Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA)

Total Page:16

File Type:pdf, Size:1020Kb

Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) SECTION 1: Identification of the substance/mixture and of the company/undertaking Product Identifier Material Name 4MS Synonyms TETRAMETHYLSILANE; TETRAMETHYL SILANE; TMS; TMS (SILANE DERIVATIVE); UN 2749; C4H12Si Chemical Family silanes Product Use Semiconductors Restrictions on Use None known. Supplier Information 한국 인테그리스 주식회사 (Hanguk Entegris Co., Ltd.) 경기도 수원시 영통구 광교로 109 한국나노기술원 13층 우편번호16229 전화번호: +82-31-8065-8300 팩스: +82-31-8065-8301 켐트렉 한국내 무료전화: 003-0813-2549 켐트렉 국제: 1-703-527-3887 긴급전화 : 031-8036-9806 E-mail: [email protected] SECTION 2: Hazards identification Hazard/Risk Classification Flammable Liquids - Category 1 Hazardous to the Aquatic Environment - Chronic - Category 2 Label elements Hazard symbols Signal word Danger. Hazard/Risk Statement H224 Extremely flammable liquid and vapor. H411 Toxic to aquatic life with long lasting effects. Precautionary statements ____________________________________________________________ Page 1 of 10 Issue date: 2021-06-09 Revision 2.15 Print date: 2021-06-09 Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) Prevention P210 Keep away from heat/sparks/open flame/hot surfaces - No smoking. P233 Keep container tightly closed. P240 Ground/Bond container and receiving equipment. P241 Use explosion-proof electrical/ventilating/lighting equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P280 Wear protective gloves and eye/face protection. P273 Avoid release to the environment. Response P370+P378 In case of fire: Use appropriate media to extinguish. P303+P361+P353 IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. P391 Collect spillage. Storage P403 Store in a well-ventilated place. P235 Keep cool. Disposal P501 Dispose of contents/container in accordance with local/regional/national/international regulations (depending on the information set out in the Waste Control Act). Other Hazards Which Do Not Result in Classification None known. SECTION 3: Composition / information on ingredients CAS Chemical name Other Names Percent 75-76-3 Tetramethylsilane TMS 100 Impurities and stabilizing additives contributing to the GHS Classification None SECTION 4: First aid measures Eye contact Flush eyes with plenty of water for at least 15 minutes. Then get immediate medical attention. Skin contact Wash skin with soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention, if needed. Thoroughly clean and dry contaminated clothing and shoes before reuse. Inhalation If adverse effects occur, remove to uncontaminated area. Give artificial respiration if not breathing. Get immediate medical attention. Ingestion If swallowed, get medical attention. Most Important Symptoms/Effects Symptoms: Immediate No information on significant adverse effects. Symptoms: Delayed No information on significant adverse effects. Indication of any immediate medical attention and special treatment needed ____________________________________________________________ Page 2 of 10 Issue date: 2021-06-09 Revision 2.15 Print date: 2021-06-09 Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) Treat symptomatically and supportively. SECTION 5: Firefighting measures Suitable extinguishing media regular dry chemical, carbon dioxide, water spray, regular foam. Large fires: Use water spray, fog or regular foam. Unsuitable Extinguishing Media high-pressure water streams Specific hazards arising from the chemical Severe fire hazard. Vapor/air mixtures are explosive. The vapor is heavier than air. Vapors or gases may ignite at distant ignition sources and flash back. Containers may rupture or explode if exposed to heat. Protective Equipment and Precautions for Firefighters Wear full protective fire fighting gear including self contained breathing apparatus (SCBA) for protection against possible exposure. Fire Fighting Measures Move container from fire area if it can be done without risk. Do not scatter spilled material with high- pressure water streams. Fight fire from maximum distance or use unmanned hose holders or monitor nozzles. Cool containers with water spray until well after the fire is out. Withdraw immediately in case of rising sound from venting safety device or any discoloration of tanks due to fire. Stay away from the ends of tanks. Dike for later disposal. For tank, rail car or tank truck, evacuation radius: 800 meters (1/2 mile). Do not attempt to extinguish fire unless flow of material can be stopped first. Flood with fine water