Memoirs of the Queensland Museum

Total Page:16

File Type:pdf, Size:1020Kb

Memoirs of the Queensland Museum Memoirs OF THE Queensland Museum W Brisbane Volume 45 29 February 2000 PARTl Memoirs OF THE Queensland Museum Brisbane © Queensland Museum PO Box 3300, SouthBrisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum maybe reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site A Queensland Government Project Typeset at the Queensland Museum CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. ODONOGHUE & ROBERT D. ADLARD O'Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue ofprotozoan parasites recorded iii -1 Australia. Memoirs ofThe Oiwenslcmd Museum 45( 1 ): I 63. Brisbane. ISSN 0079-8835. Published reports ofprotozoan species from Australian animals have been compiled into a host-parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and s\ mbionls but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagcllalcs.ciliates and 'sporo/oa" (tlie latter comprising apicomplexans, microsporans, myxozoans, haplo- sporidians and paramyxeaiis). Organisms are recorded in association with some 520 hosts including eulherian mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic autliorilies, synonyms, conunon names, sites of infection \\ithin hosts and geographic locations. H Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O'Donoghue, Department ofMicrobiology ami Parasitologx', The University^ of Queensland. St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section. Queensland Museum, PO Box 3300, South Brisbane 4101, Australia: 31 Januaiy 2000. CONTENTS literature for reports rele\ant to contemporar>' studies. Such problems could be avoided if all HOST-PARASITE CHECKLIST 5 previous records were consolidated into a single Mammals 5 database. Most researchers currently avail Reptiles 21 themsehcs of various electronic database and Amphibians 26 abstracting ser\'ices but none include literature Birds 34 published eariier than 1985 and not all journal Fish 44 titles are covered in their databases. Invertebrates 54 Several catalogues of panisiles in Australian CHECKLIST .... 63 PARASITE-HOST hosts have previously been published. Mackerras Flagellates 63 (1958) published a four part catalogue recording Opalinids 73 protozoan, helminth and pentastomid parasites in Amoebae 77 monotremcs and marsupials, eutheria. introduced Apicomplexans 79 herbivora and the domestic pig. and man in Aust- ralia. Beumeretal. pubHshed a checklist Micro sporans 106 (1982) of protozoan and helminth parasites of fishes Myxozoans 108 from Australia and adjacent Antarctic territories. Haplosporidians Ill Tliese definitixe works ha\e been of inmtense Param\ xeans 112 value but the> are outdated. Many new species Ciliates 112 liave since been described, the life cycles of LITERATURE CITED 119 several heteroxenous species have been deter- APPENDIX (BiBLIOGRAPFIY). ... 120 mined and many groups (both parasite and host assemblages) have undergone taxonomic revision. Man}- s> nonymies ha\'e been proposed organisms Published records of protozoan and se\ eral problems in the identificationof hosts hosts arc scattered associated with Australian and parasites perpetuated in the early literature tluoughout the scientific literature coxering a have been resolved. wide range of disciplines and fields: including medicine, veterinarv science, zoolog) . limnolog>', Gi\cn the considerable progress made over the marine science, microbiology, entomology, bio- last few decades and the resurgence of interest in chemistr*^- haemalology, patholog}'. molecular protozoology^ in Australia, we consider h timely biology^ genetics, sy stcmatics and evolution. The to take stock of the present situation and to sum- diverse array of potential source documents marise all pre\'ious records into a single work. To presents many difficulties when searcliing tlie facilitate future studies, we ha\e compiled all MEMOIRS OF THE QUEENSLAND MUSEUM TABLE 1 . Taxonomic overview and codes used throughout the text. KINGDOM PHYLUM CLASS ORDER CODE Metazoa Chordata Mammalia MAM Reptilia REP Amphibia AMP Aves AVE Chondrichlhyes CHO Actinopterygii ACT Arthropoda ART Echinodermata ECH Annelida ANN MoUusca MOL Platyhelminthes PLA Protista Sarcomastigophora Phytomastig ophorea Dinoflagellida PHY:dm Euglenida PHY:eug Zoomastigophorea Kinetoplastida ZOO:km Proteromonadida ZOO:pro Retortamonadida ZOO:ret Diplomonadida ZOO:dip Pyrsonymphida ZOO:pyr Trichomonadida ZOO:tri Hypermastigida ZOO:hyp Opalinatea Opalinida OPA:opa Lobosea Amoebida LOB;amo Acanthopodida LOB:aca Leptomyxida LOB:lep Heterolobosea Schizopyrenida HET:sch Apicomplexa Gregarinia Neogregarinida GRE:neo Eugregarinida GRE:eug Coccidia Adeleida COC:ade Eimeriida COC:eim Haematozoa Haemosporida HEM:hae Piroplasmida HEM:pir Microspora Microsporea Microsporida MIC:mic Myxozoa Myxosporea Bivalvulida MYX:biv Multivalvulida MYX:mul Actinosporea Actinomyxida ACT:act Haplosporidia Haplosporea Haplosporida HAP:hap Paramvxea Marteilidea Marteilida MAR:mar Ciliophora Spirotrichea Clevelandellida SPIxle Litostomatea Pleurostomatida LIT:ple Vestibulifera LIT:ves Entodiniomorphida LIT:ent Phyllopharyngea Cyrtophorida PHYxyr Endogenida PHY: end Exogenida PHY:exo Oligohymenophorea Hymenostomatida OLLhym Scuticociliatida OLLscu Sessilida OLLses