United States Patent (19) 11 Patent Number: 6,143,514 Ullman Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) 11 Patent Number: 6,143,514 Ullman Et Al USOO6143514A United States Patent (19) 11 Patent Number: 6,143,514 Ullman et al. (45) Date of Patent: *Nov. 7, 2000 54 CHEMILUMINESCENT COMPOSITIONS McCapra, et al., Luminescent Labels for AND THEIR USE IN THE DETECTION OF Immunoassay-From Concept to Practice; Journal of Biolu HYDROGEN PEROXDE minescence and Chemiluminescence; 4:51-58; 1989. Seitz, Rudolf W.; Immunoassay Labels Based on Chemilu 75 Inventors: Edwin F. Ullman, Atherton; Sharat minescence and Bioluminescence; Clin. Biochemistry; Singh, San Jose, both of Calif. 17:120-125; 1984. 73 Assignee: Dade Behring Marburg GmbH, Seliger, et al.; Chemiluminescence of Benzoa Pyrene-7, Marburg, Germany 8-Diol; Photochem. Photobiol.; 36:359-365; 1982. Lee, et al., Chemiluminescence from the Reaction of Singlet * Notice: This patent issued on a continued pros Oxygen with 10,10'-Dimethyl-9,9'-biacridylidene. A Reac ecution application filed under 37 CFR tive 1,2-Dioxetane; J. Org. Chem.; 41 No. 16:2685–2688; 1.53(d), and is subject to the twenty year 1976. patent term provisions of 35 U.S.C. Grayeski, Mary Lynn; Chemi- and Bioluminescence, edited 154(a)(2). by John G. Burr, Marcel Dekker, Inc.; 16:469-493; 1985. McCapra, F., Potential applications of bioluminescence and 21 Appl. No.: 08/850,026 chemiluminescence in biosensors, BioSensors Fundamentals 22 Filed: May 1, 1997 and Applications; No. 31:617-637; 1987. McCapra, F. et al.; Selected Chemical Reactions That Pro Related U.S. Application Data duce Light, Bioluminescence and Chemiluminescence; 60 Provisional application No. 60/017,075, May 1, 1996. Instruments and Applications, 1:9-42. Poulsen, J.R., et al.; Solid-State Peroxyoxalate Chemilumi 51 Int. Cl." ................................ C12O 1/28; C12O 1/54 nescence Detection of Hydrogen Peroxide Generated in a 52 U.S. Cl. ................................... 435/28; 435/6; 435/14; Post-Column Reaction; J. Chromatography; 360 No. 435/177; 435/180 2:371-383; Jun. 25, 1986. 58 Field of Search ..................................... 435/177, 180, Wasserman, H.; et al.; Singlet Oxygen; Academic Press; No. 435/7.5, 7.9, 28, 14, 192, 6; 436/534, 528 12:597–641; 1979. 56) References Cited E. Ullman et al., Clinical Chemistry, vol. 42, No. 9, pp. 1518-1526, 1996. U.S. PATENT DOCUMENTS 4,233,402 11/1980 Maggio et al. Primary Examiner Mary E. Ceperley 5,084,381 1/1992 Akimoto et al.. Attorney, Agent, or Firm Patrick G. Gattari 5,332,662 7/1994 Ullman. 5.532,138 7/1996 Singh et al.. 57 ABSTRACT 5,536,834 7/1996 Singh et al. .............................. 544/98 5,556,758 9/1996 Allen. Compositions, methods and kits are disclosed. The compo 5,578.498 11/1996 Singh et al. ............................ 436/518 Sitions comprise a matrix having incorporated therein a label 5,616,719 4/1997 Davalian et al. ... 546/334 capable of being modified by Singlet oxygen. A catalyst 5,618,732 4/1997 Pease et al. ...... ... 436/8 capable of catalyzing the formation of Singlet oxygen is 5,709,994 1/1998 Pease et al. ................................. 435/4 bound to the matrix, which permits the diffusion of singlet oxygen therein. The compositions may be used in methods OTHER PUBLICATIONS for detecting hydrogen peroxide or a compound capable of O'Connell, et al.; A Highly Sensitive Immunoassay System generating hydrogen peroxide. A Sample Suspected of con Involving Antibody-Coated Tubes and Liposome-En taining Such compound is combined with a composition in trapped Dye; Clin. Chem.; 31/9: 1424–1426; 1985. accordance with the present invention. The combination is Ullman, et al., Luminescent oxygen channeling assay Subjected to conditions wherein Such compound generates (LOCITM): sensitive, broadly applicable homogeneous hydrogen peroxide. The reaction of Singlet oxygen with the immunoassay method; Clin. Chem.; 42/9:1518-1526, 1996. label is determined, the reaction thereof indicating the Ullman, et al., Luminescent oxygen channeling immunoas presence of the compound capable of generating hydrogen Say: Measurement of particle binding kinetics by chemilu peroxide. minescence; Proc. Natl. Acad. Sci. USA; 91:5426–5430; 1994. 