Sequenciamento Completo E Caracterização Genética Dos Vírus MIS 0397 E INHRR 17A-10 (Bunyaviridae, Orthobunyavirus) Isolados No Peru E Na Venezuela

Total Page:16

File Type:pdf, Size:1020Kb

Sequenciamento Completo E Caracterização Genética Dos Vírus MIS 0397 E INHRR 17A-10 (Bunyaviridae, Orthobunyavirus) Isolados No Peru E Na Venezuela Programa de Pós-Graduação em Virologia Curso de Mestrado ANDERSON FRANCO DA CRUZ LIMA Sequenciamento completo e caracterização genética dos vírus MIS 0397 e INHRR 17a-10 (Bunyaviridae, Orthobunyavirus) isolados no Peru e na Venezuela Ananindeua 2015 ANDERSON FRANCO DA CRUZ LIMA Sequenciamento completo e caracterização genética dos vírus MIS 0397 e INHRR 17a-10 (Bunyaviridae, Orthobunyavirus) isolados no Peru e na Venezuela Dissertação apresentada para obtenção do grau de Mestre em Virologia, do Curso de Mestrado do Programa de Pós-Graduação em Virologia do Instituto Evandro Chagas. Orientador: Dr. Marcio Roberto Teixeira Nunes Co-Orientador: Dr. João Lídio da Silva Gonçalves Vianez Jr. Ananindeua 2015 ANDERSON FRANCO DA CRUZ LIMA Sequenciamento completo e caracterização genética dos vírus MIS 0397 e INHRR 17a-10 (Bunyaviridae, Orthobunyavirus) isolados no Peru e na Venezuela Dissertação apresentada para obtenção do grau de Mestre em Virologia, do Curso de Mestrado do Programa de Pós-Graduação em Virologia do Instituto Evandro Chagas. Orientador: Dr. Marcio Roberto Teixeira Nunes Co-Orientador: Dr. João Lídio da Silva Gonçalves Vianez Jr. Aprovado em: BANCA EXAMIDORA Titulares: Prof. Dr. Sandro Ptroca da Silva Centro de Inovações Tecnológicas/Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas Profa. Dra. Daniele Barbosa de Almeida Medeiros Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas Prof. Dr. Evonnildo Costa Gonçalves Departamento de Genética, Universidade Federal do Pará A Deus, meu filho Tiago, minha esposa Alana, pelo apoio incondicional, sem o qual não seria possível realizar esta dissertação. AGRADECIMENTOS - A Deus por todos os aprendizados que tem me proporcionado, por ter sido meu porto seguro em todos os momentos da minha vida; - Aos meus pais, João e Glaci, pelo amor a mim dedicado e por procurarem me proporcionar sempre a melhor educação; - Ao meu irmão Adriano sua amizade e companheirismo; - À minha esposa Alana pelo incansável apoio nos momentos em que precisei; - Ao meu filho Tiago, por entender e me apoiar sempre neste projeto; - À Marinha do Brasil, na pessoa dos Diretores do Hospital Naval de Belém, neste período, Dr. Ruf (2012) e Dr. Piqueira (2014), pelo encorajamento em iniciar e concluir este Mestrado. - À coordenação e aos professores do Programa de Pós Graduação em Virologia /IEC pelo apoio e pelos ensinamentos; - Ao Instituto Evandro Chagas na pessoa do Diretor, Dr. Pedro Fernando da Costa Vasconcelos, pela contribuição na minha formação acadêmica; - Ao Dr. Robert B. Tesh (Departamento de Patologia, Universidade do Texas, Galveston, EUA) e Dr. Juan Carlos Navarro (Centro Internacional de Zoonosis, Universidad Central del Ecuador, Quito) por cederem os RNAs referentes as amostras virais utilizadas no estudo - Ao Dr. Márcio Nunes pela orientação nesta Dissertação de Mestrado, pelo incentivo e por acreditar em meu potencial; por ter me acolhido e me conduzido nos princípios da genética descritiva e da bioinformática; - Ao Dr. João Vianez, pela co-orientação nesta Dissertação de Mestrado, - Aos Amigos do CIT: Clayton, Sandro e Jedson pelo grande apoio nas etapas da bioinformática; - Aos amigos da Seção de Arbovirologia e Febres Hemorrágicas do Instituto Evandro Chagas, que contribuíram direta e indiretamente para a execução desta dissertação; - Aos amigos, Aristides, Jairo, Luiz Felipe, Rodrigo e Thadeu, pela parceria nos momentos difíceis, e pela honra de tê-los como amigos. - A todos os Cavalos-Babuínos! “Não é o mais forte que sobrevive, nem o mais inteligente, mas o que melhor se adapta às mudanças” ― Charles