Mobilida OLLmob Apostomalia OLLapo Uncertain status UNC:sta PROTOZOAN PARASITE CHECKLIST published accounts of prolozoan organisms retained for historical reasons despite recent associated will) host organisms in Australia into a e\ idence that these multicellular spore-formers host-parasite checklist, a parasite-host checklist may actually be Cnidaria or Bilateria. The sys- and bibliography. The terms italicised below arc tematic positions of all protozoa recorded in the defined further in the context of this document. host-parasite checklist are indicated by abbrev- iations placed at the start of each record (see li Accounts, Tliis is Pub shed catalogue restricted Table I). to factual accounts published prior to 1999 in reference textbooks, refereed scientific journals Host Organisms. This catalogue contains records and the edited proceedings of major conferences of all protozoa associated w ith a host organism, or workshops (i.e. sources allocated an ISBN/ irrespective ofthe nature of that relationsliip. be it ISSN code and readily available in major hbraries). parasitic, symbiotic or commensal. Hosts pre- Unconfirmed anecdotal obsen'ations, tliesis reports dominantly include vertebrates (mammals, and conference abstracts ha^c not been included reptiles, ampliibia. birds and fish) as w ell as some as they are not recognised as legitimate sources miscellaneous imertebrates (mmnly molluscs, for species descriptions according to the decapods and insects). The classification systems International Code of Zoological Nomenclature follow that of Strahan (1998) for mammals. (1999). Eveiy effort has been made in this Cogger ( 1 996) for reptiles and ampliibians. Sibley catalogue to maintain accurate historical records 8i Momoe (1990. 1993) for birds. Nelson (1994) with due regard for subsequent synonyms for fish and \arious autho rs for artliropods. Eveiy (complete synonymy indicated by the abbrev- effort has been made to use contemporary but iation 'syn/ and partial synonymy indicated by generally accepted classification systems to '^'). the symbol Despite our best cITorts some simplify data retrieval. The catalogue does not published records may lia\'e been overlooked and include any records of free-living protozoa (a we would w elcomc an} additions or corrections. bibliography of free-living protozoa in Australia The catalogue database is managed electronic- lias recently been compiled by David Patterson ally and can be readily upgraded. and Alistmr Simpson at the Uni\ersil>' of Sydney, It should be noted that there remains great pers. comm.). Most records pertain to free- scope for research on protozoan parasites in Aust- ranging wild animals but w here they do not, they ralia. From a taxonomic view point, it is clear that have been annotated appropriately (e.g. zoo we ha\ e little knowledge of the true biodiversity animal, experimental infection). The site of in- of protozoan parasites of our vertebrate fauna, fection within or on the host is recorded to while that of our invertebrate hosts is largely indicate possible tissue or organ specificity as unknown (see Adlard & O'Donoghue, 1998). well as to suggest the potential pathogenic outcome or consequences of infection. Protozoan Organisms. Protozoan nomenclature follows the classification system recommended Australia. The continent of Australia and its by the Societ>' of Protozoologists Committee on adjacent w^aters have been divided into 30 distinct Nomenclature and Systematics (Levine et al.. zoogeograpliic regions on the basis of tlieir fautuj, 1980) which
Recommended publications
  • Lake Pinaroo Ramsar Site
    Ecological character description: Lake Pinaroo Ramsar site Ecological character description: Lake Pinaroo Ramsar site Disclaimer The Department of Environment and Climate Change NSW (DECC) has compiled the Ecological character description: Lake Pinaroo Ramsar site in good faith, exercising all due care and attention. DECC does not accept responsibility for any inaccurate or incomplete information supplied by third parties. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. Readers should seek appropriate advice about the suitability of the information to their needs. © State of New South Wales and Department of Environment and Climate Change DECC is pleased to allow the reproduction of material from this publication on the condition that the source, publisher and authorship are appropriately acknowledged. Published by: Department of Environment and Climate Change NSW 59–61 Goulburn Street, Sydney PO Box A290, Sydney South 1232 Phone: 131555 (NSW only – publications and information requests) (02) 9995 5000 (switchboard) Fax: (02) 9995 5999 TTY: (02) 9211 4723 Email: [email protected] Website: www.environment.nsw.gov.au DECC 2008/275 ISBN 978 1 74122 839 7 June 2008 Printed on environmentally sustainable paper Cover photos Inset upper: Lake Pinaroo in flood, 1976 (DECC) Aerial: Lake Pinaroo in flood, March 1976 (DECC) Inset lower left: Blue-billed duck (R. Kingsford) Inset lower middle: Red-necked avocet (C. Herbert) Inset lower right: Red-capped plover (C. Herbert) Summary An ecological character description has been defined as ‘the combination of the ecosystem components, processes, benefits and services that characterise a wetland at a given point in time’.