spray. Apply water from a protected location or from a safe distance. Avoid inhalation of material or combustion by- products. Stay upwind and keep out of low areas. Combustion oxides of carbon, oxides of silicon SECTION 6: Accidental release measures Personal precautions, protective equipment and emergency procedures Wear personal protective clothing and equipment. Environmental precautions Avoid release to the environment. Collect spillage. Methods for Containment Avoid heat, flames, sparks and other sources of ignition. All equipment used when handling the product must be grounded. Do not touch or walk through spilled material. Stop leak if possible without personal risk. Prevent entry into waterways, sewers, basements, or confined areas. Small spills: Absorb with sand or other non-combustible material. Collect spilled material in appropriate container for disposal. Large spills: Dike for later disposal. Reduce vapors with water spray. Keep unnecessary people away, isolate hazard area and deny entry. SECTION 7: Handling and storage Precautions for safe handling Keep away from heat, sparks, open flame, and hot surfaces - No smoking. Keep container tightly closed. Ground/Bond container and receiving equipment. Use explosion-proof electrical/ventilating/lighting equipment. Use only non-sparking tools. Take precautionary measures against static discharges. Wear protective gloves and eye/face protection. Conditions for safe storage, including any incompatibilities ____________________________________________________________ Page 3 of 10 Issue date: 2021-06-09 Revision 2.15 Print date: 2021-06-09 Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) Store in a well-ventilated place. Keep cool. Store and handle in accordance with all current regulations and standards. Store under an inert atmosphere. If stored in glass, keep between 0 C and 8 C. Store in a tightly closed container. Store in a cool, dry place. Storing outside or in a detached building is recommended. Protect from physical damage. Avoid contact with water or moisture. Grounding and bonding required. Keep separated from incompatible substances. Incompatible Materials acids, bases, halogens, oxidizing materials SECTION 8: Exposure controls/personal protection Exposure Guidelines Component Exposure Limits Korea and ACGIH have not developed exposure limits for any of this product's components. ACGIH - Threshold Limit Values - Biological Exposure Indices (BEI) There are no biological limit values for any of this product's components. Appropriate engineering controls Ventilation equipment should be explosion-resistant if explosive concentrations of material are present. Provide local exhaust ventilation system. Ensure compliance with applicable exposure limits. PERSONAL PROTECTIVE EQUIPMENT Eye/face protection When contacted directly to the applicable substance or with possible exposure, ensure to wear the required protective goggle/face shield certified by the Korea Occupational Safety and Health Agency (KOSHA). Install eyewash and emergency shower facility near the work area. Skin and Body Protection When contacted directly to the applicable substance or with possible exposure, ensure to wear the required full body protective clothing for chemical types 3, 4 or better certified by the Korea Occupational Safety and Health Agency (KOSHA). Hand protection When contacted directly to the applicable substance or with possible exposure, ensure to wear chemical resistant gloves certified by the Korea Occupational Safety and Health Agency (KOSHA). Protective Materials Not applicable Respiratory Protection When contacted directly to the applicable substance or with possible exposure, ensure to wear the Gas mask for organic compounds or more higher level respirator certified by the Korea Occupational Safety and Health Agency (KOSHA). Gas mask for organic compounds or SCBA recommended during change outs and available in case of emergency. Further information KOSHA , ACGIH, AIHA WEELs, NIOSH RELs, OSHA PELs, DFG MAKs have not developed exposure limits for any of this product's components. SECTION 9: Physical and chemical properties Appearance clear liquid Physical State liquid Physical Form volatile liquid ____________________________________________________________ Page 4 of 10 Issue date: 2021-06-09 Revision 2.15 Print date: 2021-06-09 Safety Data Sheet Material Name: 4MS SDS ID: 00202909 (KOREA) Color colorless Odor odorless Odor Threshold Not available pH (weakly acidic ) Melting Point -99 °C Freezing point Not available Boiling Point 26 - 28 °C Boiling Point Range Not available Flash Point -27 °C Evaporation Rate Not available Flammability (solid, gas) Not applicable Upper Explosive Limit 37.9 % Lower Explosive Limit 1 % Vapor Pressure 589 mmHg @ 20 °C Solubility (Other) Not available Water Solubility (Insoluble in cold water, Reacts ) Vapor Density (air=1) 3 Specific Gravity (water=1) 0.63
