Polydimethylsiloxane Containing Block Copolymers

Total Page:16

File Type:pdf, Size:1020Kb

Polydimethylsiloxane Containing Block Copolymers POLYDIMETHYLSILOXANE CONTAINING BLOCK COPOLYMERS: SYNTHESIS AND CHARACTERIZATION OF ALTERNATING POLY(ARYLENE ETHER PHOSPHINE OXIDE)-b-SILOXANE AND SEGMENTED NYLON 6,6 –b-SILOXANE COPOLYMERS by W. David Polk Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry Dr. James E. McGrath, Chairman Dr.JudyS.Riffle Dr.AllanR.Shultz Dr. John G. Dillard Dr.PaulA.Deck July 2, 2001 Blacksburg, Virginia Keywords: Polydimethylsiloxane, Polyarylene Ether, Phenyl Phosphine Oxide, Polyamide, Nylon 6,6, Block Copolymer, Fire Resistance, Optical Materials, Nanoparticles Copyright 2001, W. David Polk POLY(DIMETHYLSILOXANE) CONTAINING BLOCK COPOLYMERS: SYNTHESIS AND CHARACTERIZATION OF ALTERNATING POLY(ARYLENE ETHER PHOSPHINE OXIDE)-B-SILOXANE AND SEGMENTED NYLON 6,6-B- SILOXANE COPOLYMERS W. David Polk (ABSTRACT) Two novel classes of siloxane containing, organic-inorganic block copolymers were prepared using different synthetic approaches. The first copolymers were alternating poly(arylene ether phosphine oxide)-poly(dimethylsiloxane) systems, prepared via oligomeric silylamine-hydroxyl reactions. Secondly, segmented nylon 6,6- poly(dimethylsiloxane) block copolymers were synthesized via a non-aqueous adaptation of the “nylon 6,6 salt” hydrolytic polyamidization, using bis(aminopropyl) dimethylsiloxane oligomer as a co-reactant. Three series of “perfectly” alternating block copolymers were produced from well characterized hydroxyl-terminated poly(arylene ether phosphine oxide) and dimethylamine-terminated poly(dimethylsiloxane) oligomers, in order to investigate both block length and chemical composition effects. Copolymerization in chlorobenzene resulted in high molecular weight materials capable of forming optically clear, nanophase separated films, which displayed unusual morphologies and good mechanical strength. Thermal gravimetric analysis showed high thermo-oxidative stability and increasing char yield with increasing siloxane content. Additional thermal and mechanical investigations provided evidence of selective phase mixing, particularly at shorter block lengths. Surface analysis showed an enrichment of the siloxane blocks at the air-polymer interface in comparison to the bulk state. This behavior increased in proportion to the length of the parent siloxane oligomers. Evaluation of selected optical properties, e.g., refractive indices, revealed linear trends resulting in values of compositionally weighted averages. Conversely, a series of nylon 6,6-siloxane copolymers were produced from the polycondensation of preformed propylamine-terminated poly(dimethylsiloxane)s, solid ii nylon 6,6 salt and a corresponding amount of adipic acid to afford siloxane-amide semi- crystalline copolymers with siloxane content ranging from 10 to ~45 wt%. The characterization of high molecular weight and covalent siloxane-amide linkages was hindered by insolubility. For example, crystallinity of the nylon 6,6 precluded the use of common solution techniques, while the susceptibility of the siloxane blocks towards ionic redistribution prevented the use of strongly acidic solvents. However, development of a novel analytical technique using solid state 13C NMR and liquid–solid extraction provided evidence for the presence of covalent bonding between the dissimilar oligomer chains. Thermal gravimetric analysis of resultant copolymers revealed an increase in char yield with increasing siloxane content, a preliminary indicator of increased fire resistance, which was supported by subsequent qualitative Bunsen burner observations. Differential scanning calorimetry showed retention of the polyamide crystalline melt