United States Patent (19) 11) Patent Number: 4,552,973 Feldner Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11) Patent Number: 4,552,973 Feldner Et Al United States Patent (19) 11) Patent Number: 4,552,973 Feldner et al. (45) Date of Patent: Nov. 12, 1985 54 PROCESS FOR THE PREPARATION OF 2,647,912 8/1953 Barry et al. ......................... 556/469 DMETHYLDCHLOROSLANE 2,717,257 9/1955 Bluestein ............................. 556/469 (75. Inventors: Kurt Feldner; Wolfgang Grape, both 3,384,652 5/1968 Hamilton ............................ 556/469 of Cologne, Fed. Rep. of Germany 4,477,631 5/1984 Faure et al. ......................... 556/469 Primary Examiner-Paul F. Shaver 73 Assignee: Bayer Aktiengesellschaft, Attorney, Agent, or Firm-Sprung, Horn, Kramer & Leverkusen, Fed. Rep. of Germany Woods (21) Appl. No.: 713,501 57 ABSTRACT 22 Filed: Mar. 19, 1985 A process for the preparation of dimethyldichlorosilane (30) Foreign Application Priority Data from the low-boiling and high-boiling by-products of the direct synthesis of methylchlorosilane, comprising Mar. 23, 1984 (DE) Fed. Rep. of Germany ....... 3410644 reacting methyltrichlorosilane simultaneously with the 51) Int. Cl." ................................................ C07F 7/12 low-boiling components having a high content of 52 U.S.C. .................................................... 556/469 methyl groups and with the high-boiling non-cleavable 58 Field of Search ......................................... 556/469 components, in the presence of a catalyst, at a tempera 56) References Cited ture between about 250 C. and 400 C. and under a U.S. PATENT DOCUMENTS pressure of up to 100 bar. 2,647,136 7/1953 Sauer ................................... 556/469 4 Claims, No Drawings 4,552,973 1. 2 minum chloride which, however, is converted to the PROCESS FOR THE PREPARATION OF known catalyst AlCl3 by hydrogen chloride gas fed DIMETHYTLDICHLOROSLANE simultaneously into the reaction mixture. German Offenlegungsschrift (German Published The present invention relates to a process for the Specification) No. 3,314,734 describes the reaction of preparation of dimethyldichlorosilane from unavoida disilanes which have a high methyl content and do not ble products of the direct synthesis of methylchlorosi undergo cleavage reactions, with methyltrichlorosilane, lanes, in which low-boiling components having a high with the aim of producing dimethyldichlorosilane and methyl content as well as non-cleavable high-boiling disilanes which have a high chlorine content and un residues together with methyltrichlorosilane are con 10 dergo cleavage reactions. Since a declared aim of this verted to, in particular, dimethyldichlorosilane, which process is to convert disilanes which cannot undergo is a valuable compound. cleavage reactions to cleavable disilanes, the reaction is In the preparation of dimethyldichlorosilane by di restricted to temperatures up to about 175 C. and pres rect synthesis (Miller-Rochow method), a substantial sures up to 3 atmospheres, in order to avoid side reac amount of unavoidable products are formed in addition 15 tions. Possible side reactions are in principle familiar to to the desired product. The direct method is described one skilled in the art. Free-radical reactions of polysi in the patent literature, for example in U.S. Patent Spec lanes are described in, for example, German Ausleges ifications Nos. 2,380,995 and 2,488,487. chrift (German Published Specification) No. 2,618,246, The most important by-product formed, in terms of and the possible participation of Lewis acids, such as, amount, is methyltrichlorosilane, which is formed in 20 for example, aluminum chloride, in such free-radical amounts which cannot be utilized economically for the reactions is described in, for example, German Offen preparation of silicones. The bulk of the methyltri legungsschrift (German Published Specification) No. chlorosilane is currently used for the preparation of 3,136,786. Under the reaction conditions which are pyrogenic silica; however, this process constitutes an described in DOS (German Published Specification) unsatisfactory provisional solution, since valuable 25 No. 3,314,734 as being advantageous, the stated side methyl groups introduced into the system undergo reactions do not take place. However, the consequence combustion to form CO2 and water. of choosing the reaction conditions 175 C/3 atmo In addition to methyltrichlorosilane, other by-pro spheres is that substantial amounts of aluminum chlo ducts are formed in the direct synthesis of dimethyldi ride are required as catalyst. In some of the examples chlorosilane: 30 published, the amount of catalyst is about 20%, relative (a) Unavoidable low-boiling products having a boil to the silane mixture employed, without taking into ing point below 40 C., such as, for example, tetrame account the hydrogeniosilane added as a promoter. thylsilane (TMS), dimethylmonochlorosilane and 2 The catalyst can be worked up only with consider methylbut-2-ene. able effort, and this procedure is therefore uneconomi (b) Compounds which have a higher boiling point 35 cal. Furthermore, a continuous procedure with homo than the monosilanes, that is to say a boiling point from geneous catalysis is scarcely possible for such a large above 70 C. to about 180° C.; these compounds are amount of catalyst, owing to the low solubility of the referred to below either as "residue" or as "high-boiling aluminum chloride in the reaction