Recommended publications
  • Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017 Supporting Information Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance Haixing Li,1 Marc H. Garner,2 Zhichun Shangguan,3 Timothy A. Su,4 Madhav Neupane,4 Panpan Li,3 Alexandra Velian,4 Michael L. Steigerwald,4 Shengxiong Xiao,*3 Colin Nuckolls,*3,4 Gemma C. Solomon,*2 Latha Venkataraman*1,4 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, USA 2 Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China 4 Department of Chemistry, Columbia University, New York 10027 This version of the ESI replaces the previous version that was published on 13th June 2016. Some references in Part IV on Page 8 and 21 are corrected and updated. 1 Table of Contents Table of Contents .............................................................................................. 2 I. Synthetic procedures and characterization of compounds ......................... 4 II. STM-Break Junction experiment details ..................................................... 6 III. Additional Data .........................................................................................
    [Show full text]
  • REGISTRY Database Summary Sheet (DBSS)
    SM REGISTRY/ZREGISTRY (CAS REGISTRY ) Subject • All types of inorganic and organic substances, including alloys, coordination Coverage compounds, minerals, mixtures, polymers, salts, high throughput screening (HTS) compounds as well as nucleic acid and protein sequences • Substances included in REGISTRY meet the following criteria: - Identified by CAS as coming from a reputable source, including but not limited to patents, journals, chemical catalogs, and selected substance collections on the web - Described in largely unambiguous terms - Characterized by physical methods or described in a patent document example or claim - Consistent with the laws of atomic covalent organization • Experimental and predicted property data and tags and spectra data File Type Numeric, Structure Features Alerts (SDIs) Biweekly In addition, SMARTracker, an automatic crossfile current-awareness search, (SDI XFILE) using a REGISTRY search profile in CA, HCA, ZCA, CAplus, HCAplus or ZCAplus may be run weekly or biweekly (weekly is the default). CAS Registry Keep & Share SLART Number® Identifiers ® Learning Database STN Easy Structures Record • CAS Registry Numbers • Experimental and predicted property Content • CA index names and commonly used data and tags chemical names and trade names • Spectra • Molecular formulas • List of databases and regulatory listings • Structure diagrams containing information on the substances • Sequence data • Super roles and document type SM • Alloy composition tables information from CAplus • Classes for polymers • Displayable information for 10 most recent references for substances • Ring analysis data File Size More than 140 million organic and inorganic substances; more than 71.1 million sequences (4/18) Coverage Early 1800s to the present Updates Daily Language English Database Chemical Abstracts Service Producer 2540 Olentangy River Road P.O.
    [Show full text]
  • Gas-Phase Chemistry of Methyl-Substituted Silanes in a Hot-Wire Chemical Vapour Deposition Process
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-08-27 Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process Toukabri, Rim Toukabri, R. (2013). Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26257 http://hdl.handle.net/11023/891 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process by Rim Toukabri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY CALGARY, ALBERTA August, 2013 © Rim Toukabri 2013 Abstract The primary decomposition and secondary gas-phase reactions of methyl- substituted silane molecules, including monomethylsilane (MMS), dimethylsilane (DMS), trimethylsilane (TriMS) and tetramethylsilane (TMS), in hot-wire chemical vapour deposition (HWCVD) processes have been studied using laser ionization methods in combination with time of flight mass spectrometry (TOF-MS). For all four molecules, methyl radical formation and hydrogen molecule formation have been found to be the common decomposition steps on both tungsten (W) and tantalum (Ta) filaments.
