catarrhalis pneumonia have, as many with other Although occasional extrarespiratory infections with bacterial pneumonias, significant co-morbidities [16,17]. M. catarrhalis occur in the adult including endocarditis, most These cofactors include COPD, congestive heart failure, and infections are related to the respiratory system. Nonpulmo- diabetes mellitus. In the
Recommended publications
  • Biofilm Formation by Moraxella Catarrhalis
    BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work.
    [Show full text]
  • Helicobacter Pylori Outer Membrane Vesicles and the Host-Pathogen Interaction
    Helicobacter pylori outer membrane vesicles and the host-pathogen interaction Annelie Olofsson Department of Medical Biochemistry and Biophysics Umeå 2013 Responsible publisher under swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7459-578-9 ISSN: 0346-6612 New series nr: 1559 Cover: Electron micrograph of outer membrane vesicles Elektronisk version tillgänglig på http://umu.diva-portal.org/ Printed by: VMC-KBC, Umeå University Umeå, Sweden, 2013 Till min mormor och farfar i ii INDEX ABSTRACT iv LIST OF PAPERS v SAMMANFATTNING vi ABBREVIATIONS viii INTRODUCTION 1 BACKGROUND 2 The human stomach 2 Helicobacter pylori 3 Epidemiology 3 Gastric diseases 3 Clinical outcome 4 Treatment and disease determinants 5 The gastric environment and host cell responses 6 H. pylori colonization and virulence factors 8 cagPAI 9 CagA and apical junctions 11 The H. pylori outer membrane 12 Phospholipids and cholesterol 12 Lipopolysaccharides 13 Outer membrane proteins 14 Adhesins and their cognate receptor structures 14 Bacterial outer membrane vesicles 15 Vesicle biogenesis and composition 15 Biological consequences of vesicle shedding 18 Endocytosis and uptake of bacterial vesicles 19 Clathrin-mediated endocytosis 20 Clathrin-independent endocytosis 21 Caveolae 22 Modulation of host cell defenses and responses 23 AIM OF THESIS 24 RESULTS AND DISCUSSION 25 Paper I 25 Paper II 27 Paper III 28 Paper IV 31 CONCLUDING REMARKS 34 ACKNOWLEDGEMENTS 36 REFERENCES 38 iii ABSTRACT The gastric pathogen Helicobacter pylori chronically infects the stomachs of more than half of the world’s population. Even though the majority of infected individuals remain asymptomatic, 10–20% develop peptic ulcer disease and 1–2% develop gastric cancer.
    [Show full text]
  • Clinical Antibiotic Guidelines†
    CLINICAL ANTIBIOTIC GUIDELINES† ACYCLOVIR IV*/PO *RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Herpes Simplex Cytomegalovirus Epstein Barr Virus Herpes Zoster Indicated: IV: 1. Therapy for suspected or documented Herpes simplex encephalitis 2. Therapy for suspected or documented Herpes simplex infection of a newborn or immunocompromised patient 3. Therapy for primary varicella infection in immunocompromised patients 4. Therapy for severe or disseminated varicella-zoster infections in immunocompromised or immunocompetent patient 5. Therapy for primary genital herpes with neurologic complications Oral: 1. Therapy for primary Herpes simplex infections (oral/genital) 2. Suppressive (preventative) therapy for recurrent (³ 6 episodes/year) severe Herpes simplex infections (oral/genital) 3. Episodic therapy for recurrent (³ 6 episodes/year) Herpes simplex genital infections (initiate within 24 hours of prodrome onset) 4. Prophylaxis for HSV in bone marrow transplants where patient is seropositive 5. Therapy and suppressive therapy for Eczema Herpeticum 6. Therapy for varicella-zoster infections in immunocompetent and immunocompromised patients (if not severe) 7. Therapy for primary varicella infections in pregnancy 8. Therapy for varicella in immunocompetent patients > 13 years old (initiate within 24 hours of rash onset) 9. Therapy for varicella in patients < 13 years old (initiate within 24 hours of rash onset) if there is a chronic cutaneous or pulmonary disorder, long term salicylate therapy, or short, intermittent or aerosolized corticosteroid use Not Indicated: 1. Therapy for acute Epstein-Barr infections (acute mononucleosis) 2. Therapy for documented CMV infections CLINICAL ANTIBIOTIC GUIDELINES† AMIKACIN RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Enterobacteriaceae Staphylococcus spp Streptococcus spp Pseudomonas spp Enterococcus spp some Mycobacterium spp Alcaligenes spp Anaerobes Indicated: 1.
