LISTA DELLE PUBBLICAZIONI References

Total Page:16

File Type:pdf, Size:1020Kb

LISTA DELLE PUBBLICAZIONI References LISTA DELLE PUBBLICAZIONI MAURO NACINOVICH References [1] Mauro Nacinovich. Monotone operators of finite degree. Boll. Un. Mat. Ital. (4), 6:134{139, 1972. [2] Mauro Nacinovich. Una osservazione su una congettura di De Giorgi. Boll. Un. Mat. Ital. (4), 12(1-2):9{14, 1975. [3] A. Andreotti and M. Nacinovich. Analytic convexity. Some comments on an example of de Giorgi and Piccinini. In Complex analysis and its applica- tions (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pages 25{37. Internat. Atomic Energy Agency, Vienna, 1976. [4] A. Andreotti and M. Nacinovich. Complexes of partial differential operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3(4):553{621, 1976. [5] A. Andreotti and M. Nacinovich. Some remarks on formal Poincar´elemma. In Complex analysis and algebraic geometry, pages 295{305. Iwanami Shoten, Tokyo, 1977. [6] Aldo Andreotti and Mauro Nacinovich. Th´eorie´el´ementaire de la convexit´e. Recherche Coop´erative sur Programme n25, 24:1{12, 1977. [7] Aldo Andreotti and Mauro Nacinovich. Convexit´eanalytique. In Fonctions de plusieurs variables complexes, III (S´em. Fran¸coisNorguet, 1975{1977), volume 670 of Lecture Notes in Math., pages 341{351. Springer, Berlin, 1978. [8] Aldo Andreotti and Mauro Nacinovich. Convexit´eanalytique. II. R´esultats positifs. In Fonctions de plusieurs variables complexes, III (S´em.Fran¸cois Norguet, 1975{1977), volume 670 of Lecture Notes in Math., pages 388{393. Springer, Berlin, 1978. [9] Aldo Andreotti and Mauro Nacinovich. Domaines de r´egularit´e pour les op´erateurs elliptiques `a coefficients constants (une fonction inconnue). Recherche Coop´erative sur Programme n25, 26:1{13, 1978. [10] Aldo Andreotti and Mauro Nacinovich. On the envelope of regularity for solutions of homogeneous systems of linear partial differential operators. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6(1):69{141, 1979. [11] Aldo Andreotti, Gregory Fredricks, and Mauro Nacinovich. Differential equa- tions without solutions. Rend. Sem. Mat. Fis. Milano, 50:11{22 (1982), 1980. [12] Aldo Andreotti and Mauro Nacinovich. Analytic convexity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7(2):287{372, 1980. [13] Aldo Andreotti and Mauro Nacinovich. Noncharacteristic hypersurfaces for complexes of differential operators. Ann. Mat. Pura Appl. (4), 125:13{83, 1980. [14] Aldo Andreotti, Gregory Fredricks, and Mauro Nacinovich. On the absence of Poincar´elemma in tangential Cauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 8(3):365{404, 1981. Date: October 18, 2019. 1 2 M. NACINOVICH [15] Aldo Andreotti and Mauro Nacinovich. On analytic and C1 Poincar´elemma. In Mathematical analysis and applications, Part A, volume 7 of Adv. in Math. Suppl. Stud., pages 41{93. Academic Press, New York, 1981. [16] Aldo Andreotti and Mauro Nacinovich. On the theory of analytic convexity. In Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979), pages 145{152. Academic Press, London, 1981. [17] Aldo Andreotti and Mauro Nacinovich. The \Poincar´elemma" for complexes of differential operators. In Proceedings of the mathematical congress in cele- bration of the one hundredth birthday of Guido Fubini and Francesco Severi (Turin, 1979), volume 115, pages 177{186 (1982), 1981. [18] Mauro Nacinovich. On the absence of Poincar´elemma for