47 Claims, No Drawings 6,143,514 1 2 CHEMILUMNESCENT COMPOSITIONS reason, luminescers have been utilized as labels in assays AND THEIR USE IN THE DETECTION OF Such as nucleic acid assays and immunoassayS. For example, HYDROGEN PEROXDE a member of a specific binding pair is conjugated to a lumineScer and various protocols are employed. The lumi This application claims the benefit of U.S. Provisional neScer conjugate can be partitioned between a Solid phase Application No. 60/017,075 filed May 1, 1996. and a liquid phase in relation to the amount of analyte in a Sample Suspected of containing the analyte. By measuring BACKGROUND OF THE INVENTION the luminescence of either of the phases, one can relate the level of luminescence observed to a concentration of the 1. Field of the Invention analyte in the Sample. This invention relates to methods, compositions and kits Particles, Such as liposomes and erythrocyte ghosts, have for detecting hydrogen peroxide or a compound capable of been utilized as carriers of encapsulated water Soluble generating hydrogen peroxide. materials. For example, liposomes have been employed to The clinical diagnostic field has seen a broad expansion in encapsulate biologically active material for a variety of uses, recent years, both as to the variety of materials of interest 15 Such as drug delivery Systems wherein a medicament is that may be readily and accurately determined, as well as the entrapped during lipoSome preparation and then adminis methods for the determination. Convenient, reliable and tered to the patient to be treated. non-hazardous means for detecting the presence of low Particles, Such as lateX beads and liposomes, have also concentrations of materials in liquids is desired. In clinical been utilized in assayS. For example, in homogeneous assays chemistry these materials may be present in body fluids in an enzyme may be entrapped in the aqueous phase of a concentrations below 10° molar. The difficulty of detect liposome labeled with an antibody or antigen. The liposomes ing low concentrations of these materials is enhanced by the are caused to release the enzyme in the presence of a Sample relatively Small Sample sizes that can be utilized. and complement. Antibody or antigen-labeled liposomes, Detection of low concentrations of hydrogen peroxide is having water Soluble fluorescent or non-fluorescent dyes useful for numerous analytical procedures, particularly in 25 encapsulated within an aqueous phase vesicle or lipid clinical chemistry. Hydrogen peroxide is produced by cells soluble dyes dissolved in the lipid bilayer of a lipid, have Such as monocytes and is an indicator of monocyte activa also been utilized to assay for analytes capable of entering tion. Additionally, any material of interest that is or can be into an immunochemical reaction with the Surface bound converted to a Substrate for an oxidase Such as Xanthene antibody or antigen. Detergents have been used to release oxidase, amino acid oxidase, NADH oxidase, glucose the dyes from the aqueous phase of the liposomes. oxidase, galactose oxidase, glycerol phosphate oxidase, and 2. Brief Description of the Related Art the like can be detected by the hydrogen peroxide that is U.S. Pat. No. 5,084,381 (Akimoto, et al.) discusses an produced by the action of the enzyme on the Substrate. Tests assay method for detecting hydrogen peroxide. for glucose, triglycerides, d-amino acids, and cholesterol can be routinely carried out by detecting hydrogen peroxide, 35 Processes and materials for carrying out Specific binding usually by reaction of a peroxidase and a chromogenic assays is disclosed in patent application WO 86/01899 Substrate. Enzyme immunoassays using an oxidase Such as (Davis, et al.). glucose oxidase as a label also depend on a Sensitive U.S. Pat. No. 