Darwin RESUMO Os vírus pertencentes ao gênero Orthobunyavirus, família Bunyaviridae, são agentes virais morfologicamente caracterizados por possuírem partículas esféricas com tamanho entre 80 e 120 nm de diâmetro, envelopadas e por conterem um genoma de RNA trissegmentado, fita simples, polaridade negativa que, em geral codifica seis proteínas, sendo três proteínas estruturais (N, Gn, Gc) e três proteínas não estruturais (NSs, NSm, RpRd). Este estudo teve como objetivo realizar a obtenção do genoma completo de cepas virais isoladas no Peru e Venezuela, os vírus MIS 0397 (TVP 19261) e INHRR 17a-10 (TVP 19255), bem como caracterizar geneticamente os segmentos de RNA (S, M e LRNA), realizar a reconstrução filogenética dos segmentos genômicos e avaliar a possibilidade de rearranjo genético em natureza, para estes vírus. As amostras virais foram isoladas de um caso febril humano ocorrido em um residente de Lima, Peru, e de um primata não humano (Cebus sp) utilizado como sentinela no município de Azoategui, Venezuela, respectivamente. As amostras virais foram submetidas a três etapas, i) extração do ácido nucleico (RNA); ii) obtenção das sequências nucleotídicas por pirosequenciamento e iii) análise computacional. As sequências completas evidenciaram tamanhos, organização genômica e características genéticas (número de resíduos de cisteínas, sítios de glicosilação, motivos conservados, sítios de clivagem, conteúdo A-U e complementariedade entre as regiões 3’-5’ não codificantes) compatíveis com o observado para os membros do gênero Orthobunyavirus. As análises de similaridade e filogenia evidenciaram que os vírus MIS 0397 (TVP 19261) e INHRR 17a – 10 (TVP 19255) são geneticamente mais similares com os membros do grupo Simbu. Análises evolutivas levando em consideração os três segmentos de RNA genômico (S, M, L) possuem origens distintas, sendo os segmentos S e L associados ao VORO e os segmentos MRNA relacionados aos Vírus Iquitos (VIQT) e Vírus Madre de Dios (VMDD). Por fim as análises de troca de segmento genômico (Simplot) evidenciaram claramente a presença de eventos de rearranjo entre os vírus estudados e o VORO confirmando o processo de rearranjo entre dois vírus parentais pertencentes ao grupo Simbu. Por fim, os dados de caracterização do genoma completo e análise de rearranjo contribuirão para melhor entender a contribuição do processo de rearranjo genético envolvendo o VORO, um importante patógeno humano na Amazônia. Palavras-Chave: Arbovírus; Orthobunyavirus; Oropouche; Caracterização Molecular ABSTRACT Viruses belonging to the genus Orthobunyavirus, family Bunyaviridae, are viral agents morphologically characterized as spherical particles with 80 to 120 nm of diameter, enveloped and possess a single stranded, negative sense, tripartide RNA genome which encodes for six viral proteins, three structural proteins (N, Gn and Gc) and usualy three non structural proteins (NSs, NSm and RpRd). This study had as objective obtain the complete genome sequences for the viruses MIS 0397 (TVP 19261) e INHRR 17a-10 (TVP 19255) isolated in Peru and Venezuela, respectively, as well as genetically characterize the RNA segments and perform phylogenetic reconstruction and evaluate the possibility of genetic reassortment in nature. Viruses were isolated from a human febrile case in Lima, Peru and from a non-human primate (Cebus sp) used as sentinel animal in the municipality of Azoategui, Venezuela, respectively. Both viral isolates were evaluated following three basic steps: i) RNA extraction; ii) nucleotide sequencing; iii) computational analyses. Complete sequences revealed that the size, genome organization and genetic traits (cysteine residues, glycosylation sites, conserved motifs, cleavage sites, A-U content, and 3’-5’ non coding region complementarity) were similar to those observed in other members of the genus Orthobunyavirus. Similarity analysis and phylogeny demonstrated that