some systems of partial differential equations. Compositio Math., 44(1-3):241{303, 1981. [19] Mauro Nacinovich. Complex analysis and complexes of differential operators. In Complex analysis (Trieste, 1980), volume 950 of Lecture Notes in Math., pages 105{195. Springer, Berlin, 1982. [20] Mauro Nacinovich. On the solvability of systems of differential equations. Boll. Un. Mat. Ital. C (6), 1(1):107{135, 1982. [21] Mauro Nacinovich. A remark on differential equations with polynomial coef- ficients. Boll. Un. Mat. Ital. B (6), 1(3):979{989, 1982. [22] Mauro Nacinovich. On global solvability for some systems of partial differen- tial equations. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue:181{191 (1984), 1983. Conference on linear partial and pseudodifferential operators (Torino, 1982). [23] Mauro Nacinovich. On weighted estimates for some systems of partial differ- ential operators. Rend. Sem. Mat. Univ. Padova, 69:221{232, 1983. [24] M. Nacinovich. Poincar´elemma for tangential Cauchy-Riemann complexes. Math. Ann., 268(4):449{471, 1984. [25] Mauro Nacinovich. On boundary Hilbert differential complexes. Ann. Polon. Math., 46:213{235, 1985. [26] Mauro Nacinovich and Giorgio Valli. Tangential Cauchy-Riemann complexes on distributions. Ann. Mat. Pura Appl. (4), 146:123{160, 1987. [27] M. Nacinovich. Tangential Cauchy-Riemann systems. In Recent developments in hyperbolic equations (Pisa, 1987), volume 183 of Pitman Res. Notes Math. Ser., pages 225{239. Longman Sci. Tech., Harlow, 1988. [28] Mauro Nacinovich. On strict Levi q-convexity and q-concavity on domains with piecewise smooth boundaries. Math. Ann., 281(3):459{482, 1988. [29] Mauro Nacinovich. Cauchy problem for overdetermined systems. Ann. Mat. Pura Appl. (4), 156:265{321, 1990. [30] Mauro Nacinovich. Overdetermined hyperbolic systems on l.e. convex sets. Rend. Sem. Mat. Univ. Padova, 83:107{132, 1990. [31] Mauro Nacinovich. On a theorem of Airapetyan and Henkin. In Geometry Seminars, 1988{1991 (Italian) (Bologna, 1988{1991), pages 99{135. Univ. Stud. Bologna, Bologna, 1991. [32] C. Denson Hill and M. Nacinovich. A necessary condition for global Stein immersion of compact CR-manifolds. Riv. Mat. Univ. Parma (5), 1:175{182 (1993), 1992. [33] C. D. Hill and M. Nacinovich. The topology of Stein CR manifolds and the Lefschetz theorem. Ann. Inst. Fourier (Grenoble), 43(2):459{468, 1993. [34] C. Denson Hill and Mauro Nacinovich. Embeddable CR manifolds with nonembeddable smooth boundary. Boll. Un. Mat. Ital. A (7), 7(3):387{395, 1993. LISTA DELLE PUBBLICAZIONI 3 [35] Mauro Nacinovich. Approximation and extension of Whitney CR forms. In Complex analysis and geometry, Univ. Ser. Math., pages 271{283. Plenum, New York, 1993. [36] Chiara Boiti, Mauro Nacinovich, and Nikolai Tarkhanov. Hartogs-Rosenthal theorem for overdetermined systems. Atti Sem. Mat. Fis. Univ. Modena, 42(2):379{398, 1994. [37] C. Denson Hill and Mauro Nacinovich. A collar neighborhood theorem for a complex manifold. Rend. Sem. Mat. Univ. Padova, 91:24{30, 1994. [38] C. Denson Hill and M. Nacinovich. Duality and distribution cohomology of CR manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22(2):315{339, 1995. [39] C. Denson Hill and Mauro Nacinovich. Aneurysms of pseudoconcave CR man- ifolds. Math. Z., 220(3):347{367, 1995. [40] C. Denson Hill and Mauro Nacinovich. The Jacobian theorem for mapping of pseudoconcave CR hypersurfaces. Boll. Un. Mat. Ital. A (7), 9(1):149{155, 1995. [41] Chiara Boiti and Mauro Nacinovich. Extension of formal power series solu- tions. Rend. Sem. Mat. Univ. Padova, 96:205{235, 1996. [42] C. Denson Hill and Mauro Nacinovich. On the Cauchy problem in complex analysis. Ann. Mat. Pura Appl. (4), 171:159{179, 1996. [43] C. Denson Hill and Mauro Nacinovich. Pseudoconcave CR manifolds. In Com- plex analysis and geometry (Trento, 1993), volume 173 of Lecture Notes in Pure and Appl. Math., pages 275{297. Dekker, New York, 1996. [44] C. Medori and M. Nacinovich. Pluriharmonic functions on abstract CR man- ifolds. Ann. Mat. Pura Appl. (4), 170:377{394, 1996. [45] Mauro Nacinovich and Alexandre Shlapunov. On iterations of the Green in- tegrals and their applications to elliptic differential complexes. Math. Nachr., 180:243{284, 1996. [46] C. Boiti and M. Nacinovich. The overdetermined Cauchy problem. Ann. Inst. Fourier (Grenoble), 47(1):155{199, 1997. [47] C. Medori and M. Nacinovich. Levi-Tanaka algebras and homogeneous CR manifolds. Compositio Math., 109(2):195{250, 1997. [48] Laura De Carli and Mauro Nacinovich. Unique continuation in abstract pseu- doconcave CR manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 27(1):27{ 46 (1999), 1998. [49] C. Denson Hill and Mauro Nacinovich. Simplicially q-pseudoconcave CR man- ifolds and wedge decomposition. In Geometry Seminars, 1996{1997 (Italian) (Bologna), pages 111{124. Univ. Stud. Bologna, Bologna, 1998. [50] Costantino Medori and Mauro Nacinovich. Classification of semisimple Levi- Tanaka algebras. Ann. Mat. Pura Appl. (4), 174:285{349, 1998. [51] Mauro Nacinovich, Alexandre Shlapunov, and Nikolai Tarkhanov. Duality in the spaces of solutions of elliptic systems. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26(2):207{232, 1998. [52] Chiara Boiti and Mauro Nacinovich. Overdetermined systems in spaces of (small) Gevrey functions. In 9th Int. Coll. on Differential Equations, Pro- ceedings, pages 39{46. VSP, Utrecht, The Netherlands, 1999. [53] C. Denson Hill and Mauro Nacinovich. Leray residues and Abel's theorem in CR codimension k. Ann. Mat. Pura Appl. (4), 176:287{322, 1999. [54] C. Denson Hill and Mauro Nacinovich. Solvable Lie algebras and the embed- ding of CR manifolds. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2(1):121{126, 1999. 4 M. NACINOVICH [55] Mauro Nacinovich, Bert-Wolfgang Schulze, and Nikolai Tarkhanov. On Car- leman formulas for the Dolbeault cohomology. Ann. Univ. Ferrara Sez. VII (N.S.), 45(suppl.):253{262 (2000), 1999. Workshop on Partial Differential Equations (Ferrara, 1999). [56] Chiara Boiti and Mauro Nacinovich. On the equivalence of Phragm´en-Lindel¨of principles for holomorphic and plurisubharmonic functions. Matematiche (Catania), 55(suppl. 2):55{70 (2001), 2000. Partial differential equations (Ital- ian) (Pisa, 2000). [57] Chiara Boiti and Mauro Nacinovich. The overdetermined Cauchy problem with growth conditions at infinity. Ricerche Mat., 49(suppl.):95{134, 2000. Contributions in honor of the memory of Ennio De Giorgi (Italian). [58] C. Denson Hill and Mauro Nacinovich. Conormal suspensions of differential complexes. J. Geom. Anal., 10(3):481{523, 2000. [59] C. Denson Hill and Mauro Nacinovich. A weak pseudoconcavity condition for abstract almost CR manifolds. Invent. Math., 142(2):251{283, 2000. [60] Costantino Medori and Mauro Nacinovich. Complete nondegenerate locally standard CR manifolds. Math.
