Evidence from the Polypipapiliotrematinae N

Total Page:16

File Type:pdf, Size:1020Kb

Evidence from the Polypipapiliotrematinae N Accepted Manuscript Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), par- asites transmitted to butterflyfishes via predation of coral polyps Storm B. Martin, Pierre Sasal, Scott C. Cutmore, Selina Ward, Greta S. Aeby, Thomas H. Cribb PII: S0020-7519(18)30242-X DOI: https://doi.org/10.1016/j.ijpara.2018.09.003 Reference: PARA 4108 To appear in: International Journal for Parasitology Received Date: 14 May 2018 Revised Date: 5 September 2018 Accepted Date: 6 September 2018 Please cite this article as: Martin, S.B., Sasal, P., Cutmore, S.C., Ward, S., Aeby, G.S., Cribb, T.H., Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), parasites transmitted to butterflyfishes via predation of coral polyps, International Journal for Parasitology (2018), doi: https://doi.org/10.1016/j.ijpara.2018.09.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Intermediate host switches drive diversification among the largest trematode family: evidence from the Polypipapiliotrematinae n. subf. (Opecoelidae), parasites transmitted to butterflyfishes via predation of coral polyps Storm B. Martina,*, Pierre Sasalb,c, Scott C. Cutmorea, Selina Warda, Greta S. Aebyd, Thomas H. Cribba aSchool of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia bPSL Research University, USR 3278 EPHE-UPVD-CNRS, Centre de Recherche Insulaire et Observatoire de l’Environnement (CRIOBE) Université de Perpignan Via Domitia, 58 avenue P. Alduy, 66860 Perpignan. France cLaboratoire d’excellence Corail, EPHE, Moorea, French Polynesia dHawai‘i Institute of Marine Biology, Kāne‘ohe, Hawai‘i, United States of America *Corresponding author. E-mail address: [email protected] 1 Abstract Podocotyloides stenometra Pritchard, 1966 (Digenea: Opecoelidae) is the only trematode known to infect anthozoan corals. It causes disease in coral polyps of the genus Porites Link (Scleractinia: Poritidae) and its life-cycle depends on ingestion of these polyps by butterflyfishes (Perciformes: Chaetodontidae). This species has been reported throughout the Indo-Pacific, from the Seychelles to the Galápagos, but no study has investigated whether multiple species are involved. Here, we recollect P. stenometra from its type-host and type-locality, in Hawaiian waters, and describe four new species from examination of 768 butterflyfishes from French Polynesia. On the basis of morphology, phylogeny and life-history, we propose Polypipapiliotrema Martin, Cutmore & Cribb n. gen. and the Polypipapiliotrematinae Martin, Cutmore & Cribb n. subf., for P. stenometra (Pritchard) n. comb., P. citerovarium Martin, Cutmore & Cribb n. sp., P. hadrometra Martin, Cutmore & Cribb n. sp., P. heniochi Martin, Cutmore & Cribb n. sp., and P. ovatheculum Martin, Cutmore & Cribb n. sp. Given the diversity uncovered here and the ubiquity, abundance and diversity of butterflyfishes on coral reefs, we predict that Polypipapiliotrema will prove to comprise a rich complex of species causing disease in corals across the Indo-Pacific. The unique life-cycle of these taxa is consistent with phylogenetic distinction of the group and provides evidence for a broader basis of diversification among the family. We argue that life-cycle specialisation, in terms of adoption of disparate second intermediate host groups, has been a key driver of the diversification and richness of the Opecoelidae, the largest of all trematode families and the group most frequently encountered in coral reef fishes. Keywords: Chaetodontidae, Corallivory, Host specificity, New species, Opecoelidae, Trematodiasis, Taxonomy, Phylogeny 2 1. Introduction Among the Trematoda, Podocotyloides stenometra Pritchard, 1966 (Opecoelidae Ozaki, 1925) is noteworthy as the only species demonstrated to cause disease in anthozoan corals (Aeby, 1998). Opecoelids have complex life-cycles involving three hosts and reach the definitive host, fishes, through trophic transmission. Other opecoelids are known to exploit bivalves, crustaceans, echinoids, gastropods, insects, annelids, or small fishes as second intermediate hosts (Cribb, 2005). Cercariae of P. stenometra penetrate and encyst within coral polyp tissues, apparently only in species of Porites Link (Scleractinia: Poritidae), causing abnormal pink pigmentation and swelling such that the polyp may be unable to retract into its calyx (Cheng and Wong, 1974; Aeby, 1998). This pathology renders polyps both more conspicuous and vulnerable to predators and thus corallivorous butterflyfishes (Chaetodontidae), the definitive hosts of P. stenometra, preferentially eat infected polyps (Aeby, 2002), perpetuating the life-cycle. Considering its potential significance as a pathogen of reef-building corals, P. stenometra is surprisingly poorly known. It has been reported from butterflyfishes in Hawaiian (Pritchard, 1966), French Polynesian (Martin et al., 2018c), Seychelloise (Toman, 1992) and Great Barrier Reef (Bray and Cribb, 1989; Lucas et al., 2005) waters. Additionally, cases of suspected Porites trematodiasis have been reported from Hawai‘i (Aeby, 2006, 2007), French Polynesia (M. Rigby in Aeby, 2007), the Great Barrier Reef (Willis et al., 2001), Guam and Papua New Guinea (Aeby, 2007), the Ryuku Islands (Yamashiro, 2004), the Galapágos Archipelago (Vera and Banks, 2009) and the New Caledonian lagoon (Aeby et al., 2015). Presently, these reports are all attributed to a single species. Work et al. (2014) and Aeby et al. (2015) did note differences between infections in Hawaiian versus New Caledonian corals, but the possibility that multiple species are involved remains unexplored. The taxonomic position of P. stenometra itself also requires re-evaluation. Pritchard (1966) placed P. stenometra in Podocotyloides Yamaguti, 1934 based on general morphological similarity to the type-species, P. petalophallus Yamaguti, 1934; both are elongate with a pedunculate ventral 3 sucker, an entire ovary and vitelline follicles restricted to the hindbody. However, its inclusion in the genus is unsatisfactory. The type species and other convincing congeners are known mainly from haemulids (Perciformes), generalist benthic carnivores which do not feed on coral polyps. In contrast to those species, P. stenometra lacks a uterine sphincter, a petalloid cirrus and a canalicular seminal receptacle, the latter a defining characteristic of not just Podocotyloides but also its nominal subfamily, the Plagioporinae Manter, 1947. Recent analyses of rDNA sequence data demonstrated that P. stenometra is distantly related to species of Podocotyloides (sensu stricto) and indeed is phylogenetically distinctive among all sequenced representatives of the Opecoelidae (Martin et al., 2018c). Those analyses suggested P. stenometra requires a new genus, but were based on sequence data generated from infections in Heniochus chrysostomus Cuvier (Perciformes: Chaetodonidae) collected off Moorea, French Polynesia (Martin et al., 2018c), whereas the type combination for P. stenometra is Chaetodon quadrimaculatus Gray (Chaetodontidae) from Hawaiian waters (Pritchard, 1966). In this study we recollect and provide sequence data for P. stenometra from its type combination and prospect for unrecognised diversity among butterflyfishes from French Polynesian waters. Specifically, we assess the evidence for the occurrence of P. stenometra (sensu stricto) outside of Hawaiian waters and discuss the significance of the adoption of coral hosts apparent in the life-cycle of this trematode from an evolutionary context. 2. Materials and methods 2.1. Specimen collection Butterflyfishes were collected from Hawaiian and French Polynesian waters. In Hawai‘i, fishes were purchased from a professional collector operating from off Hale‘iwa, Waialua, O‘ahu in June, 2016. Fishes from French Polynesian waters were collected mostly by microspear on snorkel or rotenone, across several expeditions to multiple localities (Fig. 1): from off Moorea, Society 4 Islands in November-December, 1999, November, 2009, November, 2012 and April, 2017; from off the Mangareva island group in the Gambier Islands in October, 2010; from off Eiao, Fatu Hiva, Fatu Huku, Hiva Oa, Motu One, Nuku Hiva, Tahuata and Ua Pao, Marquesas Islands in October- November, 2011; from off Maria, Raivavae, Rimatara, Rurutu and Tubuai, Austral Islands in April, 2013; and from off Fakarava and Toau in November-December, 2012 and off Rangiroa in April, 2017, Tuamotu Archipelago. Fishes were dissected fresh and intestinal parasites were collected as per Cribb and Bray (2010). Trematodes were fixed, without pressure, in near-boiling saline and preserved in 80% ethanol. 2.2. Morphological study Specimens were stained and mounted as per Martin et al. (2017). Measurement data were taken from lateral mounts, using the software package cellSens Standard v1.13 via live feed from an Olympus SC50 camera mounted onto an Olympus BX53 compound microscope. Measurements are in micrometres, expressed as length