the viruses MIS 0397 (TVP 19261) and INHRR 17a – 10 (TVP 19255) are genetically close related to members of the Simbu virus group. Evolutionary analyses based on the three RNA segments (S, M, L) demonstrated that both viruses have distinct origins, where the S and L segments were associated to OROV and the M segments related to Iquitos virus (IQTV) and Madre de Dios virus (MDDV). Furthermore, the analyses related to genome segment reassorting (Simplot), clearly demonstrated the reassortment event involving the studied viruses and OROV confirming the natural reassortment process between two distinct parental viruses belonging to the Simbu group. Finally, the data generated for the complete sequences, genetic characterization and evolution will contribute for a better understand regarding the role of the reassortment process involving the OROV, an important human pathogen in the Amazon region. Key-words: Arboviruses; Orthobunyavirus; Simbu group; Oropouche; Molecular characterization. LISTA DE ILUSTRAÇÕES Figura 1 – Representação esquemática do ciclo de transmissão dos arbovírus envolvendo regiões silvestres, peri-urbanas e urbanas ........................... 01 Figura 2 – Esquema da organização morfológica dos integrantes da família Bunyaviridae. ......................................................................................... 06 Quadro 1 – Sequência nucleotídica dos terminais 5´ e 3´ dos genes S, M e L de representantes da família Bunyaviridae ................................................. 08 Quadro 2 – Tamanho dos segmentos de RNA genômico segundo os diferentes gêneros pertencentes a família Bunyaviridae ........................................ 09 Figura 3 – Estratégia de codificação dos segmentos genômicos dos integrantes da família Bunyaviridae. ................................................................................ 10 Figura 4 – Organização genômica de membros representativos da família Bunyaviridae. ......................................................................................
Recommended publications
  • California Encephalitis Orthobunyaviruses in Northern Europe
    California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology (2019) 164:1949–1965 https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • Characterization of Maguari Orthobunyavirus Mutants Suggests
    Virology 348 (2006) 224–232 www.elsevier.com/locate/yviro Characterization of Maguari orthobunyavirus mutants suggests the nonstructural protein NSm is not essential for growth in tissue culture ⁎ Elizabeth Pollitt, Jiangqin Zhao, Paul Muscat, Richard M. Elliott ,1 Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, Scotland, UK Received 9 November 2005; returned to author for revision 23 November 2005; accepted 15 December 2005 Available online 30 January 2006 Abstract Maguari virus (MAGV; genus Orthobunyavirus, family Bunyaviridae) contains a tripartite negative-sense RNA genome. Like all orthobunyaviruses, the medium (M) genome segment encodes a precursor polyprotein (NH2-Gn-NSm-Gc-COOH) for the two virion glycoproteins Gn and Gc and a nonstructural protein NSm. The nucleotide sequences of the M segment of wild-type (wt) MAGV, of a temperature-sensitive (ts) mutant, and of two non-ts revertants, R1 and R2, that show electrophoretic mobility differences in their Gc proteins were determined. Twelve amino acid differences (2 in Gn, 10 in Gc) were observed between wt and ts MAGV, of which 9 were maintained in R1 and R2. The M RNA segments of R1 and R2 contained internal deletions, resulting in the removal of the N-terminal 239 residues of Gc (R1) or the C- terminal two thirds of NSm and the N-terminal 431 amino acids of Gc (R2). The sequence data were consistent with analyses of the virion RNAs and virion glycoproteins. These results suggest that neither the N-terminal domain of Gc nor an intact NSm protein is required for the replication of MAGV in tissue culture.