Recommended publications
  • Interview with Mathmedia
    i “Taiwan-I-12-transcript2” — 2013/11/7 — 15:23 — page 1 — #1 i i i Interview with MathMedia Interviewee: Frans Oort Interviewer: Ching-Li Chai Venue: Institute of Mathematics Academia Sinica Date: December 3rd, 2012 Ching-Li Chai(CHAI): Good morning, Frans. Doing this interview is a pleasure. I didn’t expect this. Frans Oort (OORT): The pleasure is mine. It’s a surprise for both of us. CHAI: There is a ritual that we first invite people to talk about their formative years which is always interesting because people’s backgrounds are all different. Would you like to say something about your formative years or when you are younger and decided to go to mathematics? Some people believe that mathematicians are born. The beginning1 OORT: Let me first say something about life as a mathematician, and later I will tell some stories about my personal life. For me it is a surprise you can be together with other people, with different cultural backgrounds, in history, in bringing up, with parents on the one hand, while on the other hand you can be so close to other people. With other mathematicians all of a sudden you understand each other on a much higher level than you ever thought possible. This is one of the most exciting things I have seen in my life. Certainly this is true with my collaborator here; with Ching-Li I have so much in common, and we understand each other. I think mathematically we have a deep contact and I am very grateful for that.
    [Show full text]
  • L' Addio a Un Grande Matematico
    CAPITOLO 1 L' ADDIO A UN GRANDE MATEMATICO Si riportano i discorsi pronunciati il 27 ottobre 1996 nel cortile della Scuola Normale Superiore di Pisa, in occasione del commiato accademico. Nello stesso giorno, presso la Chiesa di S. Frediano (Pisa) si `e tenuto il fu- nerale, officiato dal teologo Severino Dianich; il giorno dopo presso la Basilica di S. Croce (Lecce) il funerale `e stato officiato dall' Arcivescovo di Lecce, Cosmo Francesco Ruppi. 1.1 DISCORSO DI L. MODICA Intervento di Luciano Modica, allievo di De Giorgi e Rettore dell' Universita` di Pisa. Confesso che quando Franco Bassani e Luigi Radicati mi hanno chiesto di prendere la parola oggi durante questo triste e solenne commiato acca- demico da Ennio De Giorgi, la mia prima reazione `e stata quella di tirarmi indietro, temendo che l' empito della commozione e dei ricordi dell' allie- vo sopraffacessero la partecipazione, certo commossa, ma necessariamente composta, di chi qui `e chiamato da Rettore a rappresentare l' Ateneo pisa- no e la sua comunita` di studenti e docenti. Se poi ho accettato, non `e stato perch´e, sono sicuro di superare questo timore, ma perch´e spero che tutti voi familiari, allievi, amici di Ennio, saprete comprendere e scusare l' emotivita` da cui forse non riusciro` ad evitare che sia pervaso il tono delle mie parole. Perch´e la vostra presenza in questo cortile, le cui soavi linee architettoniche tanto Ennio ha amato e che rimangono per tanti dei presenti indissolubil- mente legate alla loro giovinezza, non ha nulla del dovere accademico, se 2 L' ADDIO A UN GRANDE MATEMATICO non i suoi aspetti spirituali piu` alti, mentre invece vuole manifestare la ri- conoscenza e l' affetto tutti umani verso una persona accanto a cui abbiamo avuto il privilegio di trascorrere un periodo piu` o meno lungo, ma sempre indimenticabile, della nostra vita.