with levels of siloxane incorporation of up to 45 weight %. In conclusion, two novel classes of polydimethylsiloxane containing block copolymers have been successfully synthesized, despite the complications created as a result of the polar/non-polar interactions developed between a semi-inorganic polydimethylsiloxane and the hydrocarbon based polyarylene ethers and nylon 6,6. iii Acknowledgements First and foremost, I would like to thank my advisor, Dr. James E. McGrath, for all of his support and guidance throughout my education at Virginia Tech. Words cannot express how much I have gained his wisdom, as well as from the many learning opportunities he afforded me during my tenure. Additionally, I would like to thank my graduate committee, Dr. Judy S. Riffle, Dr. Alan R. Schultz, Dr. John G. Dillard and Dr. Paul A. Deck, and all of the faculty with whom I have interacted, for without their insight, patience, and helpful suggestions that have shaped my development as a scientist, this thesis would not have been possible. Likewise, I must express a great deal of gratitude to Dr. Kay Turner, Dr. Jerry Adduci, and the Chemistry Faculty of the Rochester Institute of Technology. Their collective vision, which saw potential in a sophomore, gave me my first taste of research, instilled in me the desire to truly understand reactions atomistically instead of simply performing them. I am indebted to many colleagues dispersed throughout the Virginia Tech Polymer Community -- each for multiple reasons. Those who gave the greatest direct assistance in the acquisition of data for this dissertation include Matt O’Sickey, Dave Godshall, Emmet O’Brien, Tom Glass, Steve McCartney and Dr. Y.S. Kim. Also, many thanks are owed to my former fellow graduate students and post-docs of the McGrath group, from whom I have learned so much. In particular, I am grateful to Dr. M. Sankarapandian, Dr. H. Shobha, Dr. Feng Wang, and Dr. Sue Mecham, who helped refine my synthesis techniques; and my fellow labmates, Dr. Jeff Mecham, Mike Hickner, and William Harrison, whose camaraderie and advice provided inspiration when obstacles arose. Much appreciation is due to the secretaries, Millie Ryan, Esther Brann, Joyce Moyer, Angie Flynn, and Laurie Good; the McGrath Group would simply not function without them. However, my deepest gratitude must to go to my parents, for encouraging my curiosity, instilling a thirst for knowledge, and infusing in me the perseverance that has enabled me to attain all that I have accomplished. iv Table of Contents 1 INTRODUCTION......................................................................................... 1 2 LITERATURE REVIEW ............................................................................ 4 2.1. BLOCK COPOLYMERS............................................................. 4 2.1.1 Classes of Hybrid Materials and Copolymers: A Brief Review...... 4 2.1.1.1 Physical Blends..................................................................... 4 2.1.1.2 Random / Statistical Copolymers.......................................... 7 2.1.1.3 Graft Copolymers.................................................................. 9 2.1.1.4 Block Copolymers .............................................................. 10 2.1.2 Synthesis of Block Copolymers ........................................... 11 2.1.2.1 Chain-Growth (Addition) Copolymerizations .................... 12 2.1.2.1.1 Reactivity Ratios..................................................................12 2.1.2.1.2 Sequential Addition of Monomers.......................................13 2.1.2.2 Step-Growth (Condensation) Block Copolymers ............... 