    [Show full text]
  • The Histopathology of Antique Ark's Mantle (Anadara Antiquata) Post
    The histopathology of antique ark’s mantle (Anadara antiquata) post-depuration with the shells’ filtration Nabila A. Putri, Laksmi Sulmartiwi, Kustiawan T. Pursetyo Faculty of Fisheries and Marine, Universitas Airlangga, 60115, Surabaya, Indonesia. Corresponding author: L. Sulmartiwi, [email protected] Abstract. Cockles are marine organisms which have the character of filter feeders so that heavy metals can be neutralized naturally through their shells. However, not all heavy metals can be neutralized, so depuration needs to be done. After depuration, histopathological analysis is needed to determine the condition of the soft tissue of the shells so that the disease can be diagnosed through structural changes that occur in the organs that are the main target of pollutants. This study aims to determine the histopathology of antique ark’s mantle (Anadara antiquata) after post-depuration with the filtration of the cockles’ shells. This research method applies an experimental method with scoring histological damage to antique ark’s mantle that ranges from 0 to 3, depending on the level and extent of the changes that occur. After that, the distribution of normal and non-homogeneous data was obtained, and then the Kruskal-Wallis non-parametric test was conducted. The main parameter is the histopathology of the antique ark’s mantle. Supporting parameters include water quality, namely temperature, dissolved oxygen (DO), nitrate, nitrite, ammonia, salinity, levels of heavy metals Pb and Cd, total suspended solid (TSS) and total dissolved solid (TDS). The results of the Kruskal-Wallis statistical analysis shows no significant difference between treatments P0 (Control), P1 (Filter 25%), P2 (Filter 50%), P3 (Filter 75%), and P4 (Filter 100%).
    [Show full text]
  • Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
    Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency.
    [Show full text]
  • Evidence from the Polypipapiliotrematinae N
    Accepted Manuscript Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), par- asites transmitted to butterflyfishes via predation of coral polyps Storm B. Martin, Pierre Sasal, Scott C. Cutmore, Selina Ward, Greta S. Aeby, Thomas H. Cribb PII: S0020-7519(18)30242-X DOI: https://doi.org/10.1016/j.ijpara.2018.09.003 Reference: PARA 4108 To appear in: International Journal for Parasitology Received Date: 14 May 2018 Revised Date: 5 September 2018 Accepted Date: 6 September 2018 Please cite this article as: Martin, S.B., Sasal, P., Cutmore, S.C., Ward, S., Aeby, G.S., Cribb, T.H., Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), parasites transmitted to butterflyfishes via predation of coral polyps, International Journal for Parasitology (2018), doi: https://doi.org/10.1016/j.ijpara.2018.09.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), parasites transmitted to butterflyfishes via predation of coral polyps Storm B. Martina,*, Pierre Sasalb,c, Scott C.
    [Show full text]
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects
    Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Prepared for Australian Premium Iron Management Pty Ltd FINAL REPORT 26 July 2010 Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Final Report Prepared for Australian Premium Iron Management Pty Ltd by Phoenix Environmental Sciences Pty Ltd Authors: Greg Harewood, Karen Crews Reviewer: Melanie White, Stewart Ford Date: 26 July 2010 Submitted to: Michelle Carey © Phoenix Environmental Sciences Pty Ltd 2010. The use of this report is solely for the Client for the purpose in which it was prepared. Phoenix Environmental Sciences accepts no responsibility for use beyond this purpose. All rights are reserved and no part of this publication may be reproduced or copied in any form without the written permission of Phoenix Environmental Sciences or Australian Premium Iron Management. Phoenix Environmental Sciences Pty Ltd 1/511 Wanneroo Road BALCATTA WA 6914 P: 08 9345 1608 F: 08 6313 0680 E: [email protected] Project code: 925-AP-API-FAU Phoenix Environmental Sciences Pty Ltd ii Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................v 1.0 INTRODUCTION .........................................................................................................................