    [Show full text]
  • 2008 Doob Prize
    2008 Doob Prize The 2008 Joseph Doob Prize was awarded at the The book also develops the extraordi- 114th Annual Meeting of the AMS in San Diego in nary work of Zhang and others on the January 2008. Bogomolov conjecture, puts forward an This prize was established by the AMS in elegant approach to Hilbert irreducibil- 2003 and endowed in 2005 by Paul and Virginia ity, and includes a detailed discussion Halmos in honor of Joseph L. Doob (1910–2004). of the Nevanlinna-Vojta theory. There Paul Halmos (1916–2006) was Doob’s first Ph.D is a lovely exposition of the important student. Doob received his Ph.D. from Harvard theory of unit equations and a most in 1932 and three years later joined the faculty brilliant discussion of the Subspace at the University of Illinois, where he remained Theorem of Schmidt and Schlickewei, until his retirement in 1978. He worked in prob- as well as the possibilities afforded by ability theory and measure theory, served as AMS the abc-conjecture and further develop- president in 1963–1964, and received the Steele ments along these lines. Enrico Bombieri Prize in 1984. The Doob Prize recognizes a single, The book is self-contained, yet sur- relatively recent, outstanding research book that prisingly accessible given the depth of makes a seminal contribution to the research lit- the material. Links between classical erature, reflects the highest standards of research Diophantine arithmetic and modern exposition, and promises to have a deep and long- arithmetic geometry are emphasized term impact in its area. The book must have been throughout the text in an appealing published within the six calendar years preceding way.
    [Show full text]
  • GUIDO STAMPACCHIA Silvia Mazzone
    1 GUIDO STAMPACCHIA Silvia Mazzone 1. Formazione scientifica e prima attività di ricerca alla Scuola Normale Superiore di Pisa e all’Università di Napoli. Guido Stampacchia nasce a Napoli, nel quartiere Chiaia, il 26 marzo 1922 da Emanuele e Giulia Campagnano. Giulia, di religione ebraica,1 apparteneva ad una famiglia di origini fiorentine che aveva un laboratorio di biancheria ricamata a mano; gli Stampacchia, invece, erano una famiglia di origine leccese ed osservavano la religione valdese. Il papà, Emanuele, gestiva una fabbrica di ferramenta che sarà costretto a vendere al tempo della guerra in Etiopia, come conseguenza del suo rifiuto a prendere la tessera del partito fascista. Il giovane Guido riceve una educazione essenzialmente laica anche se, da bambino, insieme alle due sorelle frequenta la chiesa valdese. Egli consegue la maturità classica a 18 anni, nel 1940, al Liceo-Ginnasio Gian Battista Vico di Napoli riportando come unico voto di eccellenza 9 in matematica e fisica. Nonostante gli studi classici, aveva chiara l'intenzione di dedicarsi alla matematica e perciò aveva approfondito per suo conto la preparazione di matematica e di fisica studiando “i capisaldi del programma di Liceo Scientifico, cercando … di intravederne il processo logico”2. Nell’autunno del 1940 è ammesso come alunno interno alla Scuola Normale Superiore di Pisa, classe di Scienze, corso di laurea in matematica pura, essendo riuscito quinto al concorso3 e, nei tre anni successivi, supera brillantemente tutti gli esami previsti dal piano di studio assolvendo agli obblighi cui sono tenuti i normalisti. In particolare all’università ha come docenti Francesco Cecioni e Salvatore Cherubino per gli insegnamenti del primo biennio mentre il terzo anno frequenta il corso di Analisi superiore di Leonida Tonelli e quello di Teoria delle funzioni di Lamberto Cesari.
    [Show full text]
  • A Bibliography of Collected Works and Correspondence of Mathematicians Steven W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by eCommons@Cornell A Bibliography of Collected Works and Correspondence of Mathematicians Steven W. Rockey Mathematics Librarian Cornell University [email protected] December 14, 2017 This bibliography was developed over many years of work as the Mathemat- ics Librarian at Cornell University. In the early 1970’s I became interested in enhancing our library’s holdings of collected works and endeavored to comprehensively acquire all the collected works of mathematicians that I could identify. To do this I built up a file of all the titles we held and another file for desiderata, many of which were out of print. In 1991 the merged files became a printed bibliography that was distributed for free. The scope of the bibliography includes the collected works and correspon- dence of mathematicians that were published as monographs and made available for sale. It does not include binder’s collections, reprint collec- tions or manuscript collections that were put together by individuals, de- partments or libraries. In the beginning I tried to include all editions, but the distinction between editions, printings, reprints, translations and now e-books was never easy or clear. In this latest version I have supplied the OCLC identification number, which is used by libraries around the world, since OCLC does a better job connecting the user with the various ver- sion than I possibly could. In some cases I have included a title that has an author’s mathematical works but have not included another title that may have their complete works.