mixture. Hence, the fraction'. This residue is a complex mixture of com process described in DOS (German Published Specifi pounds which contain SiSi, SiOSi and SiCH2Sibonds in cation) No; 3,314,734 is hardly suitable as a method of the molecules. Typical residues are described in U.S. preparing dimethyldichlorosilane in a continuously Patent Specifications Nos. 2,599,435 and 2,681,355. working reactor. A large number of methods have been suggested for It was therefore the object of the present invention to working up these unavoidable products (see, for exam provide a method for reducing the amounts of waste ple, German Offenlegungsschrift (German Published 45 products in the direct synthesis of methylchlorosilane, Specification) No. 2,950,402; R. Calas et al., Journal of these waste products hitherto essentially being de Organometallic Chemistry, 225, 117 (1982)). stroyed. In certain circumstances, the compounds trimethyl It was furthermore the object of the present invention monochlorosilane and methyldichlorsilane, which are to find a process for the preparation of dimethyldichlo normally included among the useful products in the 50 rosilane from unavoidable products of the direct syn direct method, are also formed in amounts which can thesis of methylchlorosilane. not be utilized economically. It was furthermore the object of the present invention According to U.S. Patent Specification No. reasonably to utilize the methyl groups which are pres 2,786,861, alkylchlorosilanes were converted in the ent in bonded form in the low-boiling residues, such as presence of a catalyst, such as aluminum chloride, and it 55 tetramethylsilane (TMS) and dimethylchlorosilane, and was found that this conversion could be carried out in in the high-boiling non-cleavable residue, and have an advantageous manner at relatively low temperatures hitherto been destroyed. if a compound which promotes this conversion, that is A further object of the present invention is to convert to say a hydrogenosilane, was used. A serious disadvan the compound methyldichlorosilane, if required, to tage of this method is that extremely large amounts of 60 valuable compounds. aluminum chloride are required as the catalyst, at least Finally, it is intended that the process for the prepara 10%, relative to the silane mixture to be converted. tion of dimethyldichlorosilane from unavoidable prod The transfer of methyl groups from tetramethylsilane ucts of the direct synthesis of methylchlorosilane be to hexachlorodisilane or 1,1,2,2-tetrachloro-1,2-dime designed in such a way that it can be carried out by a thyldisilane or mixtures of disilanes having a high chlo 65 continuous procedure. rine content is described in, for example, German Offen The present invention therefore relates to a process legungsschrift (German Published Specification) No. for the preparation of dimethyldichlorosilane from the 3,208,829. The catalyst used in this case is an organoalu unavoidable low-boiling and high-boiling products of 4,552,973 3 4. the direct synthesis of methylchlorosilane, character elevated temperature, in order to produce dimethyldi ized in that methyltrichlorosilane, together with the chlorosilane. After the monomeric methylsilanes and low-boiling fractions having a high content of methyl methylchlorosilanes which have boiling points up to groups and the high-boiling non-cleavable fractions, is about 70° C. have been removed from the reaction converted at temperatures between 250 C. and 400 C. and under pressures up to 100 bar, in the presence of a product, a residue, a high-boiling fraction, remains. It catalyst. has been found that valuable fractions have remained in By means of the process according to the invention, this residue, and various methods have been used in "waste products', as obtained in the Rochow synthesis, order to utilise the silane present in this residue. are converted in high yield to the valuable compound 10 U.S. Patent Specifications Nos. 2,709,176 and dimethyldichlorosilane by reaction with one another in 2,842,580 describe processes for the cleavage of the the presence of a catalyst. polysilanes present in the residue. While the polysilanes Any fraction obtained from the Rochow-Muller
Recommended publications
  • Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017 Supporting Information Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance Haixing Li,1 Marc H. Garner,2 Zhichun Shangguan,3 Timothy A. Su,4 Madhav Neupane,4 Panpan Li,3 Alexandra Velian,4 Michael L. Steigerwald,4 Shengxiong Xiao,*3 Colin Nuckolls,*3,4 Gemma C. Solomon,*2 Latha Venkataraman*1,4 1 Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, USA 2 Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Optoelectronic Nano Materials and Devices Institute, Department of Chemistry, Shanghai Normal University, Shanghai 200234, China 4 Department of Chemistry, Columbia University, New York 10027 This version of the ESI replaces the previous version that was published on 13th June 2016. Some references in Part IV on Page 8 and 21 are corrected and updated. 1 Table of Contents Table of Contents .............................................................................................. 2 I. Synthetic procedures and characterization of compounds ......................... 4 II. STM-Break Junction experiment details ..................................................... 6 III. Additional Data .........................................................................................
