Newly Recognized Mosquito-Associated Viruses in Mainland China, in the Last Two Decades Hong Liu†, Xiaoyan Gao†, Guodong Liang*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses
ARIZONA ARBOVIRAL HANDBOOK FOR CHIKUNGUNYA, DENGUE, AND ZIKA VIRUSES 7/31/2017 Arizona Department of Health Services | P a g e 1 Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses Arizona Arboviral Handbook for Chikungunya, Dengue, and Zika Viruses OBJECTIVES .............................................................................................................. 4 I: CHIKUNGUNYA ..................................................................................................... 5 Chikungunya Ecology and Transmission ....................................... 6 Chikungunya Clinical Disease and Case Management ............... 7 Chikungunya Laboratory Testing .................................................. 8 Chikungunya Case Definitions ...................................................... 9 Chikungunya Case Classification Algorithm ............................... 11 II: DENGUE .............................................................................................................. 12 Dengue Ecology and Transmission .............................................. 14 Dengue Clinical Disease and Case Management ...................... 14 Dengue Laboratory Testing ......................................................... 17 Dengue Case Definitions ............................................................ 19 Dengue Case Classification Algorithm ....................................... 23 III: ZIKA .................................................................................................................. -
Mosquitoes in DENGUE MOSQUITOES the World? ARE MOST ACTIVE DURING BO the DAY AROUND a U S T YOUR YARD T SALTMARSH MOSQUITOES C ARE MOST a ACTIVE at DUSK
Mosquito awareness Did you know... Mosquito species there are 3500 vary in their species of biting behaviour mosquitoes in DENGUE MOSQUITOES the world? ARE MOST ACTIVE DURING BO THE DAY AROUND A U S T YOUR YARD T SALTMARSH MOSQUITOES C ARE MOST A ACTIVE AT DUSK AND DAWN F Council conducts 300 SPECIES IN AUSTRALIA mosquito control 40 SPECIES IN TOWNSVILLE World's COUNCIL CONDUCTS deadliest MOSQUITO CONTROL ON MOSQUITOES PUBLIC LAND, USING BOTH animals GROUND AND AERIAL TREATMENTS TO TARGET NUMBER OF PEOPLE MOSQUITO LARVAE. KILLED BY ANIMALS PER YEAR Mosquitoes wings beat 300-600 times per second Mosquitoes Mosquitoes can carry are attracted many diseases. to humans FROM THE ODOURS AND CARBON DIOXIDE WE EXPIRE FROM BREATHING Protect yourself OR SWEATING. townsville.qld.gov.au and your family Mosquitoes distance of travel 13 48 10 from mosquito bites from breeding point by using personal DENGUE MOSQUITO SALTMARSH MOSQUITO protection. 200M 50KM BREEDING PLACE Mosquito Mosquito Mosquito life cycle disease prevention A mosquito is an insect characterised by Protect yourself Did you know... Dengue. 1. Three body parts against disease-carrying Townsville City Do your weekly a. Head mosquitoes Council undertakes yard check. b. Thorax c. Abdomen reactive inspection ARE YOU MAKING DENGUE Mosquito borne How do of properties within MOSSIES WELCOME 2. A proboscis (for AROUND YOUR HOME? piercing and sucking) diseases found in mosquitoes the Townsville local TAKE RESPONSIBILITY TO 3. One pair of antennae Townsville include transmit government area PROTECT YOURSELF AND 4. One pair of wings YOUR FAMILY BY CHECKING Ross River virus diseases? based on customer YOUR YARD FOR ANYTHING 5. -
California Encephalitis Orthobunyaviruses in Northern Europe
California encephalitis orthobunyaviruses in northern Europe NIINA PUTKURI Department of Virology Faculty of Medicine, University of Helsinki Doctoral Program in Biomedicine Doctoral School in Health Sciences Academic Dissertation To be presented for public examination with the permission of the Faculty of Medicine, University of Helsinki, in lecture hall 13 at the Main Building, Fabianinkatu 33, Helsinki, 23rd September 2016 at 12 noon. Helsinki 2016 Supervisors Professor Olli Vapalahti Department of Virology and Veterinary Biosciences, Faculty of Medicine and Veterinary Medicine, University of Helsinki and Department of Virology and Immunology, Hospital District of Helsinki and Uusimaa, Helsinki, Finland Professor Antti Vaheri Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland Reviewers Docent Heli Harvala Simmonds Unit for Laboratory surveillance of vaccine preventable diseases, Public Health Agency of Sweden, Solna, Sweden and European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden Docent Pamela Österlund Viral Infections Unit, National Institute for Health and Welfare, Helsinki, Finland Offical Opponent Professor Jonas Schmidt-Chanasit Bernhard Nocht Institute for Tropical Medicine WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research National Reference Centre for Tropical Infectious Disease Hamburg, Germany ISBN 978-951-51-2399-2 (PRINT) ISBN 978-951-51-2400-5 (PDF, available -
The Viruses of Vervet Monkeys and of Baboons in South Africa
THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests. -
Genome Sequencing by Random Priming Methods for Viral Identification
Genome sequencing by random priming methods for viral identification Rosseel Toon Dissertation submitted in fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Veterinary Sciences, Faculty of Veterinary Medicine, Ghent University, 2015 Promotors: Dr. Steven Van Borm Prof. Dr. Hans Nauwynck “The real voyage of discovery consist not in seeking new landscapes, but in having new eyes” Marcel Proust, French writer, 1923 Table of contents Table of contents ....................................................................................................................... 1 List of abbreviations ................................................................................................................. 3 Chapter 1 General introduction ................................................................................................ 5 1. Viral diagnostics and genomics ....................................................................................... 7 2. The DNA sequencing revolution ................................................................................... 12 2.1. Classical Sanger sequencing .................................................................................. 12 2.2. Next-generation sequencing ................................................................................... 16 3. The viral metagenomic workflow ................................................................................. 24 3.1. Sample preparation ............................................................................................... -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