    [Show full text]
  • Descargar Nro 12. Año 2020
    HOMOTECIA Nº 12 – Año 18 Martes, 1º de Diciembre de 2020 1 Diciembre 2020. Haremos un alto en relación a los temas que hemos tratado en los más recientes editoriales. Hoy nos toca despedir el año. Presentar esta edición significa haber publicado durante 18 años continuos a nuestra Revista HOMOTECIA. Cuando nos iniciemos en el 2021, esperamos seguir realizando esta tarea que siempre nos ha agradado realizar. Diciembre de por sí es un mes especial, no es simplemente el final del año, es el mes del cual no dudamos en afirmar que es el más esperado por niños, jóvenes y adultos en el país, sea cuales sean las situaciones que estemos viviendo. Con él, llega la Navidad, época fundamental en el mantenimiento de nuestra fe, no solamente celebramos el nacimiento de Jesús sino que sentimos renacer en nuestros corazones el legado de su prédica. Es una celebración que comienza recordando a los seres queridos que ya se han marchado de este mundo y que siempre nos acompañaban en estas fechas. También sentimos la añoranza por la ausencia de nuestros seres queridos que por circunsta ncias lamentables en el país, han tenido que ir más allá de las fronteras buscando un mejor vivir. Aun así, nos entusiasmamos por el reencuentro familiar de los que hemos quedado, obsequiar regalos afectuosos a nuestros familiares y a nuestros niños, a los mejores amigos como muestra de hacerles ver nuestros deseos de seguir manteniendo una amistad que linda en lo fraterno. Arreglamos nuestros hogares con motivos navideños, abundantes luces de colores destellan por doquier, en se colabora entre todos en la elaboración de los platos tradicionales como las hallacas y los postres; detalles que son importantes en la vida de la mayoría de nosotros.
    [Show full text]
  • A Bibliography of Collected Works and Correspondence of Mathematicians Steven W
    A Bibliography of Collected Works and Correspondence of Mathematicians Steven W. Rockey Mathematics Librarian Cornell University [email protected] December 14, 2017 This bibliography was developed over many years of work as the Mathemat- ics Librarian at Cornell University. In the early 1970’s I became interested in enhancing our library’s holdings of collected works and endeavored to comprehensively acquire all the collected works of mathematicians that I could identify. To do this I built up a file of all the titles we held and another file for desiderata, many of which were out of print. In 1991 the merged files became a printed bibliography that was distributed for free. The scope of the bibliography includes the collected works and correspon- dence of mathematicians that were published as monographs and made available for sale. It does not include binder’s collections, reprint collec- tions or manuscript collections that were put together by individuals, de- partments or libraries. In the beginning I tried to include all editions, but the distinction between editions, printings, reprints, translations and now e-books was never easy or clear. In this latest version I have supplied the OCLC identification number, which is used by libraries around the world, since OCLC does a better job connecting the user with the various ver- sion than I possibly could. In some cases I have included a title that has an author’s mathematical works but have not included another title that may have their complete works. Conversely, if I believed that a complete works title contained significant mathematics among other subjects, Ihave included it.