    [Show full text]
  • Progresses in Synthesis and Application of Sic Films: from CVD to ALD and from MEMS to NEMS
    micromachines Review Progresses in Synthesis and Application of SiC Films: From CVD to ALD and from MEMS to NEMS Mariana Fraga 1,* and Rodrigo Pessoa 2,* 1 Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (Unifesp), São José dos Campos SP 12231-280, Brazil 2 Laboratório de Plasmas e Processos (LPP), Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos SP 12228-900, Brazil * Correspondence: [email protected] (M.F.); [email protected] (R.P.) Received: 2 August 2020; Accepted: 20 August 2020; Published: 24 August 2020 Abstract: A search of the recent literature reveals that there is a continuous growth of scientific publications on the development of chemical vapor deposition (CVD) processes for silicon carbide (SiC) films and their promising applications in micro- and nanoelectromechanical systems (MEMS/NEMS) devices. In recent years, considerable effort has been devoted to deposit high-quality SiC films on large areas enabling the low-cost fabrication methods of MEMS/NEMS sensors. The relatively high temperatures involved in CVD SiC growth are a drawback and studies have been made to develop low-temperature CVD processes. In this respect, atomic layer deposition (ALD), a modified CVD process promising for nanotechnology fabrication techniques, has attracted attention due to the deposition of thin films at low temperatures and additional benefits, such as excellent uniformity, conformability, good reproducibility, large area, and batch capability. This review article focuses on the recent advances in the strategies for the CVD of SiC films, with a special emphasis on low-temperature processes, as well as ALD. In addition, we summarize the applications of CVD SiC films in MEMS/NEMS devices and prospects for advancement of the CVD SiC technology.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • REGISTRY Database Summary Sheet (DBSS)
    SM REGISTRY/ZREGISTRY (CAS REGISTRY ) Subject • All types of inorganic and organic substances, including alloys, coordination Coverage compounds, minerals, mixtures, polymers, salts, high throughput screening (HTS) compounds as well as nucleic acid and protein sequences • Substances included in REGISTRY meet the following criteria: - Identified by CAS as coming from a reputable source, including but not limited to patents, journals, chemical catalogs, and selected substance collections on the web - Described in largely unambiguous terms - Characterized by physical methods or described in a patent document example or claim - Consistent with the laws of atomic covalent organization • Experimental and predicted property data and tags and spectra data File Type Numeric, Structure Features Alerts (SDIs) Biweekly In addition, SMARTracker, an automatic crossfile current-awareness search, (SDI XFILE) using a REGISTRY search profile in CA, HCA, ZCA, CAplus, HCAplus or ZCAplus may be run weekly or biweekly (weekly is the default). CAS Registry Keep & Share SLART Number® Identifiers ® Learning Database STN Easy Structures Record • CAS Registry Numbers • Experimental and predicted property Content • CA index names and commonly used data and tags chemical names and trade names • Spectra • Molecular formulas • List of databases and regulatory listings • Structure diagrams containing information on the substances • Sequence data • Super roles and document type SM • Alloy composition tables information from CAplus • Classes for polymers • Displayable information for 10 most recent references for substances • Ring analysis data File Size More than 140 million organic and inorganic substances; more than 71.1 million sequences (4/18) Coverage Early 1800s to the present Updates Daily Language English Database Chemical Abstracts Service Producer 2540 Olentangy River Road P.O.