    [Show full text]
  • Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp
    Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play.
    [Show full text]
  • Adec Preview Generated PDF File
    Rec. West. Aust. Mus., 1977,6 (1) FIVE PROBABLE HYBRID BUTTERFLYFISHES OF THE GENUS CHAETODON FROM THE CENTRAL AND WESTERN PACIFIC JOHN E. RANDALL* GERALD R. ALLENt and ROGERC. STEENEf [Received 19 September 1976. Accepted 5 May 1977. Published 30 December 1977.] ABSTRACT The following five cases of probable hybridisation in marine butterflyfishes (genus Chaetodon) are reported: C. auriga x C. ephippium (Tuamotu Archipelago), C. ephippium x C. semeion (Marshall Islands), C. kleini x C. unimaculatus (Marshall Islands), C. miliaris x C. tinkeri (Hawaiian Islands), and C. aureofasciatus x C. rainfordi (Great Barrier Reef). Comparisons between the presumed hybrids and their respective parent species are presented, and each trio is illustrated. In addition, a discussion of possible conditions responsible for hybridisation in chaetodontids is included. INTRODUCTION Relatively few marine fishes have been reported as hybrids; of 212 fish hybrids listed by Slastenenko (1957), only 30 were inhabitants of the sea. The same preponderance of freshwater hybrids over marine is apparent in the review by Schwartz (1972) of the hybrid fishes of the world. In the present paper data are given for five presumed hybrids of the marine butterflyfish genus Chaetodon (family Chaetodontidae). In addition, the junior authors have observed (but not collected) probable hybrid crosses between C. ornatissimus - C. meyeri and C. pelewensis - C. punctatofasciatus at Palau, New Britain, and the northern Great Barrier Reef. *Bernice P. Bishop Museum, P.O. Box 6037, Honolulu, Hawaii 96818, D.S.A. tWestern Australian Museum, Francis Street, Perth, Australia 6000. fp.o. Box 188, Cairns, Queensland, Australia 4870. 3 Chaetodontids have not been reported previou~ly as hybrids, although this phenomenon has been documented in the closely related angelfishes (Pomacanthidae).
    [Show full text]
  • Amphibian Diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa
    Amphibian diversity and Community-Based Ecotourism in Ndumo Game Reserve, South Africa FM Phaka orcid.org/0000-0003-1833-3156 Previous qualification (not compuLsory) Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Science at the North-West University Supervisor: Prof LH du Preez Co-supervisor: Dr DJD Kruger Assistant Supervisor: Mr EC Netherlands Graduation May 2018 25985469 Declaration I, Fortunate Mafeta Phaka, declare that this work is my own, that all sources used or quoted have been indicated and acknowledged by means of complete references, and that this thesis was not previously submitted by me or any other person for degree purposes at this or any other university. Signature Date 18/11/2017 i i AcknowLedgements A great debt of gratitude is owed to my study supervisor L.H. Du Preez, co-supervisor D.J.D. Kruger, and assistant supervisor E.N. Netherlands for guidance and encouragement to focus on my strengths. To my mentors, D. Kotze and L. De Jager, and the Phaka clan, your faith in me has kept me going through all these years. Thank you to African Amphibian Conservation Research Group and Youth 4 African Wildlife for accepting me as part of your family. Members of the Zululand community are thanked for their enthusiasm and assistance towards this study. Fieldwork and running expenses for this research were funded by the South African National Biodiversity Institute’s (SANBI) Foundational Biodiversity Information Programme (Grant UID 98144). Financial assistance for studying towards this degree was provided by SANBI’s Foundational Biodiversity Information Programme (National Research Foundation Grant- Holder Linked Bursary for Grant UID 98144), and the North-West University (NWU Masters Progress Bursary, and NWU Masters Bursary).