    [Show full text]
  • Grignard Reagents and Silanes
    GRIGNARD REAGENTS AND SILANES By B. Arkles REPRINTED FROM HANDBOOK OF GRIGNARD REAGENTS by G. Silverman and P. Rakita Pages 667-675 Marcel Dekker, 1996 Gelest, Inc. 612 William Leigh Drive Tullytown, Pa. 19007-6308 Phone: [215] 547-1015 Fax: [215] 547-2484 Grignard Reagents and Silanes 32 Grignard Reagents and Silanes BARRY ARKLES Gelest Inc., Tullytown, Pennsylvania I. INTRODUCTION This review considers two aspects of the interaction of Grignards with silanes. First, focusing on technologies that are still viable within the context of current organosilane and silicone technology, guidelines are provided for silicon-carbon bond formation using Grignard chemistry. Second, the use of silane-blocking agents and their stability in the presence of Grignard reagents employed in organic synthesis is discussed. II. FORMATION OF THE SILICON-CARBON BOND A. Background The genesis of current silane and silicone technology traces back to the Grignard reaction. The first practical synthesis of organosilanes was accomplished by F. Stanley Kipping in 1904 by the Grignard reaction for the formation of the silicon-carbon bond [1]. In an effort totaling 57 papers, he created the basis of modern organosilane chemistry. The development of silicones by Frank Hyde at Corning was based on the hydrolysis of Grignard-derived organosilanes [2]. Dow Corning, the largest manufacturer of silanes and silicones, was formed as a joint venture between Corning Glass, which had silicone product technology, and Dow, which had magnesium and Grignard technology, during World War II. In excess of 10,000 silicon compounds have been synthesized by Grignard reactions. Ironically, despite the versatility of Grignard chemistry for the formation of silicon-carbon bonds, its use in current silane and silicone technology has been supplanted by more efficient and selective processes for the formation of the silicon-carbon bond, notably by the direct process and hydrosilylation reactions.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,552,973 Feldner Et Al
    United States Patent (19) 11) Patent Number: 4,552,973 Feldner et al. (45) Date of Patent: Nov. 12, 1985 54 PROCESS FOR THE PREPARATION OF 2,647,912 8/1953 Barry et al. ......................... 556/469 DMETHYLDCHLOROSLANE 2,717,257 9/1955 Bluestein ............................. 556/469 (75. Inventors: Kurt Feldner; Wolfgang Grape, both 3,384,652 5/1968 Hamilton ............................ 556/469 of Cologne, Fed. Rep. of Germany 4,477,631 5/1984 Faure et al. ......................... 556/469 Primary Examiner-Paul F. Shaver 73 Assignee: Bayer Aktiengesellschaft, Attorney, Agent, or Firm-Sprung, Horn, Kramer & Leverkusen, Fed. Rep. of Germany Woods (21) Appl. No.: 713,501 57 ABSTRACT 22 Filed: Mar. 19, 1985 A process for the preparation of dimethyldichlorosilane (30) Foreign Application Priority Data from the low-boiling and high-boiling by-products of the direct synthesis of methylchlorosilane, comprising Mar. 23, 1984 (DE) Fed. Rep. of Germany ....... 3410644 reacting methyltrichlorosilane simultaneously with the 51) Int. Cl." ................................................ C07F 7/12 low-boiling components having a high content of 52 U.S.C. .................................................... 556/469 methyl groups and with the high-boiling non-cleavable 58 Field of Search ......................................... 556/469 components, in the presence of a catalyst, at a tempera 56) References Cited ture between about 250 C. and 400 C. and under a U.S. PATENT DOCUMENTS pressure of up to 100 bar. 2,647,136 7/1953 Sauer ................................... 556/469 4 Claims, No Drawings 4,552,973 1. 2 minum chloride which, however, is converted to the PROCESS FOR THE PREPARATION OF known catalyst AlCl3 by hydrogen chloride gas fed DIMETHYTLDICHLOROSLANE simultaneously into the reaction mixture.