14 2.1.2.2.1 Preformed Reactive Oligomers............................................14 2.1.2.2.2 Interfacial Copolymerization ...............................................16 2.1.3 Major Characteristics of Block Copolymers ...................... 16 2.1.3.1 Block Copolymer Morphologies......................................... 17 2.1.3.1.1 Miscible vs. Immiscible Copolymer Segments ...................17 2.1.3.1.2 Effects of Segment Length on Phase Separation .................18 2.1.3.1.3 Theoretical Basis for Micro- or Nanoscopic Phase Separation ............................................................................19 2.1.3.2 Structure –Property Relationships of Block Copolymers... 20 2.1.3.3 Thermoplastic Elastomers................................................... 22 2.2 POLY(ARYLENE ETHER)S AND POLY(ARYLENE ETHER PHOSPHINE OXIDE)S 25 2.2.1 General Structure and Characteristics............................... 25 2.2.2 Commercialized Examples.................................................. 27 2.2.3 Synthetic Approaches and Mechanisms for Poly(arylene ether)s 28 2.2.3.1 Electrophilic Aromatic Substitution. .................................. 29 2.2.3.2 Nucleophilic Aromatic Substitution. .................................. 32 2.2.3.2.1 SN1 and SN2 Mechanisms ....................................................32 v 2.2.3.2.2 Aryne and SNAr mechanisms...............................................34 2.2.3.2.2.1 “Aryne” Elimination-Addition Mechanism.................... 35 2.2.3.2.2.2 SNAr – Addition-Elimination Mechanism ................... 36 2.2.3.2.3 Additional Nucleophilic Aromatic Substitution Processes..39 2.2.3.2.3.1 Silyl-displacement........................................................ 39 2.2.3.2.3.2 SRN1 - A Radical Side Reaction................................... 40 2.2.3.2.3.3 Metal Mediated Coupling Reactions ........................... 42 2.2.4 Phosphine and Phosphine Oxide Containing Organic Polymers..... 43 2.2.5 Overview of Selected Optical Properties of Polymers........ 48 2.3 POLYDIMETHYLSILOXANES AND SILOXANE CONTAINING COPOLYMERS ... 53 2.3.1 Historical Development and Nomenclature.......................
Recommended publications
  • Federal Register/Vol. 70, No. 216/Wednesday
    Federal Register / Vol. 70, No. 216 / Wednesday, November 9, 2005 / Notices 68037 OPP–2005–0173. The official public TABLE 2.—REGISTRANT OF AMENDED effective date of the order to terminate docket consists of the documents PRODUCT use. The order issued in this Notice specifically referenced in this action, includes the following existing stocks any public comments received, and EPA Company Company Name and Ad- provisions. other information related to this action. No. dress Products in the United States that have been packaged, labeled, and Although a part of the official docket, 2596 The Hartz Mountain Cor- the public docket does not include released for shipment prior to the poration, 400 Plaza effective date of the order terminating Confidential Business Information (CBI) Drive Secaucus, NJ or other information whose disclosure is 07094–3688 use on cats and kittens may be sold or restricted by statute. The official public distributed by Hartz from its facilities until December 31, 2005. After docket is the collection of materials that III. Summary of Public Comments December 31, 2005, Hartz may not sell is available for public viewing at the Received and Agency Response to or distribute product labeled for use on Public Information and Records Comments cats and kittens. Products labeled for Integrity Branch (PIRIB), Rm. 119, During the public comment period use on cats and kittens may be sold or Crystal Mall #2, 1801 S. Bell St., provided, EPA received no comments in distributed by persons other than the Arlington, VA. This docket facility is response to the July 20, 2005 Federal registrant until March 31, 2006.