    [Show full text]
  • Species Management Program for LNG Facility Construction Phase
    Species Management Program for LNG Facility Construction Phase September 2010 Uncontrolled when printed QUEENSLAND CURTIS LNG PROJECT Species Management Program for LNG Facility Construction Activities September 2010 Table of Contents 1.0 INTRODUCTION 4 2.0 TERMS 4 2.1 Term of Approval 4 2.2 Approved Parties 4 3.0 SCOPE 5 3.1 Applicant 5 3.2 Organisational Summary 5 3.2.1 QCLNG Project 5 3.2.2 Environmental Impact Statement 6 3.3 Activity 7 3.3.1 Site Description 7 3.3.2 Clearing Activity 7 3.4 Legislative Framework 8 3.4.1 Vegetation Clearing 8 3.4.2 Fauna Handling and Removal of or Tampering With Animal Breeding Places 9 3.5 Relevant Conditions 10 3.5.1 Coordinator General Condition 9 – Nature Conservation Act 10 3.5.2 Environmental Authority Conditions 11 3.6 Applicable Species 11 4.0 IMPACTS 12 4.1 Impacts on Wildlife and Habitat 12 4.2 Impacts on Animal Breeding Places 12 4.2.1 Reptile and Amphibian Species 12 4.2.2 Mammal Species 13 4.2.3 Bird Species 14 4.3 Assessment and Research 22 4.3.1 Desktop Studies 22 4.3.2 Field Surveys – Draft EIS 23 4.3.3 Field Surveys – Supplementary EIS 23 5.0 MANAGEMENT OF IMPACTS 24 5.1 Environmental Management Plan 24 5.2 Environmental Control Measures 24 5.2.1 Handling of a Protected Species under the Nature Conservation Act 1992 25 5.2.2 Tampering with the Breeding Place of a Protected Animal Species 25 5.3 Management of Unavoidable Impacts 27 5.3.1 Offset Strategy 28 5.4 Summary of Compliance with Relevant Coordinator General and Environmental Authority Conditions 30 5.5 Responsibilities 32 5.6
    [Show full text]
  • Energetic Costs of Chronic Fish Predation on Reef-Building Corals
    ResearchOnline@JCU This file is part of the following reference: Cole, Andrew (2011) Energetic costs of chronic fish predation on reef-building corals. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/37611/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/37611/ The energetic costs of chronic fish predation on reef-building corals Thesis submitted by Andrew Cole BSc (Hons) September 2011 For the degree of Doctor of Philosophy in Marine Biology ARC Centre of Excellence for Coral Reef Studies and the School of Marine and Tropical Biology James Cook University Townsville, Queensland, Australia Statement of Access I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and via the Australian Digital Thesis Network for use elsewhere. I understand that as an unpublished work this thesis has significant protection under the Copyright Act and I do not wish to put any further restrictions upon access to this thesis. 09/09/2011 (signature) (Date) ii Statement of Sources Declaration I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at my university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.
    [Show full text]
  • Ponderous Ark Aquaculture in Florida
    The Potential of Blood Ark and Ponderous Ark Aquaculture in Florida Results of Spawning, Larval Rearing, Nursery and Growout Trials Leslie N. Sturmer, Jose M. Nuñez, R. LeRoy Creswell, and Shirley M. Baker TP-169 SEPTEMBER 2009 Cover illustration: Ann Meyers This research was supported by the Cooperative State Research, Education, and Extension Service of the U.S. Department of Agriculture (USDA) under USDA Special Research Grant No. 2002-3445-11946; and by the National Sea Grant College Program of the U.S. Department of Commerce’s National Oceanic and Atmosphere Administration (NOAA) under NOAA Grant No. NA06 OAR-4170014. The views expressed are those of the authors and do not necessarily reflect the views of these organizations. Additional copies are available by contacting: Shellfish Aquaculture Extension Program Florida Sea Grant University of Florida University of Florida PO Box 89 PO Box 110409 Cedar Key, FL 32625-0089 Gainesville, FL 32622-0409 (352)543-5057 (352) 392-2801 www.flseagrant.org TP 169 September 2009 The Potential of Blood Ark (Anadara ovalis) and Ponderous Ark (Noetia ponderosa) Aquaculture in Florida Results of Spawning, Larval Rearing, Nursery, and Growout Trials Leslie N. Sturmer Shellfish Aquaculture Extension Program Cooperative Extension Service Institute of Food and Agricultural Sciences University of Florida Cedar Key Jose M. Nuñez The Whitney Laboratory for Marine Bioscience University of Florida St. Augustine R. LeRoy Creswell Florida Sea Grant College Program Institute of Food and Agricultural Sciences University of Florida Fort Pierce Shirley M. Baker Fisheries and Aquatic Sciences Program School of Forest Resources and Conservation Institute of Food and Agricultural Sciences University of Florida Gainesville September 2009 TP 169 ii Preface In November 1999, a workshop on New Molluscs for Aquaculture was conducted by the University of Florida Cooperative Extension Service, Florida Sea Grant, and the Florida Department of Agriculture and Consumer Services.
    [Show full text]