    [Show full text]
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Jessy Mario Lemieux December 2013 Dissertation Committee: Dr. Jingsong Zhang, Chairperson Dr. Christopher Bardeen Dr. David Bocian Copyright by Jessy Mario Lemieux 2013 The Dissertation of Jessy Mario Lemieux is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS Professor Jingsong Zhang Dr. Steven Chambreau Dr. Kevin Weber Paul Jones Jeff Lefler Mike Fournier Stan Sheldon Professor Christopher Bardeen Professor David Bocian iv DEDICATION This work is dedicated to my parents who taught me the value of curiosity and learning and have always been there for me. v ABSTRACT OF THE DISSERTATION Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry by Jessy Mario Lemieux Doctor of Philosophy, Graduate Program in Chemistry University of California, Riverside, December 2013 Dr. Jingsong Zhang, Chairperson Flash pyrolysis coupled with vacuum-ultraviolet photoionization time-of-flight mass spectrometry was used to study the thermal decomposition mechanisms of molecules relevant to fuel combustion and the chemical vapor deposition (CVD) of SiGe, SiC, and GeC. For combustion research, the thermal decomposition of benzyl radical, n- alkanes CnH2n+2 (n = 5-8 and 10), 1-butyl radical, and 1-pentyl radical was performed. Benzyl was confirmed to decompose primarily by ejection of H atom after significant isomerization with loss of methyl observed as a minor decomposition pathway.
    [Show full text]
  • Kinetics of the Thermal Decomposition of Tetramethylsilane Behind the Reflected Shock Waves Between 1058 and 1194 K
    J. Chem. Sci. Vol. 128, No. 4, April 2016, pp. 573–588. c Indian Academy of Sciences. DOI 10.1007/s12039-016-1046-8 Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K A PARANDAMAN and B RAJAKUMAR∗ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India e-mail: [email protected] MS received 16 September 2015; revised 31 December 2015; accepted 4 January 2016 Abstract. Thermal decomposition of tetramethylsilane (TMS) diluted in argon was studied behind the reflected shock waves in a single pulse shock tube (SPST) in the temperature range of 1058–1194 K. The major products formed in the decomposition are methane (CH4) and ethylene (C2H4); whereas ethane and propy- lene were detected in lower concentrations. The decomposition of TMS seems to be initiated via Si-C bond scission by forming methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The total rate coefficients obtained for the decomposition of TMS were fit to Arrhenius equation in two different temperature regions 1058–1130 K and 1130–1194 K. The temperature dependent rate coefficients obtained are ktotal (1058–1130 K) 18 −1 −1 6 = (4.61 ± 0.70) ×10 exp (−(79.9 kcal mol ± 3.5)/RT) s ,ktotal (1130-1194 K) = (1.33 ± 0.19) ×10 exp −1 −1 (−(15.3 kcal mol ± 3.5)/RT) s . The rate coefficient for the formation of CH4 is obtained to be kmethane (1058–1194 K) = (4.36 ± 1.23) ×1014 exp (−(61.9 kcal mol−1 ± 4.9)/RT) s−1.