    [Show full text]
  • BIAXIN® XL Filmtab® (Clarithromycin Extended-Release Tablets) BIAXIN® Granules (Clarithromycin for Oral Suspension, USP)
    dn2871v1-biaxin-redline-2013-oct-25 BIAXIN® Filmtab® (clarithromycin tablets, USP) BIAXIN® XL Filmtab® (clarithromycin extended-release tablets) BIAXIN® Granules (clarithromycin for oral suspension, USP) To reduce the development of drug-resistant bacteria and maintain the effectiveness of BIAXIN and other antibacterial drugs, BIAXIN should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Clarithromycin is a semi-synthetic macrolide antibiotic. Chemically, it is 6-0­ methylerythromycin. The molecular formula is C38 H69 NO13 , and the molecular weight is 747.96. The structural formula is: Clarithromycin is a white to off-white crystalline powder. It is soluble in acetone, slightly soluble in methanol, ethanol, and acetonitrile, and practically insoluble in water. BIAXIN is available as immediate-release tablets, extended-release tablets, and granules for oral suspension. Reference ID: 3599379 dn2871v1-biaxin-redline-2013-oct-25 Each yellow oval film-coated immediate-release BIAXIN tablet (clarithromycin tablets, USP) contains 250 mg or 500 mg of clarithromycin and the following inactive ingredients: 250 mg tablets: hypromellose, hydroxypropyl cellulose, croscarmellose sodium, D&C Yellow No. 10, FD&C Blue No. 1, magnesium stearate, microcrystalline cellulose, povidone, pregelatinized starch, propylene glycol, silicon dioxide, sorbic acid, sorbitan monooleate, stearic acid, talc, titanium dioxide, and vanillin. 500 mg tablets: hypromellose, hydroxypropyl cellulose, colloidal silicon dioxide, croscarmellose sodium, D&C Yellow No. 10, magnesium stearate, microcrystalline cellulose, povidone, propylene glycol, sorbic acid, sorbitan monooleate, titanium dioxide, and vanillin. Each yellow oval film-coated BIAXIN XL tablet (clarithromycin extended-release tablets) contains 500 mg of clarithromycin and the following inactive ingredients: cellulosic polymers, D&C Yellow No.
    [Show full text]
  • Use of the Diagnostic Bacteriology Laboratory: a Practical Review for the Clinician
    148 Postgrad Med J 2001;77:148–156 REVIEWS Postgrad Med J: first published as 10.1136/pmj.77.905.148 on 1 March 2001. Downloaded from Use of the diagnostic bacteriology laboratory: a practical review for the clinician W J Steinbach, A K Shetty Lucile Salter Packard Children’s Hospital at EVective utilisation and understanding of the Stanford, Stanford Box 1: Gram stain technique University School of clinical bacteriology laboratory can greatly aid Medicine, 725 Welch in the diagnosis of infectious diseases. Al- (1) Air dry specimen and fix with Road, Palo Alto, though described more than a century ago, the methanol or heat. California, USA 94304, Gram stain remains the most frequently used (2) Add crystal violet stain. USA rapid diagnostic test, and in conjunction with W J Steinbach various biochemical tests is the cornerstone of (3) Rinse with water to wash unbound A K Shetty the clinical laboratory. First described by Dan- dye, add mordant (for example, iodine: 12 potassium iodide). Correspondence to: ish pathologist Christian Gram in 1884 and Dr Steinbach later slightly modified, the Gram stain easily (4) After waiting 30–60 seconds, rinse with [email protected] divides bacteria into two groups, Gram positive water. Submitted 27 March 2000 and Gram negative, on the basis of their cell (5) Add decolorising solvent (ethanol or Accepted 5 June 2000 wall and cell membrane permeability to acetone) to remove unbound dye. Growth on artificial medium Obligate intracellular (6) Counterstain with safranin. Chlamydia Legionella Gram positive bacteria stain blue Coxiella Ehrlichia Rickettsia (retained crystal violet).