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Metagenomic Analysis Indicates That Stressors Induce Production of Herpes-Like Viruses in the Coral Porites Compressa
    Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa Rebecca L. Vega Thurbera,b,1, Katie L. Barotta, Dana Halla, Hong Liua, Beltran Rodriguez-Muellera, Christelle Desnuesa,c, Robert A. Edwardsa,d,e,f, Matthew Haynesa, Florent E. Anglya, Linda Wegleya, and Forest L. Rohwera,e aDepartment of Biology, dComputational Sciences Research Center, and eCenter for Microbial Sciences, San Diego State University, San Diego, CA 92182; bDepartment of Biological Sciences, Florida International University, 3000 North East 151st, North Miami, FL 33181; cUnite´des Rickettsies, Unite Mixte de Recherche, Centre National de la Recherche Scientifique 6020. Faculte´deMe´ decine de la Timone, 13385 Marseille, France; and fMathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 Communicated by Baruch S. Blumberg, Fox Chase Cancer Center, Philadelphia, PA, September 11, 2008 (received for review April 25, 2008) During the last several decades corals have been in decline and at least established, an increase in viral particles within dinoflagellates has one-third of all coral species are now threatened with extinction. been hypothesized to be responsible for symbiont loss during Coral disease has been a major contributor to this threat, but little is bleaching (25–27). VLPs also have been identified visually on known about the responsible pathogens. To date most research has several species of scleractinian corals, specifically: Acropora muri- focused on bacterial and fungal diseases; however, viruses may also cata, Porites lobata, Porites lutea, and Porites australiensis (28). Based be important for coral health. Using a combination of empirical viral on morphological characteristics, these VLPs belong to several viral metagenomics and real-time PCR, we show that Porites compressa families including: tailed phages, large filamentous, and small corals contain a suite of eukaryotic viruses, many related to the (30–80 nm) to large (Ͼ100 nm) polyhedral viruses (29).
    [Show full text]
  • Supplementary Material
    Supplementary Material SM1. Post-Processing of Images for Automated Classification Imagery was collected without artificial light and using a fisheye lens to maximise light capture, therefore each image needed to be processed prior annotation in order to balance colour and to minimise the non-linear distortion introduced by the fisheye lens (Figure S1). Initially, colour balance and lenses distortion correction were manually applied on the raw images using Photoshop (Adobe Systems, California, USA). However, in order to optimize the manual post-processing time of thousands of images, more recent images from the Indian Ocean and Pacific Ocean were post- processed using compressed images (jpeg format) and an automatic batch processing in Photoshop and ImageMagick, the latter an open-source software for image processing (www.imagemagick.org). In view of this, the performance of the automated image annotation on images without colour balance was contrasted against images colour balanced using manual post-processing (on raw images) and the automatic batch processing (on jpeg images). For this evaluation, the error metric described in the main text (Materials and Methods) was applied to the images from following regions: the Maldives and the Great Barrier Reef (Figures S2 and S3). We found that the colour balance applied regardless the type of processing (manual vs automatic) had an important beneficial effect on the performance of the automated image annotation as errors were reduced for critical labels in both regions (e.g., Algae labels; Figures S2 and S3). Importantly, no major differences in the performance of the automated annotations were observed between manual and automated adjustments for colour balance.