5,108,893 (Baret) discloses the use of detection method for hydrogen peroxide. For example, when oxidase enzyme Systems in chemiluminescent assayS. glucose oxidase is used as a label, the hydrogen peroxide can 40 European Patent Application 0 421 788 A2 (Allen) dis be detected using horseradish peroxidase and a chromogenic closes a haloperoxidase-acid-Oxidant chemiluminescence Substrate, or the hydrogen peroxide can be detected electro assay System for determining the presence or amount of an chemically. analyte in a liquid Sample. Detection of hydrogen peroxide is also becoming more U.S. Pat. No. 4,315,998 discusses polymer-bound photo important in the area of foodstuffs. For example, in Some 45 Sensitizing catalysts. countries hydrogen peroxide is used as a bleaching agent for Photoactivatable chemiluminescent matrices are food. It is important that residual levels of hydrogen perOX described in patent application WO94/03812 (Pease, et al.). ide in the food after bleaching be substantially zero to avoid European Patent Application No. 0515 194 A2 discloses health hazards. assay methods utilizing induced luminescence. The refer A method that has higher Sensitivity, leSS interference 50 ences cited therein are incorporated herein by reference from the Sample, and uses fewer, and more stable, reagents including without limitation U.S. Pat. No. 5,017,473 would increase the Simplicity and reliability of assays for, or (Wagner), which discloses a homogeneous chemilumines depending on, hydrogen peroxide detection. cence immunoassay using a light absorbing material, Euro pean Patent Application No. 0,345,776 (McCapra), which Homogeneous immunoassays have previously been 55 discloses Specific binding assays that utilize a Sensitizer as a described for Small molecules. These assays include Syva label, U.S. Pat. No. 4,193,983 (Ullman, et al.), which Company’s FRATOR assay, EMITOR assay, enzyme channel discloses labeled liposome particle compositions and immu ing immunoassay, and fluorescence energy transfer immu noassays therewith, U.S. Pat. No. 4,891,324 (Pease, et al.), noassay (FETI); enzyme inhibitor immunoassays (Hoffman which describes a particle with lumineScer for assayS.
Recommended publications
  • Formation of Phenylacetic Acid and Benzaldehyde by Degradation Of
    Food Chemistry: X 2 (2019) 100037 Contents lists available at ScienceDirect Food Chemistry: X journal homepage: www.journals.elsevier.com/food-chemistry-x Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products ⁎ Francisco J. Hidalgo, Rosario Zamora Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario – Edificio 46, 41013 Seville, Spain ARTICLE INFO ABSTRACT Chemical compounds studied in this article: Lipid oxidation is a main source of reactive carbonyls, and these compounds have been shown both to degrade Benzaldehyde (PubChem ID: 240) amino acids by carbonyl-amine reactions and to produce important food flavors. However, reactive carbonyls 4-Oxo-2-nonenal (PubChem ID: 6445537) are not the only products of the lipid oxidation pathway. Lipid oxidation also produces free radicals. 13-Hydroperoxy-9Z,11E-octadecadienoic acid Nevertheless, the contribution of these lipid radicals to the production of food flavors by degradation of amino (PubChem ID: 5280720) acid derivatives is mostly unknown. In an attempt to investigate new routes of flavor formation, this study Phenylacetaldehyde (PubChem ID: 998) describes the degradation of phenylalanine, phenylpyruvic acid, phenylacetaldehyde, and β-phenylethylamine Phenylacetic acid (PubChem ID: 999) β-Phenylethylamine (PubChem ID: 1001) in the presence of the 13-hydroperoxide of linoleic acid, 4-oxononenal (a reactive carbonyl derived from this Phenylalanine (PubChem ID: 6140) hydroperoxide), and the mixture of both of them. The obtained results show the formation of phenylacetic acid Phenylpyruvic acid (PubChem ID: 997) and benzaldehyde in these reactions as a consequence of the combined action of carbonyl-amine and free radical reactions for amino acid degradation.