    [Show full text]
  • Arxiv:Math/0307068V2
    1 FROM ABEL’S HERITAGE: TRANSCENDENTAL OBJECTS IN ALGEBRAIC GEOMETRY AND THEIR ALGEBRIZATION. FABRIZIO CATANESE UNIVERSITAT¨ BAYREUTH Welcome the Abel Prize and long live the memory of Abel, long live mathematics! 1 1. Introduction CONTENTS 2. Abel, the algebraist ? • 3. The geometrization of Abel’s methods. • 4. Algebraization of the Geometry. • 5. Further2 links to the Italian School. • 6. More new results and open problems. • The Encyclopedic Dictionary of Mathematics (edited in Japan) is not a book devoted to the history of mathematics, but tries instead to briefly intro- duce the reader to the current topics of mathematical research. By non only lexicographical coincidence it starts with ”Abels, Niels Henrik” as topic 1. It contains a succint biography of Abel ” Niels Henrik Abel (august 5, 1802 - april 6 , 1829) ... In 1822, he entered the University of Christiania [today’s Oslo] .. died at twenty-six of tuberculosis. His best known works are: the result that algebraic equations of order five or above cannot in general be solved algebraically; the result that 3*Abelian equations [i.e., with Abelian Galois group] can be solved algebraically; the arXiv:math/0307068v2 [math.AG] 10 Oct 2003 theory of *binomial series and of *elliptic functions; and the introduction of *Abelian functions. His work in both algebra and analysis, written in a style conducive to easy comprehension, reached the highest level of attainment of his time.” Talking about Abel’s heritage entails thus talking about a great part of modern mathematics, as it is shown by the ubiquity of concepts such as Abelian 1The present research, an attempt to treat history and sociology of mathematics and mathematics all at the same time, took place in the framework of the Schwerpunkt ”Globale Methode in der komplexen Geometrie”, and of the EC Project EAGER.
    [Show full text]
  • January 2008 Prizes and Awards
    January 2008 Prizes and Awards 4:25 P.M., Monday, January 7, 2008 PROGRAM SUMMARY OF AWARDS OPENING REMARKS FOR AMS Joseph A. Gallian, President AWARD FOR DISTINGUISHED PUBLIC SERVICE: Herbert Clemens Mathematical Association of America BÔCHER MEMORIAL PRIZE: Alberto Bressan, Charles Fefferman, Carlos E. Kenig LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS FRANK NELSON COLE PRIZE IN NUMBER THEORY: Manjul Bhargava American Mathematical Society LEVI L. CONANT PRIZE: J. Brian Conrey, Shlomo Hoory, Nathan Linial, Avi Wigderson LEVI L. CONANT PRIZE JOSEPH L. DOOB PRIZE: Enrico Bombieri, Walter Gubler American Mathematical Society LEONARD EISENBUD PRIZE FOR MATHEMATICS AND PHYSICS: Hirosi Ooguri, Andrew Strominger, BÔCHER MEMORIAL PRIZE Cumrun Vafa American Mathematical Society LEROY P. STEELE PRIZE FOR LIFETIME ACHIEVEMENT: George Lusztig AWARD FOR DISTINGUISHED PUBLIC SERVICE LEROY P. STEELE PRIZE FOR MATHEMATICAL EXPOSITION: Neil Trudinger American Mathematical Society LEROY P. STEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH: Endre Szemerédi ALICE T. SCHAFER PRIZE FOR EXCEllENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN FOR AMS-MAA-SIAM Association for Women in Mathematics FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION AN UNDERGRADUATE STUDENT: Nathan Kaplan Association for Women in Mathematics FOR AWM DEBORAH AND FRANKLIN TEppER HAIMO AWARDS FOR DISTINGUISHED COllEGE OR UNIVERSITY OUISE AY WARD FOR ONTRIBUTIONS TO ATHEMATICS DUCATION TEACHING OF MATHEMATICS
    [Show full text]
  • Otices of The
    OTICES OF THE AMERICAN MATHEMATICAL SOCIETY Graduate Education in Mathematics Is it Working? page 266 University Park Meeting (April 7-8) page 297 Albuquerque Meeting (April 19-22) page 305 MARCH 1990, VOLUME 37, NUMBER 3 Providence, Rhode Island, USA ISSN 0002-9920 I Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting, insofar as is possible. and annual meetings are joint meetings of the Mathematical Associ­ Abstracts should be submitted on special forms which are available in ation of America and the American Mathematical Society. The meet­ many departments of mathematics and from the headquarters office ing dates which fall rather far in the future are subject to change; this of the Society. Abstracts of papers to be presented at the meeting is particularly true of meetings to which no numbers have been as­ must be received at the headquarters of the Society in Providence, signed. Programs of the meetings will appear in the issues indicated Rhode Island, on or before the deadline given below for the meet­ below. First and supplementary announcements of the meetings will ing. Note that the deadline for abstracts for consideration for pre­ have appeared in earlier issues. sentation at special sessions is usually three weeks earlier than that Abstracts of papers presented at a meeting of the Society are pub­ specified below. For additional information, consult the meeting an­ lished in the journal Abstracts of papers presented to the American nouncements and the list of organizers of special sessions.