    [Show full text]
  • Rift Valley Fever Virus (Bunyaviridae: Phlebovirus): an Update on Pathogenesis, Molecular Epidemiology, Vectors, Diagnostics and Prevention
    Vet. Res. (2010) 41:61 www.vetres.org DOI: 10.1051/vetres/2010033 Ó INRA, EDP Sciences, 2010 Review article Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention 1,2 3 4 5 Michel PEPIN *, Miche`le BOULOY , Brian H. BIRD , Alan KEMP , 5 Janusz PAWESKA 1 AFSSA site de Lyon, 31 avenue Tony Garnier, F-69364 Lyon Cedex 7, France 2 VETAGRO SUP, Campus Ve´te´rinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy L’Etoile, France 3 Institut Pasteur, Unite´deGe´ne´tique Mole´culaire des Bunyavirus, 25 rue du Dr Roux, 75724 Paris Cedex, France 4 Centers for Disease Control and Prevention (CDC), Special Pathogens Branch, 1600 Clifton Rd, Mailstop G-14 SB, Atlanta, GA 30333, USA 5 Special Pathogens Unit, National Institute for Communicable Diseases, National Health Laboratory Service, Private Bag X4, Sandrigham 2131, Republic of South Africa (Received 5 February 2010; accepted 21 May 2010) Abstract – Rift Valley fever (RVF) virus is an arbovirus in the Bunyaviridae family that, from phylogenetic analysis, appears to have first emerged in the mid-19th century and was only identified at the begininning of the 1930s in the Rift Valley region of Kenya. Despite being an arbovirus with a relatively simple but temporally and geographically stable genome, this zoonotic virus has already demonstrated a real capacity for emerging in new territories, as exemplified by the outbreaks in Egypt (1977), Western Africa (1988) and the Arabian Peninsula (2000), or for re-emerging after long periods of silence as observed very recently in Kenya and South Africa.
    [Show full text]
  • Molecular Survey of Flaviviruses and Orthobunyaviruses in Amblyomma Spp
    ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Braz. J. Vet. Parasitol., Jaboticabal, Ahead of Print, 2019 Doi: https://doi.org/10.1590/S1984-29612019071 Molecular survey of flaviviruses and orthobunyaviruses in Amblyomma spp. ticks collected in Minas Gerais, Brazil Investigação molecular de flavivírus e orthobunyaviruses em carrapatos do gênero Amblyomma spp. coletados em Minas Gerais, Brasil Lina de Campos Binder1; Laura Beatriz Tauro2,3; Adrian Alejandro Farias2; Marcelo Bahia Labruna1; Adrian Diaz2,4 1 Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária, Universidade de São Paulo – USP, São Paulo, SP, Brasil 2 Arbovirus Laboratory, Faculty of Medicine, Institute of Virology “Dr. J. M. Vanella”, National University of Córdoba – UCO, Córdoba, Argentina 3 Institute of Subtropical Biology, Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, National University of Misiones, Misiones, Argentina 4 Institute of Biological and Technological Research, Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET, National University of Córdoba – UCO, Córdoba, Argentina Received April 11, 2019 Accepted August 6, 2019 Abstract Due to anthropic environmental changes, vector-borne diseases are emerging worldwide. Ticks are known vectors of several pathogens of concern among humans and animals. In recent decades, several examples of tick-borne emerging viral diseases have been reported (Crimean Congo hemorrhagic fever virus, Powassan virus, encephalitis virus, heartland virus, severe fever with thrombocytopenia syndrome virus). Unfortunately, few studies addressing the presence of viruses in wild ticks have been carried out in South America. With the aim of detecting flaviviruses and orthobunyaviruses in ticks, we carried out molecular detection in wild ticks collected in the state of Minas Gerais, Brazil.