    [Show full text]
  • Biochemical Screening and PTEN Mutation Analysis in Individuals with Autism Spectrum Disorders and Macrocephaly
    European Journal of Human Genetics (2014) 22, 273–276 & 2014 Macmillan Publishers Limited All rights reserved 1018-4813/14 www.nature.com/ejhg SHORT REPORT Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly Judith A Hobert1, Rebecca Embacher2, Jessica L Mester1,3, Thomas W Frazier II1,2 and Charis Eng*,1,3,4,5 Unlike some other childhood neurodevelopmental disorders, no diagnostic biochemical marker has been identified in all individuals with an autism spectrum disorder (ASD). This deficit likely results from genetic heterogeneity among the population. Therefore, we evaluated a subset of individuals with ASDs, specifically, individuals with or without macrocephaly in the presence or absence of PTEN mutations. We sought to determine if amino or organic acid markers could be used to identify individuals with ASDs with or without macrocephaly in the presence or absence of PTEN mutations, and to establish the degree of macrocephaly in individuals with ASDs and PTEN mutation. Urine, blood and occipital–frontal circumference (OFC) measurements were collected from 69 individuals meeting DSM-IV-TR criteria. Urine and plasma samples were subjected to amino and organic acid analyses. PTEN was Sanger-sequenced from germline genomic DNA. Germline PTEN mutations were identified in 27% (6/22) of the macrocephalic ASD population. All six PTEN mutation-positive individuals were macrocephalic with average OFC þ 4.35 standard deviations (SDs) above the mean. No common biochemical abnormalities were identified in macrocephalic ASD individuals with or without PTEN mutations. In contrast, among the collective ASD population, elevation of urine aspartic acid (87%; 54/62), plasma taurine (69%; 46/67) and reduction of plasma cystine (72%; 46/64) were observed.
    [Show full text]
  • Retropath2.0: a Retrosynthesis Workflow for Metabolic Engineers
    bioRxiv preprint doi: https://doi.org/10.1101/141721; this version posted June 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. RetroPath2.0: a retrosynthesis workflow for metabolic engineers Baudoin Delépine1,2,3,§, Thomas Duigou3,§, Pablo Carbonell4, Jean-Loup Faulon3,1,2,4,* 1 CNRS-UMR8030 / Laboratoire iSSB, Université Paris-Saclay, Évry 91000, France 2 CEA, DRF, IG, Genoscope, Évry 91000, France 3 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France 4 SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK §: These authors contributed equally to this work. *: Corresponding author at: Micalis, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 JOUY-EN-JOSAS, FRANCE; E-mail address: [email protected] Highlights • State-of-the-art Computer-Aided Design retrosynthesis solutions lack open source and ease of use • We propose RetroPath2.0 a modular and open-source workflow to perform retrosynthesis • RetroPath2.0 computes reaction network between Source and Sink sets of compounds • RetroPath2.0 is distributed as a KNIME workflow for desktop computers • RetroPath2.0 is ready-for-use and distributed with reaction rules Funding This work was supported by the French National Research Agency [ANR-15-CE1-0008], the Biotechnology and Biological Sciences Research Council, Centre for synthetic biology of fine and speciality chemicals [BB/M017702/1]; Synthetic Biology Applications for Protective Materials [EP/N025504/1], and GIP Genopole.