    [Show full text]
  • Infectious Organisms of Ophthalmic Importance
    INFECTIOUS ORGANISMS OF OPHTHALMIC IMPORTANCE Diane VH Hendrix, DVM, DACVO University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996 OCULAR BACTERIOLOGY Bacteria are prokaryotic organisms consisting of a cell membrane, cytoplasm, RNA, DNA, often a cell wall, and sometimes specialized surface structures such as capsules or pili. Bacteria lack a nuclear membrane and mitotic apparatus. The DNA of most bacteria is organized into a single circular chromosome. Additionally, the bacterial cytoplasm may contain smaller molecules of DNA– plasmids –that carry information for drug resistance or code for toxins that can affect host cellular functions. Some physical characteristics of bacteria are variable. Mycoplasma lack a rigid cell wall, and some agents such as Borrelia and Leptospira have flexible, thin walls. Pili are short, hair-like extensions at the cell membrane of some bacteria that mediate adhesion to specific surfaces. While fimbriae or pili aid in initial colonization of the host, they may also increase susceptibility of bacteria to phagocytosis. Bacteria reproduce by asexual binary fission. The bacterial growth cycle in a rate-limiting, closed environment or culture typically consists of four phases: lag phase, logarithmic growth phase, stationary growth phase, and decline phase. Iron is essential; its availability affects bacterial growth and can influence the nature of a bacterial infection. The fact that the eye is iron-deficient may aid in its resistance to bacteria. Bacteria that are considered to be nonpathogenic or weakly pathogenic can cause infection in compromised hosts or present as co-infections. Some examples of opportunistic bacteria include Staphylococcus epidermidis, Bacillus spp., Corynebacterium spp., Escherichia coli, Klebsiella spp., Enterobacter spp., Serratia spp., and Pseudomonas spp.
    [Show full text]
  • Characterization of the Molecular Interplay Between Moraxella Catarrhalis and Human Respiratory Tract Epithelial Cells
    Characterization of the Molecular Interplay between Moraxella catarrhalis and Human Respiratory Tract Epithelial Cells Stefan P. W. de Vries, Marc J. Eleveld, Peter W. M. Hermans¤, Hester J. Bootsma* Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands Abstract Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro- inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier.
    [Show full text]
  • Lineage-Specific Virulence Determinants of Haemophilus
    Lineage-specifi c Virulence Determinants of Haemophilus infl uenzae Biogroup aegyptius Fiona R. Strouts,1 Peter Power, Nicholas J. Croucher, Nicola Corton, Andries van Tonder, Michael A. Quail, Paul R. Langford, Michael J. Hudson, Julian Parkhill, J. Simon Kroll, and Stephen D. Bentley An emergent clone of Haemophilus infl uenzae and fatal. Invasive infection was preceded by purulent biogroup aegyptius (Hae) is responsible for outbreaks of conjunctivitis that resolved before the onset of an acute Brazilian purpuric fever (BPF). First recorded in Brazil in bacteremic illness, which rapidly evolved into septic shock 1984, the so-called BPF clone of Hae caused a fulminant complicated by purpura fulminans (3). In the 11 years disease that started with conjunctivitis but developed into to 1995, several hundred cases of BPF were reported, of septicemic shock; mortality rates were as high as 70%. which all but 3 were in Brazil (4,5); overall mortality rate To identify virulence determinants, we conducted a pan- genomic analysis. Sequencing of the genomes of the BPF was 40%. Cases occurred sporadically and in outbreaks, clone strain F3031 and a noninvasive conjunctivitis strain, mainly in small towns, although some were in the state F3047, and comparison of these sequences with 5 other capital, where an epidemic was feared because of crowding complete H. infl uenzae genomes showed that >77% of and deprivation. A collaborative task force by the Brazilian the F3031 genome is shared among all H. infl uenzae Health Authorities and the US Centers for Disease Control strains. Delineation of the Hae accessory genome enabled and Prevention was created to investigate this emergent characterization of 163 predicted protein-coding genes; infection and identifi ed the cause as the BPF clone of Hae identifi ed differences in established autotransporter (HaeBPF) (6).