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • The Molecular Phylogeny of the Digenean Family Opecoelidae Ozaki, 1925 and the Value of Morphological Characters, with the Erection of a New Subfamily
    © Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2016, 63: 013 doi: 10.14411/fp.2016.013 http://folia.paru.cas.cz Research Article The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily Rodney A. Bray1, Thomas H. Cribb2, D. Timothy J. Littlewood1 and Andrea Waeschenbach1 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London, UK; 2 School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia Abstract: Large and small rDNA sequences of 41 species of the family Opecoelidae are utilised to produce phylogenetic inference trees, using brachycladioids and lepocreadioids as outgroups. Sequences were newly generated for 13 species. The resulting Bayesian trees show a monophyletic Opecoelidae. The earliest divergent group is the Stenakrinae, based on two species which are not of the type-genus. The next well-supported clade to diverge is constituted of three species of Helicometra Odhner, 1902. Based on this tree and the characters of the egg and uterus, a new subfamily, the Helicometrinae, is erected and defined to include the generaHelicometra , Helicometrina Linton, 1910 and Neohelicometra Siddiqi et Cable, 1960. The subfamily Opecoelinae is found to be monophyletic, but the Plagioporinae is paraphyletic. The single representative of the Opecoelininae (not of the type genus) is nested within a group of deep-sea ‘plagioporines’. The two representatives of the Opistholebetidae are embedded within a group of shallow-water ‘plagioporine’ species. The Opistholebetidae is reduced to subfamily status pro tem as its morphological and biological characteristics are distinctive.
    [Show full text]
  • Adec Preview Generated PDF File
    Rec. West. Aust. Mus., 1977,6 (1) FIVE PROBABLE HYBRID BUTTERFLYFISHES OF THE GENUS CHAETODON FROM THE CENTRAL AND WESTERN PACIFIC JOHN E. RANDALL* GERALD R. ALLENt and ROGERC. STEENEf [Received 19 September 1976. Accepted 5 May 1977. Published 30 December 1977.] ABSTRACT The following five cases of probable hybridisation in marine butterflyfishes (genus Chaetodon) are reported: C. auriga x C. ephippium (Tuamotu Archipelago), C. ephippium x C. semeion (Marshall Islands), C. kleini x C. unimaculatus (Marshall Islands), C. miliaris x C. tinkeri (Hawaiian Islands), and C. aureofasciatus x C. rainfordi (Great Barrier Reef). Comparisons between the presumed hybrids and their respective parent species are presented, and each trio is illustrated. In addition, a discussion of possible conditions responsible for hybridisation in chaetodontids is included. INTRODUCTION Relatively few marine fishes have been reported as hybrids; of 212 fish hybrids listed by Slastenenko (1957), only 30 were inhabitants of the sea. The same preponderance of freshwater hybrids over marine is apparent in the review by Schwartz (1972) of the hybrid fishes of the world. In the present paper data are given for five presumed hybrids of the marine butterflyfish genus Chaetodon (family Chaetodontidae). In addition, the junior authors have observed (but not collected) probable hybrid crosses between C. ornatissimus - C. meyeri and C. pelewensis - C. punctatofasciatus at Palau, New Britain, and the northern Great Barrier Reef. *Bernice P. Bishop Museum, P.O. Box 6037, Honolulu, Hawaii 96818, D.S.A. tWestern Australian Museum, Francis Street, Perth, Australia 6000. fp.o. Box 188, Cairns, Queensland, Australia 4870. 3 Chaetodontids have not been reported previou~ly as hybrids, although this phenomenon has been documented in the closely related angelfishes (Pomacanthidae).
