Evolutionary Changes in the Acoustic System of the Family Terapontidae
Total Page:16
File Type:pdf, Size:1020Kb
國立中山大學海洋生物所 碩士論文 Institute of Marine Biology National Sun Yat-sen University, Kaohsiung Master Thesis 鯻科發音系統之演變 Evolutionary Changes in the Acoustic System of the Family Terapontidae 研究生:薛仁鈞 Jen-chun Hsueh 指導教授:莫顯蕎 教授 Dr. Hin-kiu Mok 中華民國 102 年 7 月 July 2013 謝辭 感謝莫老師的指導,使得此碩士研究得以順利進行,也在後續發現許多有趣 的問題,更感謝老師包容我在此期間修習教程與兼課所占用的時間,也不時的給 予提醒與關心。感謝張學文老師與魏瑞昌老師給予的建議以及不同的視野,百忙 之中擔任口試委員。感謝廖德裕老師的解惑,待我如自己實驗室的學生。感謝 Gallery of the Northern Territory, Australia, Australian Museum 出借的標本,讓我可 以觀察台灣沒有的魚種。感謝日日漁場的何老闆熱心提供樣品以及錄音時的協助, 還有好吃的魚料理!感謝中興大學昆蟲系的葉文斌老師提供實驗設備,以及該實 驗室的學長與同學使實驗生活變得有趣。感謝陳餘鋆學長不管去澎湖、綠島還是 台南,總是一通電話義不容辭答應出差,還有協助釣魚的振豪、豆腐與蘇柏維。 感謝實驗室的學長姐,淑惠學姊、秋錦學姐、小翔、室維、李宗軒在實驗與論文 上給予的幫助;佩純、小呆與 Olic 已經畢業還時常接到我的求救訊號。感謝惠敏 姐在行政上的幫助,以及海生所的夥伴使生活充滿歡笑,特別是詩嘉,再苦的差 事有你一起就變成玩樂。感謝舞蹈社與 rTr 的人們,使我的生活多采多姿。最後, 感謝我的家人,聽到出海以為我要去捕魚的父親與聽到出差以為我要去商務旅行 的母親,在擔心中還是給予支持。還有那些我愛的與愛我的人,謝謝你們。 i 鯻科(Terapontidae)發音系統之演變 研究生:薛仁鈞 指導教授:莫顯蕎 博士 國立中山大學海洋生物研究所 早期研究發現花身雞魚(Terapon jarbua)與四線雞魚(Pelates quadrilineatus) 在魚鰾前室中有一對帶狀組織之特化構造,連接魚鰾背側前端與脊椎骨,而此構 造有可能和發音機制關係緊密。然而,台灣引進養殖的鯻科之澳洲淡水種寶石鱸 (Scortum barcoo)卻缺乏此特化構造,顯示屬間在發音構造上有變異的情況發生。 此篇研究的目的為釐清鯻科發音系統,包括其聲紋訊號(i.e. Amniataba caudavittatus, Amniataba percoides, Hephaestus fuliginosus, Syncomistes butleri, Terapon jarbua and Pelete quadrilineatus)以及發音相關的構造(A. caudavittatus, A. percoides, Bidyanus bidyanus, H. fuliginosus, Hephaestus jenkinsi, Leiopotherapon macrolepis, Leioptherapon plumbeus, Leiopotherapon unicolor, Pelates octolineatus, P. quadrilineatus, Pelates sexlineatus, Pelsartia humeralis, Rhyncopelates oxyrhynchus, S. barcoo, S. butleri, and T. jarbua, Terapon theraps)的演變,並使用分子資訊(16s rRNA & COⅠ)來重建其科內的親緣關係。結果顯示:海水屬為較原始的類群, 並且具有較發達的發音構造;反之,淡水種為較進化的物種,但部分魚屬的發音 構造相對發展較為不全,甚至缺少某些特定構造,由此結果可推論發音在淡水的 鯻科魚類中是較為不重要的通訊管道。 關鍵詞:鯻科、發音系統、親緣關係、鰾、聲訊 ii Evolutionary Changes of Acoustic System of the Family Terapontidae Jen-chun Hsueh Advisor: Dr. Hin-kiu Mok Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan Earlier anatomical works showed that Terapon jabua and Pelates quadrilineatus have a specialized structure: a pair of internal tendon inside of swim bladder that may play a role in sound producing. However, Scortum, a cultured species in Taiwan, lack such structure. The aim of this study was to reveal the evolutionary change of the sound-producing system including acoustic signal and sonic structure in the family Terapontidae. Phylogenic relationship of the genus was reconstructed using molecular data. The results showed that the marine species were primitive species and most of them have well developed sonic structure. On the contrary, the freshwater species were more derived but their sonic systems are less developed or even absent. It can be generalized that vocalization may be less important to freshwater grunters. Keywords: Terapontidae, acoustic, swim bladder, phylogeny, sonic system. iii Content Introduction……………………………………………………………………………1 Material and methods………………………………………………………………….7 2.1 Study species…………………………………………………………………7 2.2 Sound recording…………………………………………………………...