The Pennsylvania State University the Graduate School College Of

Total Page:16

File Type:pdf, Size:1020Kb

The Pennsylvania State University the Graduate School College Of The Pennsylvania State University The Graduate School College of Engineering PRODUCTION OF PHENYLPYRUVIC ACID AND PHYTASE BY MICROBIAL FERMENTATION A Dissertation in Agricultural and Biological Engineering by Hasan Bugra Coban @2014 Hasan Bugra Coban Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 The dissertation of Hasan Bugra Coban was reviewed and approved* by the following. Ali Demirci Professor of Agricultural and Biological Engineering Dissertation Advisor Chair of Committee Virenda Puri Distinguished Professor of Agricultural and Biological Engineering Paul H. Patterson Professor of Animal Science Ryan J. Elias Associate Professor of Food Science Paul Heinemann Professor of Agricultural and Biological Engineering Head of the Department of Agricultural and Biological Engineering *Signatures are on file in the Graduate School ABSTRACT Feed and food additives are very popular in industry to increase the quality of diets. They have been used for various applications such as nutritional quality enhancing, coloring, flavor enhancing, antimicrobial effects, thickening, stabilization, increasing shelf-life, and calorie reducing. Phenylpyruvic acid (PPA) and phytase are just two of the important feed and food additives. PPA and phytase have important applications in the industry. PPA is being experimentally used as a substitute for phenylalanine in feeds to decrease excessive nitrogen accumulation in the manure to prevent negative effects on the environment. PPA is also used for kidney patient’s diets to decrease urea accumulation in the body. Additionally, PPA is a very important compound for cheese and wine production to generate a specific taste and aroma. Phytase breaks down phytate, which serves as an anti-nutrient agent by binding divalent ions, amino acids, and proteins in the intestine. Also, phytase is an important additive in monogastric animals’ diet to decrease excessive phosphorus accumulation in the manure, which may cause changing flora and fauna. Therefore, the purpose of this research was to enhance PPA and phytase productions in bioreactors by optimizing growth and fermentation medium parameters, also conducting various fermentation modes. Additionally, the effect of two microparticles (talcum and aluminum oxide) on fungal phytase production was studied. For PPA fermentation, strain selection was first performed using four microbial strains (Morganella morganii, Zygosaccharomyces rouxii, Proteus vulgaris, and Corynebacterium glutamicum) based on a literature search and P. vulgaris was selected as the best microorganism based on PPA production level in shake-flask fermentation, (358 mg/L). Thereafter, growth parameters such as temperature, pH, and aeration were optimized for PPA and biomass production in the bioreactors by using Response Surface Methodology (RSM). Optimum conditions were determined as 34.5°C, 5.12 pH, and 0.5 vvm aeration for PPA production and 36.9oC, pH 6.87, and 0.96 vvm aeration for biomass production. Under optimum conditions, 1054 mg/L PPA and 3.25 g/L biomass productions were obtained. ANOVA results showed that all of growth factors evaluated were significantly (p<0.05) effective on biomass production, however aeration was not a significant (p<0.05) factor for PPA production. iii Additionally, concentration levels of fermentation medium ingredients such as glucose, yeast extract, and phenylalanine were optimized by RSM. The optimum ingredient concentrations for PPA production were determined as 119.4 g/L for glucose, 3.68 g/L for yeast extract, and 14.85 g/L for phenylalanine, whereas 163.8 g/L glucose, 10.75 g/L yeast extract, and 9.84 g/L phenylalanine were the best for biomass production. PPA and biomass concentrations increased to 1349 mg/L and 4.35 g/L, respectively, under these respective optimum conditions. Furthermore, fed-batch and continuous fermentation were conducted to further enhance PPA production. It was determined that addition 4 g of phenylalanine into the reactor at 30 h of fermentation increased PPA concentration to 2958 mg/L. Also, PPA productivity was increased to 259 mg/L/h in continuous fermentations, which is almost 5 times higher compared to productivity in batch fermentation. Additionally, PPA and biomass production, glucose and phenylalanine consumption by P. vulgaris were predicted with modified Gompertz and modified logistic models. The models over-predicted PPA and biomass productions however lower-predicted phenylalanine and glucose consumption data. The modified Gompertz model predicted the experimental data with lower root mean square error (RMSE) and mean average error (MAE) values compared to modified logistic model for all predictions. For phytase fermentation, first phytase producer microorganisms were screened by evaluating four different strains (Lactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus amylovorus, and Aspergillus ficuum) and A. ficuum was selected as the most productive strain among them. The highest phytase activity was measured as 1.02 U/ml in shake- flask fermentation. A. ficcum phytase activity increased to 2.27 U/ml in bioreactors by optimization of growth parameters. For phytase production these were determined to be 33°C, pH 4.5, and 0.9 vvm aeration and all the factors were significantly effective on phytase production. Also, optimum pH and temperature values were determined as 5.5 and 55oC, respectively for A. ficuum using a phytase assay. Additionally, the lowest phytase activity loss was seen under 4oC storage conditions for 1 week. However, -20oC storage conditions provided lower activity loss for A. ficuum phytase when storage was more than 1 week of storage period. Thereafter, phytase fermentation medium ingredients such as glucose, Na-phytate, and CaSO4 were optimized in the next study. Maximum phytase activity was measured as 3.45 U/ml with 126 g/L of glucose, 14 g/L of Na-phytate, and 1.1 g/L of CaSO4. iv Furthermore, the effect of glucose and phytate additions on phytase activity were evaluated in fed-batch fermentations. Maximum phytase activities were measured as 3.84, 4.63, and 4.83 