    [Show full text]
  • Polydimethylsiloxane Emulsion
    DMS-T31M50 - POLYDIMETHYLSILOXANE EMULSION POLYDIMETHYLSILOXANE EMULSION Safety Data Sheet DMS-T31M50 Date of issue: 04/28/2016 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Mixture Physical state : Liquid Product name : POLYDIMETHYLSILOXANE EMULSION Product code : DMS-T31M50 Synonyms : POLY(DIMETHYLSILOXANE), TRIMETHYLSILOXY TERMINATED, emulsion; SILICONE OIL EMULSION Chemical family : ORGANOSILOXANE 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture GHS-US classification Not classified 2.2. Label elements GHS-US labeling No labeling applicable 2.3. Other hazards No additional information available 2.4. Unknown acute toxicity (GHS US) No data available SECTION 3: Composition/Information on ingredients 3.1. Substance Not applicable 3.2. Mixture Name Product identifier % GHS-US classification Polydimethylsiloxane (CAS No) 9016-00-6/63148-62-9 45 - 50 Not classified Water (CAS No) 7732-18-5 45 - 50 Not classified Polyoxyethylene(20)sorbitan monooleate (CAS No) 9005-65-6 1 - 5 Not classified Sorbitan monolaurate (CAS No) 1338-39-2 1 - 5 Not classified SECTION 4: First aid measures 4.1.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Development of Novel Cycloaliphatic Siloxanes for Thermal
    DEVELOPMENT OF NOVEL CYCLOALIPHATIC SILOXANES FOR THERMAL AND UV-CURABLE APPLICATIONS A Dissertation Presented to The Graduate Faculty of the University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Ruby Chakraborty May, 2008 DEVELOPMENT OF NOVEL CYCLOALIPHATIC SILOXANES FOR THERMAL AND UV-CURABLE APPLICATIONS Ruby Chakraborty Dissertation Approved: Accepted: _____________________________ ______________________________ Advisor Department Chair Dr. Mark D. Soucek Dr. Sadhan C. Jana ______________________________ ______________________________ Committee Member Dean of the College Dr. Sadhan C. Jana Dr. Stephen Cheng ______________________________ ______________________________ Committee Member Dean of the Graduate School Dr. Erol Sancaktar Dr. George R. Newkome ______________________________ ______________________________ Committee Member Date Dr. George G. Chase ______________________________ Committee Member Dr. Chrys Wesdemiotis ii ABSTRACT Siloxanes have been extensively used as additives to modulate surface properties such as surface tension, hydrophobicity/hydrophobicity, and adhesion, etc. Although, polydimethyl -siloxane and polydiphenylsiloxane are the most commonly used siloxanes, the properties are at extremes in terms of glass transition temperature and flexibility. It is proposed that the ability to control the properties in between the these extremes can be provided by cycloaliphatic substitutions at the siloxane backbone. It is expected that this substitution might work due to the intermediate backbone rigidity. In order to achieve the above objectives, a synthetic route was developed to prepare cycloaliphatic (cyclopentane and cyclohexane) silane monomers followed by subsequent polymerization and functionalizations to obtain glycidyl epoxy, aliphatic amine and methacrylate telechelic siloxanes. The siloxanes were either thermally or UV- cured depending on end functionalizations. Chemical characterization of monomers, oligomers and polymers were performed using 1H, 13C, 29Si-NMR, FT-IR and GPC.
    [Show full text]
  • Environmental Risk Assessment Report: Decamethylcyclopentasiloxane
    Environmental Risk Assessment Report: Decamethylcyclopentasiloxane Science Report Environmental Risk Assessment: Decamethylcyclopentasiloxane 1 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, Aztec West, Brooke D N, Crookes M J , Gray D and Robertson S Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Dissemination Status: www.environment-agency.gov.uk Publicly available / released to all regions ISBN: 978-1-84911-029-7 Keywords: © Environment Agency April 2009 Decamethylcyclosiloxane, siloxane All rights reserved. This document may be reproduced with prior Research Contractor: permission of the Environment Agency. Building Research Establishment Ltd, Bucknalls Lane, Garston, Watford, WD25 9XX. Tel. 01923 664000 The views expressed in this document are not necessarily those of the Environment Agency. Environment Agency’s Project Manager: Steve Robertson, Chemicals Assessment Unit, Red Kite House, This report is printed on Cyclus Print, a 100 per cent recycled Howbery Park, Wallingford OX10 8BD. Tel 01491 828555 stock, which is 100 per cent post consumer waste and is totally chlorine free. Water used is treated and in most cases returned Collaborator(s): to source in better condition than removed. D Gray, Health and Safety Executive Further copies of this report are available from: Product code: The Environment Agency’s National Customer Contact Centre SCHO0309BPQX-E-P by emailing [email protected] or by telephoning 08708 506506.