    [Show full text]
  • Draft Genome of an Iconic Red Sea Reef Fish, the Blacktail Butterflyfish
    This is the peer reviewed version of the following article: Di Battista, J. and Wang, X. and Saenz-Agudelo, P. and Piatek, M. and Aranda, M. and Berumen, M. 2016. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): Current status and its characteristics. Molecular Ecology Resources, which has been published in final form at http://doi.org/10.1111/1755-0998.12588. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving at http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms Received Date : 22-Nov-2015 Revised Date : 05-Jul-2016 Accepted Date : 19-Jul-2016 Article type : From the Cover Molecular Ecology Resources 'From the Cover' submission Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics Running title: Draft genome of the blacktail butterflyfish Article Joseph D. DiBattista1,2*, Xin Wang1, Pablo Saenz-Agudelo1,3, Marek J. Piatek4, Manuel 1 1 Aranda , and Michael L Berumen 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia, 2Department of Environment and Agriculture, Curtin University, PO Box U1987, Perth, WA 6845, Australia, 3Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia 5090000, Chile, 4Computational Bioscience Research Center, King Abdullah University of Science and Technology,
    [Show full text]
  • A Multifunction Trade-Off Has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A
    Syst. Biol. 0():1–13, 2020 © The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syaa091 Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syaa091/6040745 by University of California, Davis user on 08 January 2021 A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A. CORN ,CHRISTOPHER M. MARTINEZ,EDWARD D. BURRESS, AND PETER C. WAINWRIGHT Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA ∗ Correspondence to be sent to: University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA 95618, USA; E-mail: [email protected] Received 27 August 2020; reviews returned 14 November 2020; accepted 19 November 2020 Associate Editor: Benoit Dayrat Abstract.—Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance.
    [Show full text]
  • Synopsis of the Parasites of Fishes of Canada
    1 ci Bulletin of the Fisheries Research Board of Canada DFO - Library / MPO - Bibliothèque 12039476 Synopsis of the Parasites of Fishes of Canada BULLETIN 199 Ottawa 1979 '.^Y. Government of Canada Gouvernement du Canada * F sher es and Oceans Pëches et Océans Synopsis of thc Parasites orr Fishes of Canade Bulletins are designed to interpret current knowledge in scientific fields per- tinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin. The Journal of the Fisheries Research Board of Canada is published in annual volumes of monthly issues and Miscellaneous Special Publications are issued periodically. These series are available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K I A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. Editor and Director J. C. STEVENSON, PH.D. of Scientific Information Deputy Editor J. WATSON, PH.D. D. G. Co«, PH.D. Assistant Editors LORRAINE C. SMITH, PH.D. J. CAMP G. J. NEVILLE Production-Documentation MONA SMITH MICKEY LEWIS Department of Fisheries and Oceans Scientific Information and Publications Branch Ottawa, Canada K1A 0E6 BULLETIN 199 Synopsis of the Parasites of Fishes of Canada L. Margolis • J. R. Arthur Department of Fisheries and Oceans Resource Services Branch Pacific Biological Station Nanaimo, B.C. V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1979 0Minister of Supply and Services Canada 1979 Available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que.