    [Show full text]
  • Pneumonia Panel
    Guidance on Use of the Pneumonia Panel for Respiratory Infections Although the number of pathogens that cause pneumonia is lengthy, establishing the microbiologic etiology of pneumonia is inherently difficult. A recent large multi-center study of community-acquired pneumonia (CAP) found that only 38% of 2259 CAP cases had a microbiologic diagnosis with 23% having viruses detected, 11% bacterial, and 3% had both viruses and bacteria detected.1 Current tools to assist in pneumonia diagnosis include respiratory tract cultures (sputum, BAL, tracheal aspirate, mini-BAL), urine antigens (pneumococcal, Legionella), serology, and PCR for viral and certain bacterial pathogens. While these tools are useful, the study noted above used all these tools and was unable to document an etiology causing pneumonia in 62% of patients. Thus, more sensitive tools for detection of respiratory pathogens are still needed. Nebraska Medicine has recently introduced a new FDA-approved multiplex PCR panel to assist in determination of the etiology of pneumonia, termed the Pneumonia Panel (PP). This test uses a nested multiplex PCR- approach to amplify nucleic acid targets directly from sputum or bronchoalveolar lavage (BAL) in patients with suspected pneumonia. The list of pathogens and resistance genes included in the panel is found in Table 1. Note that the bacterial targets are detected semi-quantitatively whereas the atypical pathogens and the viral targets are detected qualitatively. Table 1: Pneumonia Panel Pathogen Targets and Associated Resistance Genes Semi-quantitative Detection: Gram Positive Organisms: Resistance Genes (Staph aureus only): Staphylococcus aureus mecA/C and MREJ Streptococcus pneumoniae Streptococcus agalactiae Streptococcus pyogenes Gram Negative Organisms: Resistance Genes (All Gram Negatives): Acinetobacter calcoaceticus-baumannii complex CTX-M Enterobacter cloacae complex IMP E.
    [Show full text]
  • The Microbial Community of Kitchen Sponges: Experimental Study Investigating Bacterial Number, Resistance and Transfer
    Digital Commons @ Assumption University Honors Theses Honors Program 2019 The Microbial Community of Kitchen Sponges: Experimental Study Investigating Bacterial Number, Resistance and Transfer Sydney Knoll Assumption College Follow this and additional works at: https://digitalcommons.assumption.edu/honorstheses Part of the Life Sciences Commons Recommended Citation Knoll, Sydney, "The Microbial Community of Kitchen Sponges: Experimental Study Investigating Bacterial Number, Resistance and Transfer" (2019). Honors Theses. 54. https://digitalcommons.assumption.edu/honorstheses/54 This Honors Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Assumption University. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Assumption University. For more information, please contact [email protected]. The Microbial Community of Kitchen Sponges: Experimental Study Investigating Bacterial Number, Resistance and Transfer Sydney Knoll Faculty Supervisor: Aisling Dugan, Ph.D. Department of Biological and Physical Sciences A Thesis Submitted to Fulfill the Requirements of the Honors Program at Assumption College Spring 2019 Acknowledgments I would like to express my deepest appreciation to Professor Aisling Dugan for serving as my honors advisor, mentor and role model in my life. I am incredibly grateful for her continued support and the countless number of times she has read and edited my thesis. This work would not have been possible without her. I would also like to acknowledge the Assumption College Honors Program and the Department of Biological and Physical Sciences for their support and financial assistance they provided me throughout this research. Finally, I would like to thank my parents for being there for me every step of the way through college, including this thesis.