    [Show full text]
  • Synthesis of Functionalized Poly(Dimethylsiloxane)S and the Preparation of Magnetite Nanoparticle Complexes and Dispersions
    Synthesis of Functionalized Poly(dimethylsiloxane)s and the Preparation of Magnetite Nanoparticle Complexes and Dispersions Kristen Wilson O’Brien Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry Approved by: ____________________________ Judy S. Riffle, Chair ____________________________ ____________________________ Alan Esker Jack Lesko ____________________________ ____________________________ Timothy E. Long James E. McGrath August 21, 2003 Blacksburg, Virginia Keywords: Polymers, iron oxides; steric stabilization; magnetic fluids Copyright 2003, Kristen Wilson O’Brien Synthesis of Functionalized Poly(dimethylsiloxane)s and the Preparation of Magnetite Nanoparticle Complexes and Dispersions Kristen Wilson O’Brien (ABSTRACT) Poly(dimethylsiloxane) (PDMS) fluids containing magnetite nanoparticles stabilized with carboxylic acid-functionalized PDMS were prepared. PDMS-magnetite complexes were characterized using transmission electron microscopy, elemental analysis, and vibrating sample magnetometry. PDMS-magnetite complexes containing up to 67 wt% magnetite with magnetizations of ~52 emu gram-1 were prepared. The magnetite particles were 7.4 ± 1.7 nm in diameter. Calculations suggested that the complexes prepared using mercaptosuccinic acid-functionalized PDMS (PDMS-6COOH) complexes contained unbound acid groups whereas the mercaptoacetic acid- functionalized PDMS (PDMS-3COOH) complexes did not.
    [Show full text]
  • Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites and Interfaces
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses November 2017 POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES Daniel H. Flagg University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Materials Chemistry Commons, Polymer and Organic Materials Commons, and the Polymer Chemistry Commons Recommended Citation Flagg, Daniel H., "POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES" (2017). Doctoral Dissertations. 1080. https://doi.org/10.7275/10575940.0 https://scholarworks.umass.edu/dissertations_2/1080 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the degree requirements for the degree of DOCTOR OF PHILOSOPHY September 2017 Polymer Science and Engineering © Copyright by Daniel H. Flagg 2017 All Rights Reserved POLYORGANOSILOXANES: MOLECULAR NANOPARTICLES, NANOCOMPOSITES AND INTERFACES A Dissertation Presented by Daniel H. Flagg Approved as to style and content by: Thomas J. McCarthy, Chair E. Bryan Coughlin, Member John Klier, Member E. Bryan Coughlin, Head, PS&E To John Null ACKNOWLEDGEMENTS There are countless individuals that I need to thank and acknowledge for getting me to where I am today. I could not have done it alone and would be a much different person if it were not for the support of my advisors, friends and family.
    [Show full text]
  • Synthesis, Recycling, and Modification of Thermoset Silicone Resins Via Fluoride Ion Catalyzed Rearrangement
    Synthesis, Recycling, and Modification of Thermoset Silicone Resins via Fluoride Ion Catalyzed Rearrangement by David James Krug III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Macromolecular Science and Engineering) in The University of Michigan 2019 Doctoral Committee: Professor Richard M. Laine, Chair Professor Nicholas A. Kotov Associate Professor Kenichi Kuroda Professor Richard E. Robertson David James Krug III [email protected] ORCID iD: 0000-0003-1584-7872 © David James Krug III 2019 Dedication This dissertation is dedicated to my parents who made everything possible and to my wife who made everything worthwhile Everything I am, I owe to them ii Acknowledgements I could not have embarked on, let alone finished, this dissertation without the help of many wonderful people. First, I would like to thank my advisor, Professor Richard M. Laine, for his guidance, mentorship, and the many opportunities he has given to me over the years. I am also grateful for the support of my committee members Professor Nicholas A. Kotov, Professor Kenichi Kuroda, and Professor Richard E. Robertson. I would also like to thank all past and present members of the Laine Group. In particular, Dr. Michael Z. Asuncion, Dr. Jose Azurdia, Dr. Julien C. Marchal, and Dr. Santy Sulaiman for their direction and patience when I was an undergraduate researcher. And Dr. Eongyu Yi and Dr. Joseph C. Furgal for their support during graduate school. A special thanks to the Macromolecular Science and Engineering Department and the program coordinators over my tenure: Nonna Hamilton, Adam Mael, and Julie Pollak I thank Continental Structural Plastics (CSP) for their financial support of this work.