    [Show full text]
  • Engineering an Alcohol Dehydrogenase for Balancing
    Research Article Cite This: ACS Sustainable Chem. Eng. 2019, 7, 15706−15714 pubs.acs.org/journal/ascecg Engineering an Alcohol Dehydrogenase for Balancing Kinetics in NADPH Regeneration with 1,4-Butanediol as a Cosubstrate † # † # ‡ § † † † Guochao Xu, , Cheng Zhu, , Aitao Li, Yan Ni, Ruizhi Han, Jieyu Zhou, and Ye Ni*, † Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China ‡ Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan 430062, China § Department of Biomedical Engineering, Eindhoven University of Technology, NL-5600 Eindhoven, MB, Netherlands *S Supporting Information ABSTRACT: Cofactor regeneration using diols as “smart cosubstrates” is one of the most promising approaches, due to the thermodynamic preference and 0.5-equiv requirement. In order to establish an efficient NADPH regeneration system with 1,4-butanediol (1,4-BD), a NADP+- dependent alcohol dehydrogenase from Kluyveromyces polysporus (KpADH) was engineered to solve the kinetic imbalance. Several hotspots were identified through molecular dynamic simulation and subjected to saturation and combinatorial mutagenesis. Variant KpADHV84I/Y127M −1 exhibited a lower KM of 15.1 mM and a higher kcat of 30.1 min than WTKpADH. The oxidation of 1,4-BD to 4-hydroxybutanal was found to be the rate-limiting step, for which the kcat/KM value of double mutant −1· −1 KpADHV84I/Y127M was 2.00 min mM , 11.6-fold higher than that of WT KpADH. KpADHV84I/Y127M preferred diols with a longer chain length − (C5 C6). The ratio of kcat/KM toward 2-hydroxytetrahydrofuran (2-HTHF), in comparison to 1,4-BD, in KpADHV84I/Y127M was dramatically reduced by almost 100-fold compared to WTKpADH, which was advantageous for NADPH regeneration.
    [Show full text]
  • Publishers Version
    Engineering an alcohol dehydrogenase for nalancing kinetics in NADPH regeneration with 1,4-butanediol as a cosubstrate Citation for published version (APA): Xu, G., Zhu, C., Li, A., Ni, Y., Han, R., Zhou, J., & Ni, Y. (2019). Engineering an alcohol dehydrogenase for nalancing kinetics in NADPH regeneration with 1,4-butanediol as a cosubstrate. ACS Sustainable Chemistry and Engineering, 7(18), 15706-15714. https://doi.org/10.1021/acssuschemeng.9b03879 Document license: TAVERNE DOI: 10.1021/acssuschemeng.9b03879 Document status and date: Published: 16/09/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
    [Show full text]
  • Ralfuranone Biosynthesis in Ralstonia Solanacearum Suggests Functional Divergence in the Quinone Synthetase Family of Enzymes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemistry & Biology Article Ralfuranone Biosynthesis in Ralstonia solanacearum Suggests Functional Divergence in the Quinone Synthetase Family of Enzymes Barbara Wackler,1 Patrick Schneider,1 Jonathan M. Jacobs,2 Julia Pauly,1 Caitilyn Allen,2 Markus Nett,3 and Dirk Hoffmeister1,* 1Department Pharmaceutical Biology at the Hans-Kno¨ ll-Institute, Friedrich-Schiller-Universita¨ t Jena, Beutenbergstrasse 11a, 07745 Jena, Germany 2Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA 3Leibniz Institute for Natural Product Research and Infection Biology—Hans-Kno¨ ll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany *Correspondence: [email protected] DOI 10.1016/j.chembiol.2011.01.010 SUMMARY VsrAD and PhcA, and secondary metabolism has been demon- strated and led to the identification of a new small molecule, Ralstonia solanacearum is a destructive crop plant ralfuranone (4-phenylfuran-2(5H)-one, 1, Figure 1)(Schneider pathogen and produces ralfuranone, i.e., a mono- et al., 2009). Although achiral and little functionalized, this bicy- phenyl-substituted furanone. Extensive feeding clic secondary product attracted our attention as the origin of experiments with 13C-labeled L-phenylalanine now the carbon atoms was elusive. Initially, we hypothesized that proved that all carbon atoms of the heterocycle the aromatic system may be derived from L-phenylalanine, and derive, after deamination, from this aromatic amino that transfer of malonyl-CoA to the former may provide the carbon atoms to complete furanone synthesis. Chemical char- acid. A genetic locus was identified which encodes acterization of a new, yet related natural product, ralfuranone B the aminotransferase RalD and the furanone synthe- (2, Figure 1), prompted us to propose a revised biosynthetic tase RalA.