    [Show full text]
  • Taxonomy of the Order Bunyavirales: Update 2019
    Archives of Virology https://doi.org/10.1007/s00705-019-04253-6 VIROLOGY DIVISION NEWS Taxonomy of the order Bunyavirales: update 2019 Abulikemu Abudurexiti1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Tatjana Avšič‑Županc5 · Matthew J. Ballinger6 · Dennis A. Bente7 · Martin Beer8 · Éric Bergeron9 · Carol D. Blair10 · Thomas Briese11 · Michael J. Buchmeier12 · Felicity J. Burt13 · Charles H. Calisher10 · Chénchén Cháng14 · Rémi N. Charrel15 · Il Ryong Choi16 · J. Christopher S. Clegg17 · Juan Carlos de la Torre18 · Xavier de Lamballerie15 · Fēi Dèng19 · Francesco Di Serio20 · Michele Digiaro21 · Michael A. Drebot22 · Xiaˇoméi Duàn14 · Hideki Ebihara23 · Toufc Elbeaino21 · Koray Ergünay24 · Charles F. Fulhorst7 · Aura R. Garrison25 · George Fú Gāo26 · Jean‑Paul J. Gonzalez27 · Martin H. Groschup28 · Stephan Günther29 · Anne‑Lise Haenni30 · Roy A. Hall31 · Jussi Hepojoki32,33 · Roger Hewson34 · Zhìhóng Hú19 · Holly R. Hughes35 · Miranda Gilda Jonson36 · Sandra Junglen37,38 · Boris Klempa39 · Jonas Klingström40 · Chūn Kòu14 · Lies Laenen41,42 · Amy J. Lambert35 · Stanley A. Langevin43 · Dan Liu44 · Igor S. Lukashevich45 · Tāo Luò1 · Chuánwèi Lüˇ 19 · Piet Maes41 · William Marciel de Souza46 · Marco Marklewitz37,38 · Giovanni P. Martelli47 · Keita Matsuno48,49 · Nicole Mielke‑Ehret50 · Maria Minutolo3 · Ali Mirazimi51 · Abulimiti Moming14 · Hans‑Peter Mühlbach50 · Rayapati Naidu52 · Beatriz Navarro20 · Márcio Roberto Teixeira Nunes53 · Gustavo Palacios25 · Anna Papa54 · Alex Pauvolid‑Corrêa55 · Janusz T. Pawęska56,57 · Jié Qiáo19 · Sheli R. Radoshitzky25 · Renato O. Resende58 · Víctor Romanowski59 · Amadou Alpha Sall60 · Maria S. Salvato61 · Takahide Sasaya62 · Shū Shěn19 · Xiǎohóng Shí63 · Yukio Shirako64 · Peter Simmonds65 · Manuela Sironi66 · Jin‑Won Song67 · Jessica R. Spengler9 · Mark D. Stenglein68 · Zhèngyuán Sū19 · Sùróng Sūn14 · Shuāng Táng19 · Massimo Turina69 · Bó Wáng19 · Chéng Wáng1 · Huálín Wáng19 · Jūn Wáng19 · Tàiyún Wèi70 · Anna E.
    [Show full text]
  • BMBL) Quickly Became the Cornerstone of Biosafety Practice and Policy in the United States Upon First Publication in 1984
    Biosafety in Microbiological and Biomedical Laboratories 5th Edition U.S. Department of Health and Human Services Public Health Service Centers for Disease Control and Prevention National Institutes of Health HHS Publication No. (CDC) 21-1112 Revised December 2009 Foreword Biosafety in Microbiological and Biomedical Laboratories (BMBL) quickly became the cornerstone of biosafety practice and policy in the United States upon first publication in 1984. Historically, the information in this publication has been advisory is nature even though legislation and regulation, in some circumstances, have overtaken it and made compliance with the guidance provided mandatory. We wish to emphasize that the 5th edition of the BMBL remains an advisory document recommending best practices for the safe conduct of work in biomedical and clinical laboratories from a biosafety perspective, and is not intended as a regulatory document though we recognize that it will be used that way by some. This edition of the BMBL includes additional sections, expanded sections on the principles and practices of biosafety and risk assessment; and revised agent summary statements and appendices. We worked to harmonize the recommendations included in this edition with guidance issued and regulations promulgated by other federal agencies. Wherever possible, we clarified both the language and intent of the information provided. The events of September 11, 2001, and the anthrax attacks in October of that year re-shaped and changed, forever, the way we manage and conduct work