    [Show full text]
  • Gas-Phase Chemistry of Methyl-Substituted Silanes in a Hot-Wire Chemical Vapour Deposition Process
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-08-27 Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process Toukabri, Rim Toukabri, R. (2013). Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process (Unpublished doctoral thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26257 http://hdl.handle.net/11023/891 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Gas-phase Chemistry of Methyl-Substituted Silanes in a Hot-wire Chemical Vapour Deposition Process by Rim Toukabri A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY CALGARY, ALBERTA August, 2013 © Rim Toukabri 2013 Abstract The primary decomposition and secondary gas-phase reactions of methyl- substituted silane molecules, including monomethylsilane (MMS), dimethylsilane (DMS), trimethylsilane (TriMS) and tetramethylsilane (TMS), in hot-wire chemical vapour deposition (HWCVD) processes have been studied using laser ionization methods in combination with time of flight mass spectrometry (TOF-MS). For all four molecules, methyl radical formation and hydrogen molecule formation have been found to be the common decomposition steps on both tungsten (W) and tantalum (Ta) filaments.
    [Show full text]
  • Development of Novel Cycloaliphatic Siloxanes for Thermal
    DEVELOPMENT OF NOVEL CYCLOALIPHATIC SILOXANES FOR THERMAL AND UV-CURABLE APPLICATIONS A Dissertation Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Ruby Chakraborty May, 2008 DEVELOPMENT OF NOVEL CYCLOALIPHATIC SILOXANES FOR THERMAL AND UV-CURABLE APPLICATIONS Ruby Chakraborty Dissertation Approved: Accepted: _____________________________ ______________________________ Advisor Department Chair Dr. Mark D. Soucek Dr. Sadhan C. Jana ______________________________ ______________________________ Committee Member Dean of the College Dr. Sadhan C. Jana Dr. Stephen Cheng ______________________________ ______________________________ Committee Member Dean of the Graduate School Dr. Erol Sancaktar Dr. George R. Newkome ______________________________ ______________________________ Committee Member Date Dr. George G. Chase ______________________________ Committee Member Dr. Chrys Wesdemiotis ii ABSTRACT Siloxanes have been extensively used as additives to modulate surface properties such as surface tension, hydrophobicity/hydrophobicity, and adhesion, etc. Although, polydimethyl -siloxane and polydiphenylsiloxane are the most commonly used siloxanes, the properties are at extremes in terms of glass transition temperature and flexibility. It is proposed that the ability to control the properties in between the these extremes can be provided by cycloaliphatic substitutions at the siloxane backbone. It is expected that this substitution might work due to the intermediate backbone rigidity. In order to achieve the above objectives, a synthetic route was developed to prepare cycloaliphatic (cyclopentane and cyclohexane) silane monomers followed by subsequent polymerization and functionalizations to obtain glycidyl epoxy, aliphatic amine and methacrylate telechelic siloxanes. The siloxanes were either thermally or UV- cured depending on end functionalizations. Chemical characterization of monomers, oligomers and polymers were performed using 1H, 13C, 29Si-NMR, FT-IR and GPC.
    [Show full text]
  • Environmental Risk Assessment Report: Decamethylcyclopentasiloxane
    Environmental Risk Assessment Report: Decamethylcyclopentasiloxane Science Report Environmental Risk Assessment: Decamethylcyclopentasiloxane 1 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Aztec West, Brooke D N, Crookes M J , Gray D and Robertson S Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Dissemination Status: www.environment-agency.gov.uk Publicly available / released to all regions ISBN: 978-1-84911-029-7 Keywords: © Environment Agency April 2009 Decamethylcyclosiloxane, siloxane All rights reserved. This document may be reproduced with prior Research Contractor: permission of the Environment Agency. Building Research Establishment Ltd, Bucknalls Lane, Garston, Watford, WD25 9XX. Tel. 01923 664000 The views expressed in this document are not necessarily those of the Environment Agency. Environment Agency’s Project Manager: Steve Robertson, Chemicals Assessment Unit, Red Kite House, This report is printed on Cyclus Print, a 100 per cent recycled Howbery Park, Wallingford OX10 8BD. Tel 01491 828555 stock, which is 100 per cent post consumer waste and is totally chlorine free. Water used is treated and in most cases returned Collaborator(s): to source in better condition than removed. D Gray, Health and Safety Executive Further copies of this report are available from: Product code: The Environment Agency’s National Customer Contact Centre SCHO0309BPQX-E-P by emailing [email protected] or by telephoning 08708 506506.