…7 2.2.1 Audio recording equipment…………………………………………..8 2.2.2 Acoustic analysis……………………………………………………..8 2.2.3 Statistical analyses……………………………………………………9 2.3 Morphology comparison……………………………………………………..9 2.4 Histology……………………………………………………………………10 2.4.1 Paraffin sections…………………………………………………..…10 2.4.2 Hematoxylin and eosin stain…………………………………...……11 2.4.3 Gomori's trichrome stain…………………………………...……..…12 2.4.4 Elastica van Gieson Staining…………………………………….......12 2.5 Phylogenetic analysis……………………………………………………….13 2.5.1 Taxonomic sampling……………………………………………...…14 2.5.2 DNA extraction………………………………………………………14 2.5.3 PCR condition………………………………………………………..16 Result……………………………………………………………………………....…17 3.1 Acoustic signals……………………………………………………….….…17 iv 3.1.2 Pelates quadrilineatus………………………………………………17 3.1.3 Amniataba caudavittatus……………………………………………18 3.1.4 Amniataba percoides………………………………………………..18 3.1.5 Hephaestus fuliginosus……………………………………………...20 3.1.6 Syncomistes butleri………………………………………………….20 3.1.7 Terapon jarbua………………………………………………………20 3.2 Morphology comparison……………………………………………………22 3.2.1 Morphology of acoustic system……………………………………..22 3.2.2 Relative size of sonic muscle………………………………………..23 3.3 Histology……………………………………………………………………24 3.3.1 The characters of sonic muscle fiber………………………………...24 3.3.2 Internal tissue analyze……………………………………………….24 3.4 Phylogenetic analysis…………………………………………………….…25 Discussion……………………………………………………………………………27 4.1 Acoustic signals…………………………………………………………….27 4.1.1 Frequency of sounds production…………………………………….27 4.1.2 Variation in sound characteristics………………………………...…28 4.2 Analysis of sonic structure………………………………………………….29 4.2.1 Analysis of sonic muscle fibers……………………………………..29 v 4.2.2 Internal tendon………………………………………………………30 4.3 Evolutionary changes…………………………………………………….…31 4.3.1 Phylogenetic analysis………………………………………………..31 4.3.2 Changes in sonic system…………………………………………….32 References……………………………………………………………………………34 Appendix…………………………………………………………………………..…80 vi Figures Legend Fig. 1. The sonic muscle, swim bladder and internal tissue of Terapon jabua…….....39 Fig. 2. The connection of internal tissue and the forth joint of vertebra of Terapon jarbua…………………………………………………………………………40 Fig. 3.The two-chamber swim bladder of Terapon jabua……………………………41 Fig. 4. The theree-chamber swim bladder of Pelates quadrilineatus...........................42 Fig. 5. Apparatus setup for recording the disturbance hand-held sounds in a Styrofoam box…………………………………………………………………………….43 Fig. 6. Sound parameters……………………………………………………………...44 Fig. 7. The waveform and sonogram of Pelates quadrilineatus………………………45 Fig. 8. The waveform and sonogram of Amniataba caudavittatus……………………46 Fig. 9. The waveform and sonogram of Amniataba percoides………………………..47 Fig. 10. The waveform and sonogram of Hephaestus fuliginosus…………………….48 Fig. 11. The waveform and sonogram of Syncomistes butleri…………………………49 Fig. 12. The waveform and sonogram of Terapon jarbua……………………….…....50 Fig 13. Morphology of acoustic system of Terapontidae.. …………………….