    [Show full text]
  • Biosafety in Microbiological and Biomedical Laboratories—6Th Edition
    Section VIII-A: Bacterial Agents Bacillus anthracis Bacillus anthracis, a Gram-positive, non-hemolytic, and non-motile bacillus, is the etiologic agent of anthrax, an acute bacterial disease among wild and domestic mammals, including humans. Like all members of the genus Bacillus, under adverse conditions, B. anthracis has the ability to produce spores that allow the organism to persist for long periods (i.e., years), withstanding heat and drying, until the return of more favorable conditions for vegetative growth.1 It is because of this ability to produce spores coupled with significant pathogenic potential in humans that this organism is considered one of the most serious and threatening biowarfare or bioterrorism agents.2 Most mammals are susceptible to anthrax; it mostly affects herbivores that ingest spores from contaminated soil and, to a lesser extent, carnivores that scavenge on the carcasses of diseased animals. In the United States, it occurs sporadically in animals in parts of the West, Midwest, and Southwest. Human case rates for anthrax are highest in Africa and central and southern Asia.3 The infectious dose varies greatly from species to species and is route-dependent. The inhalation anthrax infectious dose (ID) for humans has been primarily extrapolated from inhalation challenges of non-human primates (NHPs) or studies done in contaminated wool mills. Estimates vary greatly but the median lethal dose (LD50) is likely within the range of 2,500–55,000 spores.4 It is believed that very few spores (ten or fewer) are required for cutaneous anthrax infection.5 Anthrax cases have been rare in the United States since the first half of the 20th century.
    [Show full text]
  • Newly Recognized Mosquito-Associated Viruses in Mainland China, in the Last Two Decades Hong Liu†, Xiaoyan Gao†, Guodong Liang*
    Liu et al. Virology Journal 2011, 8:68 http://www.virologyj.com/content/8/1/68 REVIEW Open Access Newly recognized mosquito-associated viruses in mainland China, in the last two decades Hong Liu†, Xiaoyan Gao†, Guodong Liang* Abstract There are four principal arboviruses in mainland China. Two kinds of them are mosquito-borne viruses, namely Japanese encephalitis virus and dengue virus, which lead to Japanese encephalitis, and dengue fever/dengue hemorrhagic fever respectively; the other two are tick-borne viruses, namely tick-borne encephalitis virus and Crimean-Congo hemorrhagic fever virus (also known as Xinjiang hemorrhagic fever virus), which contribute to tick- borne encephalitis and Xinjiang hemorrhagic fever respectively. With exception of these four main arboviruses, many other mosquito-associated viruses have been isolated and identified in recent years. These newly isolated and identified mosquito-associated viruses are probably responsible for human and animal infections and diseases. The purpose of this review is to describe the newly isolated mosquito-associated viruses in mainland China which belong to five viral families, including their virological properties, phylogenetic relationships, serological evidence, as well as to appeal the public health concentration worldwide. Introduction are arboviral diseases were caused by tick-borne arbo- Arboviruses comprise a group of viruses that reproduce viruses: tick-borne encephalitis virus (TBEV) and Crim- in sensitive blood-sucking arthropods [1]. There are ean-Congo hemorrhagic fever virus (CCHFV) (also more than 550 species listed in the international catalog, known as Xinjiang hemorrhagic fever virus, XHFV). JE of which more than 128 are known to infect humans and DEN are nationally notifiable communicable dis- and livestock and most are mosquito borne [2].