    [Show full text]
  • Proceedings of the Helminthological Society of Washington 52(1) 1985
    Volumes? V f January 1985 Number 1 PROCEEDINGS ;• r ' •'• .\f The Helminthological Society --. ':''.,. --'. .x; .-- , •'','.• ••• •, ^ ' s\ * - .^ :~ s--\: •' } • ,' '•• ;UIoftI I ? V A semiannual journal of. research devoted to He/m/nfho/ogy and jail branches of Parasifo/ogy -- \_i - Suppprted in part by the vr / .'" BraytpnH. Ransom Memorial Trust Fund . - BROOKS, DANIEL R.,-RIGHARD T.O'GnADY, AND DAVID R. GLEN. The Phylogeny of < the Cercomeria Brooks, 1982 (Platyhelminthes) .:.........'.....^..i.....l. /..pi._.,.,.....:l^.r._l..^' IXDTZ,' JEFFREY M.,,AND JAMES R. .PALMIERI. Lecithodendriidae (Trematoda) from TaphozQUS melanopogon (Chiroptera) in Perlis, Malaysia , : .........i , LEMLY, A. DENNIS, AND GERALD W. ESCH. Black-spot Caused by Uvuliferambloplitis (Tfemato^a) Among JuVenileoCentrarchids.in the Piedmont Area of North S 'Carolina ....:..^...: „.. ......„..! ...; ,.........„...,......;. ;„... ._.^.... r EATON, ANNE PAULA, AND WJLLIAM F. FONT. Comparative "Seasonal Dynamics of ,'Alloglossidium macrdbdellensis (Digenea: Macroderoididae) in Wisconsin and HUEY/RICHARD. Proterogynotaenia texanum'sp. h. (Cestoidea: Progynotaeniidae) 7' from the Black-bellied Plover, Pluvialis squatarola ..;.. ...:....^..:..... £_ .HILDRETH, MICHAEL^ B.; AND RICHARD ;D. LUMSDEN. -Description of Otobothrium '-•I j«,tt£7z<? Plerocercus (Cestoda: Trypanorhyncha) and Its Incidence in Catfish from the Gulf Coast of Louisiana r A...:™.:.. J ......:.^., „..,..., ; , ; ...L....1 FRITZ, GA.RY N. A Consideration^of Alternative Intermediate Hosts for Mohiezia
    [Show full text]
  • Inventory of Marine Vertebrate Species and Fish-Habitat Utilization Patterns in Coastal Waters Off Four National Parks in Hawai‘I
    PACIFIC COOPERATIVE STUDIES UNIT UNIVERSITY OF HAWAI`I AT MĀNOA Dr. David C. Duffy, Unit Leader Department of Botany 3190 Maile Way, St. John #408 Honolulu, Hawai’i 96822 Technical Report 168 Inventory of marine vertebrate species and fish-habitat utilization patterns in coastal waters off four national parks in Hawai‘i February 2010 Jim Beets, Ph.D.1, Eric Brown, Ph.D.2, and Alan Friedlander, Ph.D.3 1University of Hawaii at Hilo, 200 W. Kawili St., Hilo, Hawai‘i 96720 2Kalaupapa National Historical Park, P.O. Box 2222, Kalaupapa, HI 96742 3NOAA/NOS/NCCOS/CCMA/Biogeography Team, Makapu‘u Point, Waimānalo, Hawai‘i 96795 PCSU is a cooperative program between the University of Hawai`i and U.S. National Park Service, Cooperative Ecological Studies Unit. Organization Contact Information: National Park Service, Inventory and Monitoring Program, Pacific Island Network, P.O. Box 52, Hawai‘i National Park, HI 96718, phone: 808-985-6180, fax: 808-985-6111 http://science.nature.nps.gov/im/units/pacn/ Recommended Citation: Beets, J., E. Brown, and A. Friedlander. 2010. Inventory of marine vertebrate species and fish-habitat utilization patterns in coastal waters off four national parks in Hawai‘i. Pacific Cooperative Studies Unit Technical Report 168. University of Hawai‘i at Mānoa, Department of Botany. Honolulu, HI. 55 pg. Key words: Inventory, marine vertebrates, marine fishes, marine mammals, marine turtles Place key words: Hawai‘i, Pacific Island Network, Molokai, island of Hawai‘i, Kaloko-Honokōhau National Historical Park, Kalaupapa National
    [Show full text]