……...51 Fig 14. Histology sections of sonic muscle……………………………………………68 Fig 15. The transection of sonic muscle of Bidyanus bidyanus……………………….68 Fig 16. The transection of internal tissue………………………………………………69 vii Fig 17. The Neighbor tree of 16s rRNA gene of Terapondae. ……………………...70 Fig 18. The Neighbor tree of COⅠ gene of Terapondae... …………………………71 Fig 19. The literal side and ventral side of the vertebrate of Terapon jarbua……….72 Fig. 20. The literal side and ventral side of the vertebrate of Pelates quadrilineatus.73 Fig. 21. The literal side and ventral side of the vertebrate of Scortum barcoo………74 Fig. 22. The literal side and ventral side of the vertebrate of Bidyanus bidyanus…...75 viii Table Legend Table 1. The data of sound parameters…………………………………………….…76 Table 2. The characteristics of sonic structures………………………………………77 Table 3. Comparisons of the acoustic parameters of Terapon jarbua in Australia and Taiwan and the result of the Mann-Whitney test…………………………….78 Table 4. Relative size of sonic muscle……………………………………………….79 ix Introduction Although sounds emitted from many fish groups have been well described, knowledge on the mechanisms of production and the related evolutionary change in the producing apparatus have remained incomplete. The mechanisms can be classified into four types: 1) stridulaton or rubbing of the hard parts such as teeth (Tower 1908), fin spines (Burkenroad 1931) or bones (Colson et al. 1998); 2) vibration of swim bladder- fast contraction and relaxation of the sonic muscles to resonats the swim bladder (Tower 1908); 3) air releasing from the swim bladder (Wilson et al. 2004); 4) vibration of the peritoneum or tendon (Takemura et al. 1978). Vibration of the swim bladder is the most common type in fishes. There are two types of sonic muscles, also known as drum muscles: intrinsic sonic muscle and extrinsic sonic muscle. The former is completely attached to the wall of the swim bladder. On the other hand, extrinsic sonic muscle either originates on the cranium, pectoral girdle or rib, and inserts into the swim bladder or some structure attached to the swim bladder (Demski et al. 1973; Connaughton 2004; Ramcharitara et al. 2006) or completely attached to the wall of the peritoneal cavity. In many species, sonic muscles are present only in males. On the contrary, it is generally weak or absent in female. In pearlperch of the family Glaucosomatidae, a paired anterior sonic muscles 1 originated on the base of the pterotic bones on the skull and inserted on the the antero-dorsal surface of the swim bladder at the forward edge of the fenestra, a structure seldom exists in soniferous fishes; a tendon from the 9th vertebra ends in a single smooth muscle that inserts on the tunica externa of the posterior edge of the fenestra. Therefore, the anterior sonic muscle and posterior muscle-tendon spring apparatus attached to opposite sides of the swim bladder fenestra and appear to function as antagonists for the movement of the anterior part of the swim bladder during the activity of the sonic muscles (Mok et al. 2011). A similar but specialized apparatus was also reported in Pempheridae (Jiang 2010). Study on the molecular systematics of these families indicated that Glaucosomatidae and Pempheridae are sister groups (Jiang, 2010). Additionally, we found similar structure in Terapontidae, but according to Jiang’s study, this family is not close relative to the Glaucosomatidae and Pempheridae. The common name of Terapontidae is grunter which suggests that all or most terapontid