    [Show full text]
  • (PDMS) Properties for Biomedical Micro/Nanosystems
    Biomedical Microdevices 7:4, 281–293, 2005 C 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems Alvaro Mata,1,2 Aaron J. Fleischman,2 and Shuvo Roy2,∗ 1Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115 2BioMEMS Laboratory, Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44120 E-mail: [email protected] Abstract. Polydimethylsiloxane (PDMS SylgardR 184, Dow Corn- search and development of MEMS-based devices in the ing Corporation) pre-polymer was combined with increasing biomedical arena for a variety of applications ranging amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and from diagnostics (Fujii, 2002; Mastrangelo et al., 1998; designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5,respec- tively. These materials were processed by spin coating and subjected Paranjape et al., 2003; Wu et al., 2001) to therapeutics to common microfabrication, micromachining, and biomedical pro- (Borenstein et al., 2002; Chung et al., 2003; Ferrara et al., cesses: chemical immersion, oxygen plasma treatment, sterilization, 2003; Santini et al., 1999; Tao and Desai, 2003). However, and exposure to tissue culture media. The PDMS formulations were the development of these applications through established analyzed by gravimetry, goniometry, tensile testing, nanoindenta- MEMS manufacturing approaches is hindered by inherent tion, scanning electron microscopy (SEM), Fourier transform in- frared spectroscopy (FTIR), and X-ray photoelectron spectroscopy characteristics of traditional silicon-based processes such (XPS). Spin coating of PDMS was formulation dependent with film as high costs and limited access to clean room environ- thickness ranging from 308 µmonPDMS1 to 171 µmonPDMS5 ments (Roy et al., 2001; Whitesides et al., 2001).
    [Show full text]
  • Article in Press
    ARTICLE IN PRESS Prog. Polym. Sci. xx (2004) xxx–xxx www.elsevier.com/locate/ppolysci Oligo- and polysilo xanes Yoshimoto Abe*, Takahiro Gunji Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan Received 14 January 2003; revised 5 August 2003; accepted 21 August 2003 Abstract The article reviews the work on the synthesis, properties, and structure of curious oligo- and polysiloxanes which have been done mainly by the authors, referring the related papers. So far as oligosiloxanes, the topic is especially focused on sila- functional siloxanes as the building block for the synthesis of ladder or cube oligosiloxanes, while the another is the polysiloxanes derived from silicic acid and trimethoxysilanes RSi(OMe)3 which are able to form fibers and flexible free- standing films. The review also refers to the new routes for the selective synthesis of sila-functional oligosiloxanes in addition to the reaction control based on the relative reactivity of sila-functional groups. Finally, the application of polysiloxanes as the precursors to ceramics, high performance coatings, and interlayer low dielectric materials are described. q 2003 Elsevier Ltd. All rights reserved. Keywords: Sila-functional oligosiloxanes; New synthetic routes; Siloxanenols; Cube; Ladder; Polysilicic acid esters; Partially silylated silicic acids; Polysilsesquioxanes; Spinnablility; Flexible free-standing films; Ceramic precursor; Coatings; Interlayer low dielectrics Contents 1. Introduction ................................................................... 000 2. Commercially available sila-functional oligosiloxanes . ................................. 000 3. Formation of siloxanes ........................................................... 000 3.1. Various oligo- and polysiloxanes ............................................... 000 3.2. Reactivity of sila-functional groups.............................................. 000 3.3. Siloxane bond formation ....................................................