RNA-Dependent RNA Polymerase Consensus Sequence of the L-A Double-Stranded RNA Virus: Definition of Essential Domains
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 2185-2189, March 1992 Biochemistry RNA-dependent RNA polymerase consensus sequence of the L-A double-stranded RNA virus: Definition of essential domains JUAN CARLOS RIBAS AND REED B. WICKNER Section on the Genetics of Simple Eukaryotes, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 207, National Institutes of Health, Bethesda, MD 20892 Communicated by Herbert Tabor, November 27, 1991 (received for review October 2, 1991) ABSTRACT The L-A double-stranded RNA virus of Sac- lacking M1 (reviewed in refs. 10 and 18). M1 depends on L-A charomyces cerevisiac makes a gag-pol fusion protein by a -1 for its coat and replication proteins (19). MAK10 is one of ribosomal frameshift. The pol amino acid sequence includes three chromosomal genes needed for L-A virus propagation consensus patterns typical of the RNA-dependent RNA poly- within yeast cells (20). In a maklO host, L-A proteins merases (EC 2.7.7.48) of (+) strand and double-stranded RNA expressed from a cDNA clone of L-A support the replication viruses of animals and plants. We have carried out "alanine- of the M1 satellite virus but (for unknown reasons) do not scanning mutagenesis" of the region of L-A including the two support propagation of the L-A virus itself (21). Thus, while most conserved polymerase motifs, SG...T...NT..N (. = any L-A requires the MAK10 product itself, M1 requires MAK10 amino acid) and GDD. By constructing and analyzing 46 only because it requires the L-A-encoded proteins. -
The Role of Genetic Diversity in the Replication, Pathogenicity and Virulence of Murray Valley Encephalitis Virus
School of Biomedical Sciences The Role of Genetic Diversity in the Replication, Pathogenicity and Virulence of Murray Valley Encephalitis Virus Aziz-ur-Rahman Niazi This thesis is presented for the Degree of Doctor of Philosophy of Curtin University September 2013 Declaration To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Signature:…………………. Date:………………………. Acknowledgement First, I am humbly grateful to The Almighty God for granting me both the ability and determination to carry out this PhD. Next, I express my sincerest gratitude to both my parents who I hold with the highest regard, for their support and affability that made the undertaking of this thesis possible. I only wish that my mother were still alive to share in its completion. My sincere thanks are extended to my wife, Sonia Mohammadi, whom I am forever indebted to for giving up her ambitions of going to university to instead raise our lovely baby daughter, Alia Saba Niazi, born at the beginning of this PhD. Sonia is now expecting our son who will be born soon after completion of this PhD. Special heartfelt thanks also go to my extended family back home whose support has provided me with additional strength and energy to complete this PhD. I would like to cordially express my thanks to my supervisor, Dr David Thomas Williams, first for his help in applying for an Australian Biosecurity Cooperative Research Centre (AB-CRC) scholarship, then for guiding me and inspiring me to be a virologist. -
Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist. -
The Non-Human Reservoirs of Ross River Virus: a Systematic Review of the Evidence Eloise B
Stephenson et al. Parasites & Vectors (2018) 11:188 https://doi.org/10.1186/s13071-018-2733-8 REVIEW Open Access The non-human reservoirs of Ross River virus: a systematic review of the evidence Eloise B. Stephenson1*, Alison J. Peel1, Simon A. Reid2, Cassie C. Jansen3,4 and Hamish McCallum1 Abstract: Understanding the non-human reservoirs of zoonotic pathogens is critical for effective disease control, but identifying the relative contributions of the various reservoirs of multi-host pathogens is challenging. For Ross River virus (RRV), knowledge of the transmission dynamics, in particular the role of non-human species, is important. In Australia, RRV accounts for the highest number of human mosquito-borne virus infections. The long held dogma that marsupials are better reservoirs than placental mammals, which are better reservoirs than birds, deserves critical review. We present a review of 50 years of evidence on non-human reservoirs of RRV, which includes experimental infection studies, virus isolation studies and serosurveys. We find that whilst marsupials are competent reservoirs of RRV, there is potential for placental mammals and birds to contribute to transmission dynamics. However, the role of these animals as reservoirs of RRV remains unclear due to fragmented evidence and sampling bias. Future investigations of RRV reservoirs should focus on quantifying complex transmission dynamics across environments. Keywords: Amplifier, Experimental infection, Serology, Virus isolation, Host, Vector-borne disease, Arbovirus Background transmission dynamics among arboviruses has resulted in Vertebrate reservoir hosts multiple definitions for the key term “reservoir” [9]. Given Globally, most pathogens of medical and veterinary im- the diversity of virus-vector-vertebrate host interactions, portance can infect multiple host species [1]. -
2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A. -
Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.