    [Show full text]
  • Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites and Interfaces
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2017 POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES Daniel H. Flagg University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Materials Chemistry Commons, Polymer and Organic Materials Commons, and the Polymer Chemistry Commons Recommended Citation Flagg, Daniel H., "POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES" (2017). Doctoral Dissertations. 1080. https://doi.org/10.7275/10575940.0 https://scholarworks.umass.edu/dissertations_2/1080 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the degree requirements for the degree of DOCTOR OF PHILOSOPHY September 2017 Polymer Science and Engineering © Copyright by Daniel H. Flagg 2017 All Rights Reserved POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Approved as to style and content by: Thomas J. McCarthy, Chair E. Bryan Coughlin, Member John Klier, Member E. Bryan Coughlin, Head, PS&E To John Null ACKNOWLEDGEMENTS There are countless individuals that I need to thank and acknowledge for getting me to where I am today. I could not have done it alone and would be a much different person if it were not for the support of my advisors, friends and family.
    [Show full text]
  • Grignard Reagents and Silanes
    GRIGNARD REAGENTS AND SILANES By B. Arkles REPRINTED FROM HANDBOOK OF GRIGNARD REAGENTS by G. Silverman and P. Rakita Pages 667-675 Marcel Dekker, 1996 Gelest, Inc. 612 William Leigh Drive Tullytown, Pa. 19007-6308 Phone: [215] 547-1015 Fax: [215] 547-2484 Grignard Reagents and Silanes 32 Grignard Reagents and Silanes BARRY ARKLES Gelest Inc., Tullytown, Pennsylvania I. INTRODUCTION This review considers two aspects of the interaction of Grignards with silanes. First, focusing on technologies that are still viable within the context of current organosilane and silicone technology, guidelines are provided for silicon-carbon bond formation using Grignard chemistry. Second, the use of silane-blocking agents and their stability in the presence of Grignard reagents employed in organic synthesis is discussed. II. FORMATION OF THE SILICON-CARBON BOND A. Background The genesis of current silane and silicone technology traces back to the Grignard reaction. The first practical synthesis of organosilanes was accomplished by F. Stanley Kipping in 1904 by the Grignard reaction for the formation of the silicon-carbon bond [1]. In an effort totaling 57 papers, he created the basis of modern organosilane chemistry. The development of silicones by Frank Hyde at Corning was based on the hydrolysis of Grignard-derived organosilanes [2]. Dow Corning, the largest manufacturer of silanes and silicones, was formed as a joint venture between Corning Glass, which had silicone product technology, and Dow, which had magnesium and Grignard technology, during World War II. In excess of 10,000 silicon compounds have been synthesized by Grignard reactions. Ironically, despite the versatility of Grignard chemistry for the formation of silicon-carbon bonds, its use in current silane and silicone technology has been supplanted by more efficient and selective processes for the formation of the silicon-carbon bond, notably by the direct process and hydrosilylation reactions.
    [Show full text]
  • Synthesis, Recycling, and Modification of Thermoset Silicone Resins Via Fluoride Ion Catalyzed Rearrangement
    Synthesis, Recycling, and Modification of Thermoset Silicone Resins via Fluoride Ion Catalyzed Rearrangement by David James Krug III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Macromolecular Science and Engineering) in The University of Michigan 2019 Doctoral Committee: Professor Richard M. Laine, Chair Professor Nicholas A. Kotov Associate Professor Kenichi Kuroda Professor Richard E. Robertson David James Krug III [email protected] ORCID iD: 0000-0003-1584-7872 © David James Krug III 2019 Dedication This dissertation is dedicated to my parents who made everything possible and to my wife who made everything worthwhile Everything I am, I owe to them ii Acknowledgements I could not have embarked on, let alone finished, this dissertation without the help of many wonderful people. First, I would like to thank my advisor, Professor Richard M. Laine, for his guidance, mentorship, and the many opportunities he has given to me over the years. I am also grateful for the support of my committee members Professor Nicholas A. Kotov, Professor Kenichi Kuroda, and Professor Richard E. Robertson. I would also like to thank all past and present members of the Laine Group. In particular, Dr. Michael Z. Asuncion, Dr. Jose Azurdia, Dr. Julien C. Marchal, and Dr. Santy Sulaiman for their direction and patience when I was an undergraduate researcher. And Dr. Eongyu Yi and Dr. Joseph C. Furgal for their support during graduate school. A special thanks to the Macromolecular Science and Engineering Department and the program coordinators over my tenure: Nonna Hamilton, Adam Mael, and Julie Pollak I thank Continental Structural Plastics (CSP) for their financial support of this work.