    [Show full text]
  • List of Lists
    United States Office of Solid Waste EPA 550-B-10-001 Environmental Protection and Emergency Response May 2010 Agency www.epa.gov/emergencies LIST OF LISTS Consolidated List of Chemicals Subject to the Emergency Planning and Community Right- To-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act • EPCRA Section 302 Extremely Hazardous Substances • CERCLA Hazardous Substances • EPCRA Section 313 Toxic Chemicals • CAA 112(r) Regulated Chemicals For Accidental Release Prevention Office of Emergency Management This page intentionally left blank. TABLE OF CONTENTS Page Introduction................................................................................................................................................ i List of Lists – Conslidated List of Chemicals (by CAS #) Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and Section 112(r) of the Clean Air Act ................................................. 1 Appendix A: Alphabetical Listing of Consolidated List ..................................................................... A-1 Appendix B: Radionuclides Listed Under CERCLA .......................................................................... B-1 Appendix C: RCRA Waste Streams and Unlisted Hazardous Wastes................................................ C-1 This page intentionally left blank. LIST OF LISTS Consolidated List of Chemicals
    [Show full text]
  • Spectroscopy
    11 Spectroscopy Infrared (top) and nuclear magnetic resonance (bottom) image of heart with CAD, coronary artery disease. Inset: A model of heme, the part of the protein hemoglobin that binds oxygen. The infrared technique detects deoxygenated hemoglobin, which tends to occur in high levels in blocked arteries. Both techniques represent noninvasive methods for medical imaging of the body. (top: Image courtesy of the National Research Council Canada; bottom: © Sovereign, © ISM/Phototake-All rights reserved.) KEY QUESTIONS 11.1 What Is Electromagnetic Radiation? 11.12 What Is 13C-NMR Spectroscopy, and How Does It 1 11.2 What Is Molecular Spectroscopy? Differ from H-NMR Spectroscopy? 11.3 What Is Infrared Spectroscopy? 11.13 How Do We Solve an NMR Problem? 11.4 How Do We Interpret Infrared Spectra? HOW TO 11.5 What Is Nuclear Magnetic Resonance? 11.1 How to Approach Infrared Spectroscopy Structure 11.6 What Is Shielding? Determination Problems 11.7 What Is an NMR Spectrum? 11.2 How to Determine Whether an Atomic Nucleus Has 11.8 How Many Resonance Signals Will a Compound a Spin (Behaves as If It Were a Tiny Bar Magnet) Yield in Its NMR Spectrum? 11.9 What Is Signal Integration? CHEMICAL CONNECTIONS 11.10 What Is Chemical Shift? 11A Infrared Spectroscopy: A Window on Brain Activity 11.11 What Is Signal Splitting? 11B Magnetic Resonance Imaging DETERMINING THE MOLECULAR structure of a compound is a central theme in science. In medicine, for example, the structure of any drug must be known before the drug can be ap- proved for use in patients.
    [Show full text]
  • IUPAC Recommendations 2008)
    Pure Appl. Chem., Vol. 80, No. 1, pp. 59–84, 2008. doi:10.1351/pac200880010059 © 2008 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL AND BIOPHYSICAL CHEMISTRY DIVISION* FURTHER CONVENTIONS FOR NMR SHIELDING AND CHEMICAL SHIFTS (IUPAC Recommendations 2008) Prepared for publication by ROBIN K. HARRIS1,‡, EDWIN D. BECKER2, SONIA M. CABRAL DE MENEZES3, PIERRE GRANGER4, ROY E. HOFFMAN5, AND KURT W. ZILM6 1Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK; 2National Institutes of Health, Bethesda, MD 20892-0520, USA; 3PETROBRAS/CENPES/QM, Av. Horacio Macedo 950, Cidade Universitária, 21941-598, Rio de Janeiro, R.J., Brazil; 4Institute of Chemistry, University Louis Pasteur, Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, Cedex, France; 5Department of Organic Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel; 6Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA *Membership of the Physical and Biophysical Chemistry Division Committee during the final preparation of this report was as follows: President: C. M. A. Brett (Portugal); Vice President: M. J. Rossi (Switzerland); Secretary: R. M. Lynden-Bell (UK); Past President: R. D. Weir (Canada); Titular Members: W. P. Baumeister (Germany); J. G. Frey (UK); A. Goldbeter (Belgium); A. J. McQuillan (New Zealand); Z.-Q. Tian (China); K. Yamanouchi (Japan); Associate Members: S. M. Cabral de Menezes (Brazil); J. Dymond (UK); B. D. Kay (USA); S.-J. Kim (Korea); C. Prestidge (Australia); A. Wilson (USA); National Representatives: M. T. Oivanen, (Finland); M. Chalaris (Greece); A. Friedler (Israel); S. Stølen (Norway); S. Riazuddin (Pakistan); S.