    [Show full text]
  • Curriculum Di Vincenzo ANCONA
    Curriculum di Vincenzo ANCONA Posizione attuale: Presidente dell’Istituto Nazionale di Alta Matematica “Francesco Severi” , dal 2007. Laureato con lode in Matematica all'Universita' di Torino l'8 luglio 1968. Dopo la laurea ho iniziato la mia carriera scientifica in Francia, soggiornandovi come borsista dal settembre 1968 all'ottobre 1972, prima presso l'Universita' di Nizza e poi a Parigi presso le Universita' di Paris VI "Pierre et Marie Curie" e di Paris VII "Denis Diderot". Le mie ricerche si sono orientate verso l'analisi complessa delle funzioni olomorfe di piu' variabili, la geometria analitica reale e complessa, e la geometria algebrica, attraverso il diretto rapporto con i piu' importanti matematici della scuola francese (fra cui Pierre Dolbeault e Francois Norguet a Parigi, Adrien Douady e Henri Skoda a Nizza), di quella tedesca (Hans Grauert e Michael Schneider a Göttingen, Otto Forster a München, Alan Huckleberry a Bochum, Günter Trautmann a Kaiserslautern) e italiana di Pisa (Aldo Andreotti, Alberto Tognoli e Giuseppe Tomassini). Contemporaneamente, attratto dai grandi risultati in geometria algebrica ottenuti da Alexandre Grothendieck con la sua teoria degli schemi, ho introdotto nell'ambito dei problemi della teoria delle funzioni olomorfe metodi ispirati alla geometria algebrica, attraverso il procedimento di algebrizzazione degli oggetti analitici. Il periodo di ricerca inizialmente passato in Francia ha costituito la base di un intenso, continuo e radicato incardinamento di tutta la mia attivita' di ricerca in un contesto internazionale. Dal primo novembre 1972 al 31 marzo 1976 sono stato professore incaricato presso l'Universita' di Ferrara. Nel 1975 sono risultato vincitore di un concorso nazionale a professore ordinario di geometria, e dal 1976 al 1981 sono stato professore ordinario di geometria presso l'Universita’ di Ferrara.
    [Show full text]
  • 369-Vesentini 165..174
    Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di Matematica e Applicazioni 125ë (2009), Vol. XXXI, fasc. 1, pagg. 165-174 EDOARDO VESENTINI (*) ______ Beniamino Segre and Italian Geometry Conferenza tenuta nel convegno in onore del Prof. B. Segre ABSTRACT. Ð A personal view of Beniamino Segre's research activity in algebraic geometry. 1. - GEOMETRY IN ROME IN THE EARLY FIFTIES Upon Francesco Severi's decision, the choice of new junior fellows (Discepoli Ricercatori) of the Istituto Nazionale di Alta Matematica (INdAM) for the academic year 1951-52 would be made, through formal interviewswith candidatescoming from all over Italy. The interviewswere made at the beginning of November 1951 by a committee chaired by Severi, with Luigi FantappieÂ, Mauro Picone, Antonio Signorini and Giulio Krall asmembers. Beniamino Segre was not in the committee because in the same days he was engaged as a judge in a national competition for the selection of a full professor of geometry in the University of Turin. The choice fell on Aldo Andreotti, who, within a few weeks, moved to Turin. Almost in the same days, I came to Rome as Discepolo Ricercatore at INdAM, and I met for the first time Beniamino Segre who, on Severi's advice, became my research advisor. Beniamino Segre was very busy at that time (as, in fact, at all times of his life). Besides discharging several academic duties outside the University of Rome, he was teaching an undergraduate course in the Department of Mathematics of the University and an advanced course in the Istituto Nazionale di Alta Matematica.
    [Show full text]