    [Show full text]
  • Ep 1 602 354 B1
    (19) & (11) EP 1 602 354 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 8/88 (2006.01) A61Q 5/00 (2006.01) 05.11.2008 Bulletin 2008/45 (86) International application number: (21) Application number: 04716754.9 PCT/JP2004/002606 (22) Date of filing: 03.03.2004 (87) International publication number: WO 2004/080433 (23.09.2004 Gazette 2004/39) (54) Use of polyglutamic acid or its salts Verwendung von Polyglutamatsäure oder deren Salze Utilisation de l’acide polyglutamique ou ses sels. (84) Designated Contracting States: • YAMADA, Kikumi, AT BE BG CH CY CZ DE DK EE ES FI FR GB GR c/o Ichimaru Pharcos Co., Ltd. HU IE IT LI LU MC NL PL PT RO SE SI SK TR Motosu-shi, Gifu 501-0475 (JP) (30) Priority: 10.03.2003 JP 2003062688 (74) Representative: Gille Hrabal Struck Neidlein Prop Roos (43) Date of publication of application: Patentanwälte 07.12.2005 Bulletin 2005/49 Brucknerstrasse 20 40593 Düsseldorf (DE) (73) Proprietor: Meiji Seika Kaisha Ltd. Chuo-ku, (56) References cited: Tokyo 104-8002 (JP) EP-A- 0 774 247 WO-A1-20/04039339 JP-A- 1 146 986 JP-A- 8 291 036 (72) Inventors: JP-A- 10 298 037 JP-A- 10 298 042 • HASEBE, Kohei, JP-A- 11 240 827 JP-A- 59 209 635 c/o Ichimaru Pharcos Co., Ltd. JP-A- 2001 354 542 JP-A- 2002 145 723 Motosu-shi, Gifu 501-0475 (JP) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • Phenylalanine Metabolism in the Phenylpyruvic Condition
    PHENYLALANINE METABOLISM IN THE PHENYLPYRUVIC CONDITION. I. DISTRIBUTION, POOL SIZE, AND TURNOVER RATE IN HUMAN PHENYLKETONURIA Hanns-Dieter Grümer, … , Hans Koblet, Carol Woodard J Clin Invest. 1961;40(9):1758-1765. https://doi.org/10.1172/JCI104399. Research Article Find the latest version: https://jci.me/104399/pdf PHENYLALANINE METABOLISM IN THE PHENYLPYRUVIC CONDITION. I. DISTRIBUTION, POOL SIZE, AND TURNOVER RATE IN HUMAN PHENYLKETONURIA * By HANNS-DIETER GRUMER, HANS KOBLET AND CAROL WOODARD (From the Biochemical Laboratory, Pineland Hospital and Training Center, Pownal, Maine; and the Arthur G. Rotch Research Laboratories, The Boston Dispensary, Boston, Mass.) (Submitted for publication March 25, 1960; accepted May 19, 1961) The inborn metabolic error in phenylpyruvic demonstrate a defined metabolic variation from oligophrenia consists of the inability to hydroxy- the norm, they also provide the opportunity to late phenylalanine to tryrosine in any significant obtain further information that is not readily avail- amount. Recent work has focused mainly on the able in normal subjects. For example, pool size investigation of this hydroxylating system, its determinations of amino acids have rarely been purification and mode of action (1-5), the inhibi- performed and have mostly proved to be unsatis- tory effect of phenylalanine and its derivatives on factory, bceause they are based on experiments enzymes (6-9), and the prevention of mental re- with N'5-labeled amino acids and many assump- tardation by a diet low in phenylalanine (10, 11). tions have to be made [see Wu, Sendroy and With this diet the free phenylalanine of plasma Bishop (14, 15) and Tschudy and co-workers and total body fluid can be adjusted to any value (16)].