    [Show full text]
  • Taxonomy Bovine Ephemeral Fever Virus Kotonkan Virus Murrumbidgee
    Taxonomy Bovine ephemeral fever virus Kotonkan virus Murrumbidgee virus Murrumbidgee virus Murrumbidgee virus Ngaingan virus Tibrogargan virus Circovirus-like genome BBC-A Circovirus-like genome CB-A Circovirus-like genome CB-B Circovirus-like genome RW-A Circovirus-like genome RW-B Circovirus-like genome RW-C Circovirus-like genome RW-D Circovirus-like genome RW-E Circovirus-like genome SAR-A Circovirus-like genome SAR-B Dragonfly larvae associated circular virus-1 Dragonfly larvae associated circular virus-10 Dragonfly larvae associated circular virus-2 Dragonfly larvae associated circular virus-3 Dragonfly larvae associated circular virus-4 Dragonfly larvae associated circular virus-5 Dragonfly larvae associated circular virus-6 Dragonfly larvae associated circular virus-7 Dragonfly larvae associated circular virus-8 Dragonfly larvae associated circular virus-9 Marine RNA virus JP-A Marine RNA virus JP-B Marine RNA virus SOG Ostreid herpesvirus 1 Pig stool associated circular ssDNA virus Pig stool associated circular ssDNA virus GER2011 Pithovirus sibericum Porcine associated stool circular virus Porcine stool-associated circular virus 2 Porcine stool-associated circular virus 3 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 Wallerfield virus AKR (endogenous) murine leukemia virus ARV-138 ARV-176 Abelson murine leukemia virus Acartia tonsa copepod circovirus Adeno-associated virus - 1 Adeno-associated virus - 4 Adeno-associated virus - 6 Adeno-associated virus - 7 Adeno-associated virus - 8 African elephant polyomavirus
    [Show full text]
  • 2021 Taxonomic Update of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-021-05143-6 VIROLOGY DIVISION NEWS 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Bernard R. Agwanda211,212 · Rim Al Kubrusli3 · Sergey V. Alkhovsky (Aльxoвcкий Cepгeй Bлaдимиpoвич)4 · Gaya K. Amarasinghe5 · Tatjana Avšič‑Županc6 · María A. Ayllón7,197 · Justin Bahl8 · Anne Balkema‑Buschmann9 · Matthew J. Ballinger10 · Christopher F. Basler11 · Sina Bavari12 · Martin Beer13 · Nicolas Bejerman14 · Andrew J. Bennett15 · Dennis A. Bente16 · Éric Bergeron17 · Brian H. Bird18 · Carol D. Blair19 · Kim R. Blasdell20 · Dag‑Ragnar Blystad21 · Jamie Bojko22,198 · Wayne B. Borth23 · Steven Bradfute24 · Rachel Breyta25,199 · Thomas Briese26 · Paul A. Brown27 · Judith K. Brown28 · Ursula J. Buchholz29 · Michael J. Buchmeier30 · Alexander Bukreyev31 · Felicity Burt32 · Carmen Büttner3 · Charles H. Calisher33 · Mengji Cao (曹孟籍)34 · Inmaculada Casas35 · Kartik Chandran36 · Rémi N. Charrel37 · Qi Cheng38 · Yuya Chiaki (千秋祐也)39 · Marco Chiapello40 · Il‑Ryong Choi41 · Marina Ciufo40 · J. Christopher S. Clegg42 · Ian Crozier43 · Elena Dal Bó44 · Juan Carlos de la Torre45 · Xavier de Lamballerie37 · Rik L. de Swart46 · Humberto Debat47,200 · Nolwenn M. Dheilly48 · Emiliano Di Cicco49 · Nicholas Di Paola50 · Francesco Di Serio51 · Ralf G. Dietzgen52 · Michele Digiaro53 · Olga Dolnik54 · Michael A. Drebot55 · J. Felix Drexler56 · William G. Dundon57 · W. Paul Duprex58 · Ralf Dürrwald59 · John M. Dye50 · Andrew J. Easton60 · Hideki Ebihara (海老原秀喜)61 · Toufc Elbeaino62 · Koray Ergünay63 · Hugh W. Ferguson213 · Anthony R. Fooks64 · Marco Forgia65 · Pierre B. H. Formenty66 · Jana Fránová67 · Juliana Freitas‑Astúa68 · Jingjing Fu (付晶晶)69 · Stephanie Fürl70 · Selma Gago‑Zachert71 · George Fú Gāo (高福)214 · María Laura García72 · Adolfo García‑Sastre73 · Aura R.
    [Show full text]