    [Show full text]
  • Process for Separation of Methyltrichlorosilane from Dimethyldichlorosilane
    Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 776 902 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) IntCI.6: C07F7/20 04.06.1997 Bulletin 1997/23 (21) Application number: 96119093.1 (22) Date of filing: 28.11.1996 (84) Designated Contracting States: • Halm, Roland Lee DE FRGBITNL Midland, Michigan 48640 (US) • Mclntyre, Michael Andrew (30) Priority: 29.11.1995 US 564550 Midland, Michigan 48640 (US) • Wilding, Oliver K. (71) Applicant: DOW CORNING CORPORATION Lagrange, Kentucky 40031 (US) Midland, Michigan 48686-0994 (US) (74) Representative: Spott, Gottfried, Dr. (72) Inventors: Patentanwalte • Diaz, Michael Spott, Weinmiller & Partner Lexington, Kentucky 40507 (US) Sendlinger-Tor-Platz 11 80336 Munchen (DE) (54) Process for separation of methyltrichlorosilane from dimethyldichlorosilane (57) A process is disclosed for separating methyl- trichlorosilane from dimethyldichlorosilane in a mixture. The process comprises contacting a mixture comprising methyltrichlorosilane and dimethyldichlorosilane with activated carbon, where the methyltrichlorosilane is selectively adsorbed by the activated carbon. The proc- ess allows for the recovery of a dimethyldichlorosilane fraction reduced in methyltrichlorosilane concentration. The methyltrichlorosilane is recovered by desorption from the activated carbon. The present process is espe- cially useful for removing low levels of methyltrichlorosi- lane present as a contaminate in dimethyldichloro- silane. < CM O <7> CO r»- o Q_ LU Printed by Rank Xerox (UK) Business Services 2.14.7/3.4 EP 0 776 902 A1 Description The present invention is a process for separating methyltrichlorosilane from dimethyldichlorosilane in a mixture. The process comprises contacting a mixture comprising methyltrichlorosilane and dimethyldichlorosilane with activated 5 carbon, where the methyltrichlorosilane is selectively adsorbed by the activated carbon.
    [Show full text]
  • Article in Press
    ARTICLE IN PRESS Prog. Polym. Sci. xx (2004) xxx–xxx www.elsevier.com/locate/ppolysci Oligo- and polysilo xanes Yoshimoto Abe*, Takahiro Gunji Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan Received 14 January 2003; revised 5 August 2003; accepted 21 August 2003 Abstract The article reviews the work on the synthesis, properties, and structure of curious oligo- and polysiloxanes which have been done mainly by the authors, referring the related papers. So far as oligosiloxanes, the topic is especially focused on sila- functional siloxanes as the building block for the synthesis of ladder or cube oligosiloxanes, while the another is the polysiloxanes derived from silicic acid and trimethoxysilanes RSi(OMe)3 which are able to form fibers and flexible free- standing films. The review also refers to the new routes for the selective synthesis of sila-functional oligosiloxanes in addition to the reaction control based on the relative reactivity of sila-functional groups. Finally, the application of polysiloxanes as the precursors to ceramics, high performance coatings, and interlayer low dielectric materials are described. q 2003 Elsevier Ltd. All rights reserved. Keywords: Sila-functional oligosiloxanes; New synthetic routes; Siloxanenols; Cube; Ladder; Polysilicic acid esters; Partially silylated silicic acids; Polysilsesquioxanes; Spinnablility; Flexible free-standing films; Ceramic precursor; Coatings; Interlayer low dielectrics Contents 1. Introduction ................................................................... 000 2. Commercially available sila-functional oligosiloxanes . ................................. 000 3. Formation of siloxanes ........................................................... 000 3.1. Various oligo- and polysiloxanes ............................................... 000 3.2. Reactivity of sila-functional groups.............................................. 000 3.3. Siloxane bond formation ....................................................
    [Show full text]