    [Show full text]
  • The Pennsylvania State University the Graduate School College Of
    The Pennsylvania State University The Graduate School College of Engineering PRODUCTION OF PHENYLPYRUVIC ACID AND PHYTASE BY MICROBIAL FERMENTATION A Dissertation in Agricultural and Biological Engineering by Hasan Bugra Coban @2014 Hasan Bugra Coban Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 The dissertation of Hasan Bugra Coban was reviewed and approved* by the following. Ali Demirci Professor of Agricultural and Biological Engineering Dissertation Advisor Chair of Committee Virenda Puri Distinguished Professor of Agricultural and Biological Engineering Paul H. Patterson Professor of Animal Science Ryan J. Elias Associate Professor of Food Science Paul Heinemann Professor of Agricultural and Biological Engineering Head of the Department of Agricultural and Biological Engineering *Signatures are on file in the Graduate School ABSTRACT Feed and food additives are very popular in industry to increase the quality of diets. They have been used for various applications such as nutritional quality enhancing, coloring, flavor enhancing, antimicrobial effects, thickening, stabilization, increasing shelf-life, and calorie reducing. Phenylpyruvic acid (PPA) and phytase are just two of the important feed and food additives. PPA and phytase have important applications in the industry. PPA is being experimentally used as a substitute for phenylalanine in feeds to decrease excessive nitrogen accumulation in the manure to prevent negative effects on the environment. PPA is also used for kidney patient’s diets to decrease urea accumulation in the body. Additionally, PPA is a very important compound for cheese and wine production to generate a specific taste and aroma. Phytase breaks down phytate, which serves as an anti-nutrient agent by binding divalent ions, amino acids, and proteins in the intestine.
    [Show full text]
  • Plasma Metabolomic and Lipidomic Alterations Associated with COVID-19
    medRxiv preprint doi: https://doi.org/10.1101/2020.04.05.20053819; this version posted April 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Plasma Metabolomic and Lipidomic Alterations Associated with COVID-19 Di Wu1,2,#, Ting Shu3,4,2,#, Xiaobo Yang5,#, Jian-Xin Song6,#, Mingliang Zhang7,#, Chengye Yao8,#, Wen Liu3,4, Muhan Huang1,2, Yuan Yu5, Qingyu Yang3,4,2, Tingju Zhu3,4, Jiqian Xu5, Jingfang Mu1,2, Yaxin Wang5, Hong Wang7, Tang Tang7, Yujie Ren1,2, Yongran Wu5, Shu-Hai Lin9*, Yang Qiu 1,2,3,10*, Ding-Yu Zhang3,4*, You Shang5,3,4*, Xi Zhou1,2,3,10* 1 Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Institute of Virology, Center for Biosafety Mega- Science, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430023 China 2 State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS, Wuhan, Hubei 430071, China 3 Center for Translational Medicine, Jinyintan Hospital, Wuhan, Hubei 430023 China 4 Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, Hubei 430023 China 5 Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 China 6 Department of Infectious Diseases, Tongji
    [Show full text]
  • Pattern Recognition Methods for the Prediction of Chemical Structures of Fungal Secondary Metabolites