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,552,973 Feldner Et Al
    United States Patent (19) 11) Patent Number: 4,552,973 Feldner et al. (45) Date of Patent: Nov. 12, 1985 54 PROCESS FOR THE PREPARATION OF 2,647,912 8/1953 Barry et al. ......................... 556/469 DMETHYLDCHLOROSLANE 2,717,257 9/1955 Bluestein ............................. 556/469 (75. Inventors: Kurt Feldner; Wolfgang Grape, both 3,384,652 5/1968 Hamilton ............................ 556/469 of Cologne, Fed. Rep. of Germany 4,477,631 5/1984 Faure et al. ......................... 556/469 Primary Examiner-Paul F. Shaver 73 Assignee: Bayer Aktiengesellschaft, Attorney, Agent, or Firm-Sprung, Horn, Kramer & Leverkusen, Fed. Rep. of Germany Woods (21) Appl. No.: 713,501 57 ABSTRACT 22 Filed: Mar. 19, 1985 A process for the preparation of dimethyldichlorosilane (30) Foreign Application Priority Data from the low-boiling and high-boiling by-products of the direct synthesis of methylchlorosilane, comprising Mar. 23, 1984 (DE) Fed. Rep. of Germany ....... 3410644 reacting methyltrichlorosilane simultaneously with the 51) Int. Cl." ................................................ C07F 7/12 low-boiling components having a high content of 52 U.S.C. .................................................... 556/469 methyl groups and with the high-boiling non-cleavable 58 Field of Search ......................................... 556/469 components, in the presence of a catalyst, at a tempera 56) References Cited ture between about 250 C. and 400 C. and under a U.S. PATENT DOCUMENTS pressure of up to 100 bar. 2,647,136 7/1953 Sauer ................................... 556/469 4 Claims, No Drawings 4,552,973 1. 2 minum chloride which, however, is converted to the PROCESS FOR THE PREPARATION OF known catalyst AlCl3 by hydrogen chloride gas fed DIMETHYTLDICHLOROSLANE simultaneously into the reaction mixture.
    [Show full text]
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Jessy Mario Lemieux December 2013 Dissertation Committee: Dr. Jingsong Zhang, Chairperson Dr. Christopher Bardeen Dr. David Bocian Copyright by Jessy Mario Lemieux 2013 The Dissertation of Jessy Mario Lemieux is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS Professor Jingsong Zhang Dr. Steven Chambreau Dr. Kevin Weber Paul Jones Jeff Lefler Mike Fournier Stan Sheldon Professor Christopher Bardeen Professor David Bocian iv DEDICATION This work is dedicated to my parents who taught me the value of curiosity and learning and have always been there for me. v ABSTRACT OF THE DISSERTATION Thermal Decomposition of Molecules Relevant to Combustion and Chemical Vapor Deposition by Flash Pyrolysis Time-of-Flight Mass Spectrometry by Jessy Mario Lemieux Doctor of Philosophy, Graduate Program in Chemistry University of California, Riverside, December 2013 Dr. Jingsong Zhang, Chairperson Flash pyrolysis coupled with vacuum-ultraviolet photoionization time-of-flight mass spectrometry was used to study the thermal decomposition mechanisms of molecules relevant to fuel combustion and the chemical vapor deposition (CVD) of SiGe, SiC, and GeC. For combustion research, the thermal decomposition of benzyl radical, n- alkanes CnH2n+2 (n = 5-8 and 10), 1-butyl radical, and 1-pentyl radical was performed. Benzyl was confirmed to decompose primarily by ejection of H atom after significant isomerization with loss of methyl observed as a minor decomposition pathway.
    [Show full text]