    [Show full text]
  • 12.6 Introduction to Mass Spectrometry
    12_BRCLoudon_pgs4-4.qxd 11/26/08 9:01 AM Page 558 558 CHAPTER 12 • INTRODUCTION TO SPECTROSCOPY. INFRARED SPECTROSCOPY AND MASS SPECTROMETRY place to mount the sample in the infrared beam, and the optics and electronics necessary to measure the intensity of light absorbed or transmitted as a function of wavelength or wavenum- ber. Modern IR spectrometers, called Fourier-transform infrared spectrometers (FTIR spec- trometers), can provide an IR spectrum in a few seconds. (See Further Exploration 12.2.) The Further Exploration 12.2 FTIR Spectroscopy IR spectra in this text were obtained with an FTIR spectrometer. The sample containers (“sample cells”) used in IR spectroscopy must be made of an in- frared-transparent material. Because glass absorbs infrared radiation, it cannot be used. The conventional material used for sample cells is sodium chloride. The IR spectrum of an undi- luted (“neat”) liquid can be obtained by compressing the liquid between two optically pol- ished salt plates. If the sample is a solid, the finely ground solid can be dispersed (“mulled”) in a mineral oil and the dispersion compressed between salt plates. Alternatively, a solid can be co-fused (melted) with KBr, another IR-transparent material, to form a clear pellet. Simple presses are available to prepare KBr pellets. IR spectra can also be taken in solution cells, which consist of sodium chloride plates in appropriate holders equipped with syringe fittings for injecting the solution. When mineral-oil dispersions or solvents are used, we have to be aware of the regions in which the oil or the solvents themselves absorb IR radiation, because these absorptions inter- fere with those of the sample.
    [Show full text]
  • A Liquid Lonizati N Chamber Using Tetramethylsilane
    KfK 3638 Dezember 1983 A Liquid lonizati n Chamber Using Tetramethylsilane J. Engler, H. Keim Institut für Kernphysik Kernforschungszentrum Karlsruhe KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Kernphysik KfK 3638 A LIQUID IONIZATION CHAMBER USING TETRAMETHYLSILANE Joachim Engler and Heinrich Keim Kernforschungszentrum Karlsruhe GmbH, Karlsruhe Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003 A LIQUID IONIZATION CHAMBER USING TETRAMETHYLSILANE ABSTRACT First results with a liquid ionization chamber using Tetramethyl­ silane (TMS) are presented. A stack of iron plates was tested with cosmic ray muons and the charge output for minimum ionizing particles was measured. BETRIEB EINER IONISATIONSKAMMER MIT TETRAMETHYLSILAN ZUSAMMENFASSUNG Es werden erste Ergebnisse über den Betrieb einer Ionisationskam­ mer gegeben, die als Medium Tetramethylsilan (TMS) benutzt. Ein Satz aus Edelstahlplatten wurde mit kosmischen Myonen getestet und die Ladungsausbeute für minimal ionisierende Teilchen bestimmt. - 1 - 1. INTRODUCTION In high energy and nuclear physics the use of liquid ionization chambers with electron charge transport was restricted up to now to cryogenic liquids only. Liquid Xenon and Argon are widely used; 1 for a recent review see c. Brassard ). There are two obvious reasons to use these liquids: 1) In the liquid noble gases Ar, Xe, Kr, the charge output for minimum ionizing particles traversing the liquid is relative­ ly high, and 2) they are cryogenic. The low temperature facili tates cleaning the liquids and maintaining the contamination below the necessary level of 1 ppm o equiva1ent. 2 Nevertheless, for practical use, cryogenic liquids have severe drawbacks. The necessity of a croystat in many cases prevents a compact detector design, and the cryogenic operation makes hand­ ling very cumbersome.
    [Show full text]