    !"##$%&'%$()*&+#+)&',$#-)./'0)%'#-$'1%$.+(#+)&')0' (-$,+("2'/#%3(#3%$/')0'03&*"2'/$()&."%4',$#"5)2+#$/' ! ! ! !"##$%&'&"()! ! "#!$%&'(&&! )*+!,+-%(.+/+0)1!'#.!)*+!2+3.++!#'! !*+(,&(%-%$%./-)'&.%'0"./1-2!%3-%$%3-)'&34! - - - - ! 5.6/"&&$+-&(-&7$-8(.),"0-(9-&7$-:',.0&;-(9- <"(0(=",'0-5,"$),$#! (9-&7$-:%"$+%",7-5,7"00$%->)"?$%#"&;-@$)'! - - - !"!5'='%-87')=+$?-A(%$#$%&'()*#+,#-./)0.)1# # !+*0!+0!BC!"[email protected];-DEED! /0!F7'&'?G-H)+"'# ! ! ! ! ! ! ! ! "#$%#&#'()! "#$%&!'#&!'(#)!*$%%+,(-.,#! #$%&'%()*+,(%-".,(&/0,/-/12" 3&,)4&,($"5($,--)&"67,8)&9,+2:";)7%<" " "#$%&!'#&!/.,%01!/234-.,#! =)>%&+')7+"/?"@,/,7?/&'%+,(9" 3&,)4&,($"5($,--)&"67,8)&9,+2:";)7%<" " 5416"#$%&!'#&!"0107($.(-!8&!90-.#(.(-! A&/*>"B)%4)&"%74"C)%4"/?"D&2/EF-)(+&/7".,(&/9(/>2" .%&+,7EB*+$)&E67,8)&9,+G+"C%--)EH,++)70)&1:"@,/I)7+&*':"C%--)"J5%--)K<" " " '0.,!$%!:$2.$#0;!:,%,1-,<!;*7)"LM!":"!N!N<" ! ! !" ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! O" *+,,-'.! ! ! ! ! ! ! ! ! ! ! Q!! /+(-,,#01-((+02! ! ! ! ! ! ! ! ! LN! 3-45#!61!7608#08(! 9:!;08'6<+78%60! ! ! ! ! ! ! ! ! ! LR! L<L"H$2",9"+$)&)"%"7))4"?/&"7)S"4&*19T" " " " " " " LM" L<L<L"U7+,0,/+,("&)9,9+%7()" " " " " " " " LM" L<!"V%+*&%-">&/4*(+9E0%9)4"4&*1"4,9(/8)&2" " " " " " " LM" L<O"3*71,"W"%"9/*&()"/?"7/8)-"7%+*&%-">&/4*(+9" " " " " " LQ"" L<P"H$2"%&)"?*71%-"7%+*&%-">&/4*(+9"7/+"9+*4,)4"S)--T" " " " " !N"" L<R"V/7E&,0/9/'%-">)>+,4)"927+$)+%9)9"JVX#5K" " " " " " !L" L<M"U4)72-%+,/7"4/'%,79" " " " " " " " " !!"" L<Y"5*09+&%+)"9>)(,?,(,+2"/?"UE4/'%,79" " " " " " " !P" L<Q"D/74)79%+,/7"4/'%,79" " " " " " " !Y" " L<Z"F7(/4,71"/?"9'%--"'/-)(*-)9"
    [Show full text]
  • Production of the Flavor Compound Benzaldehyde by Lactic Acid Bacteria: Role of Manganese and Itstranspor T Systems Inlactobacillus Plantarum
    Production of the Flavor Compound Benzaldehyde by Lactic Acid Bacteria: Role of Manganese and itsTranspor t Systems inLactobacillus plantarum Masja Nierop Groot CENTRALE LANOBOUWCATALOGUS 0000 0873 7500 Promotor: Prof.dr .W.M .d eVo s Hoogleraar ind e Microbiologie, Themadirecteur bij hetWageninge n Centre for Food Sciences Co-promotor: Dr. M.Kleerebeze m Projectleider bij hetWageninge n Centre for Food Sciences Promotiecommissie: Prof.dr . M. Muller Wageningen Universiteit Prof.dr . J. Delcour University of Louvain-la-Neuve, Belgium Prof.dr . K. Hellingwerf Universiteit van Amsterdam Dr.J .Sikkem a Friesland Coberco Dairy Foods .r,Ci^ Production of the Flavor Compound Benzaldehyde by Lactic Acid Bacteria: Role of Manganese and itsTranspor t Systems inLactobacillus plantarum Masja Nathalie Nierop Groot Proefschrift terverkrijgin g vand egraa d van doctor opgeza g van de rector magnificusva n Wageningen Universiteit, prof.dr . ir. L. Speelman, in hetopenbaa r te verdedigen opwoensda g 19decembe r 2001de s ochtends omel f uur ind eAula . 2>r.£j> Nierop Groot, M.N. Production ofth e Flavor Compound Benzaldehyde by Lactic Acid Bacteria: Roleo f Manganese and itsTranspor t Systems inLactobacillus plantarum ThesisWageninge n University, 2001. Met Nederlandse samenvatting ISBN: 90-5808-539-2 Stellingen 1. Het is onwaarschijnlijk dat de lage intracellulaire mangaan concentratie in de door Hao et al. (1999) geconstrueerde Lactobacillusplantarum mutant het gevolg is van uitschakeling van het mntAge nalleen . Hao, Z., H.R. Reiske and D.B. Wilson. 1999. Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants. Applied and Environmental Microbiology 65: 4741-4745. Dit proefschrift 2.
    [Show full text]