    [Show full text]
  • Nasopharyngeal Carriage and Antibiotic Resistance of Haemophilus Influenzae, Streptococcus Pneumoniae and Moraxella Catarrhalis
    86 Indian Journal of Medical Microbiology vol. 27, No. 1 BD for 4 weeks. He responded well to treatment and became The Indian subcontinent has been plagued by resistance afebrile after 10 days, with marked regression in the size of to classical antileishmanial drugs and the approval of the liver and spleen. Repeat investigations performed after miltefosine in this regard has been a signiÞ cant milestone in 8 weeks showed near normal haemogram, normal liver the treatment due to ease of administration, few toxic effects function tests and normal size portal vein on ultrasound and and excellent cure rate.[4,5] the bone marrow smear became negative for LD bodies. IFAT titre (1:400) and proteinuria (476 mg/24 h) decreased References signiÞ cantly. 1. Prakash A, Singh NP, Sridhara G, Malhotra V, Makhija A, Garg D, et al. Visceral leishmaniasis masquerading as chronic Our patient had evidence suggestive of signiÞ cant liver liver disease. J Assoc Physicians India 2006;54:893-4. disease in view of hepatosplenomegaly, elevated serum 2. Aggarwal P, Wali JP, Chopra P. Liver in kala-azar. Indian J alkaline phosphatase, marked hypoalbuminaemia, impaired Gastroenterol 1990;9:135-6. PT/aPTT, transudative ascites and ultrasonographic evidence 3. Salgado Filho N, Ferreira TM, Costa JM. Involvement of the of hepatosplenomegaly, ascites and borderline portal renal function in patients with visceral leishmaniasis (kala hypertension along with deÞ nitive evidence of Kala-azar. azar). Rev Soc Bras Med Trop 2003;36:217-21. Most of these Þ ndings did revert after successful treatment 4. Sundar S, Jha TK, Thakur CP, Engel J, Sindermann H, Fischer C, et al.
    [Show full text]
  • Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1
    CDC - Emerging Human Infectious Diseases: Anthroponoses, Zoonoses, and Sapronoses Appendix: Important Anthroponoses, Zoonoses, and Sapronoses1 Anthroponoses Measles*; rubella; mumps; influenza; common cold; viral hepatitis; poliomyelitis; AIDS*; infectious mononucleosis; herpes simplex; smallpox; trachoma; chlamydial pneumonia and cardiovascular disease*; mycoplasmal infections*; typhoid fever; cholera; peptic ulcer disease*; pneumococcal pneumonia; invasive group A streptococcal infections; vancomycin-resistant enterococcal disease*; meningococcal disease*; whooping cough*; diphtheria*; Haemophilus infections* (including Brazilian purpuric fever*); syphilis; gonorrhea; tuberculosis* (multidrug- resistant strains); candidiasis*; ringworm (Trichophyton rubrum); Pneumocystis pneumonia* (human genotype); microsporidial infections*; cryptosporidiosis* (human genotype); giardiasis* (human genotype); amebiasis; and trichomoniasis. Zoonoses Transmitted by Direct Contact, Alimentary (Foodborne and Waterborne), or Aerogenic (Airborne) Routes Rabies; hemorrhagic fever with renal syndrome*; hantavirus pulmonary syndrome*; Venezuelan*; Brazilian*; Argentinian and Bolivian hemorrhagic fevers; Lassa; Marburg; and Ebola hemorrhagic fevers*; Hendra and Nipah hemorrhagic bronchopneumonia*; hepatitis E*; herpesvirus simiae B infection; human monkeypox*;Q fever; sennetsu fever; cat scratch disease; psittacosis; mammalian chlamydiosis*; leptospirosis; zoonotic streptococcosis; listeriosis; erysipeloid; campylobacterosis*; salmonellosis*; hemorrhagic colitis*;
    [Show full text]