U/ml, when 45 g of glucose, 5 g of Na-phytate, and 10 g of Na-phytate was added into the bioreactors, respectively, at 96 h of the fermentations. Also, continuous fermentation of phytase increased the productivity almost 7-fold compared to batch fermentation. Additionally, the effects of aluminum oxide and talcum were studied on phytase production with A. ficuum. It was reported that phytase activity remarkably increased by addition of 15 g/L of aluminum oxide and talcum to 2.01 and 2.93 U/ml, respectively, compared to the control (1.02 U/ml) in shake-flask fermentations. Moreover, microparticle addition provided small pellets and prevented bulk fungal growth in the fermentation broth. The highest phytase activity was measured as 6.49 U/ml by addition of 15 g/L of talcum in bioreactors at 96 h of fermentation. Also, the effect of talcum addition on fed-batch and continuous fermentations were studied. Phytase activity increased from 4.912 to 9.587 U/ml and from 3.3 to 6.3 U/ml in fed-batch and continuous fermentations, respectively, by addition of 15 g/L talcum. Moreover, maximum phytase productivity was measured as 0.621 U/ml/h at 0.1 h-1 dilution rate with 15 g/L of talcum added continuous fermentation. Finally, phytase production and glucose consumption were predicted with modified Gompertz model and modified logistic model. Modified Gompertz model predicted phytase activity slightly more successfully compared to modified logistic model. Lower MAE and RMSE values were obtained for the prediction of glucose by the modified logistic model compared to the modified Gompertz model, however higher R2 and slope values were obtained by the modified Gompertz model. In conclusion, PPA production increased almost 10 fold in fed-batch studies compared to shake-flask fermentations. Similarly, phytase productions increased almost 5 and 10 fold in fed- batch and microparticle added fed-batch fermentations, respectively, compared to shake-flask fermentations. These studies clearly demonstrated that PPA and phytase productions were significantly enhanced by optimization and using novel fermentation methods. Also, mathematical models provided better understanding of microbial kinetics for both fermentations. With these enhancements, industrial productions of PPA and phytase by using submerged fermentation are now closer to reality than before. v TABLE of CONTENTS LIST of FIGURES……………………………………………………………………………… xiii LIST of TABLES……………………………………………………………………………...... xvi ACKNOWLEDGEMENTS…………………………………………………………………….. xix 1. INTRODUCTION ....................................................................................................................... 1 2. LITERATURE REVIEW ............................................................................................................ 4 2.1. Amino Acids ............................................................................................................ 4 2.1.1. Amino Acid Production .................................................................................... 6 2.1.2. Microbial Production of Amino Acids ............................................................. 7 2.1.3. Applications of Amino Acids ........................................................................... 9 2.1.4. Determination and Quantification of Amino Acids .......................................... 9 2.1.5. Essential and Non-essential Amino
Recommended publications
  • Measurement of Metabolite Variations and Analysis of Related Gene Expression in Chinese Liquorice (Glycyrrhiza Uralensis) Plants
    www.nature.com/scientificreports OPEN Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice Received: 15 March 2017 Accepted: 28 March 2018 (Glycyrrhiza uralensis) plants under Published: xx xx xxxx UV-B irradiation Xiao Zhang1,2, Xiaoli Ding3,4, Yaxi Ji1,2, Shouchuang Wang5, Yingying Chen1,2, Jie Luo5, Yingbai Shen1,2 & Li Peng3,4 Plants respond to UV-B irradiation (280–315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of diferentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and favonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various favonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho- dihydroxylated B-ring favonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and favonoid biosynthesis were upregulated by UV-B irradiation. These fndings lay the foundation for further analysis of the mechanism underlying the response of G.
    [Show full text]
  • "Method 366.0
    Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis Jia-Zhong Zhang, Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, University of Miami, Miami, FL 33149 George A. Berberian, National Oceanic and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry Division, Miami, FL 33149 Project Officer Elizabeth J. Arar Version 1.0 September 1997 National Exposure Research Laboratory Office of Research and Development U.S. Environmental Protection Agency Cincinnati, Ohio 45268 366.0-1 Method 366.0 Determination of Dissolved Silicate in Estuarine and Coastal Waters by Gas Segmented Continuous Flow Colorimetric Analysis 1.0 Scope and Application contained in the sample with molybdate in acidic solution. The $-molybdosilicic acid is then reduced by ascorbic 1.1 This method provides a procedure for the acid to form molybdenum blue. The absorbance of the determination of dissolved silicate concentration in molybdenum blue, measured at 660 nm, is linearly estuarine and coastal waters. The dissolved silicate is proportional to the concentration of silicate in the sample. mainly in the form of silicic acid, H4SiO4, in estuarine and A small positive error caused by differences in the coastal waters. All soluble silicate, including colloidal refractive index of seawater and reagent water, and silicic acid, can be determined by this method. Long chain negative error caused by the effect of salt on the color polymers containing three or more silicic acid units do not formation, are corrected prior to data reporting.
    [Show full text]
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • 1 Development of a Disposable Pyruvate
    Biosensors and Bioelectronics, Volume 21, Issue 11, 15 May 2006, pp2176-2179. Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L.) L.A. Abayomi, L.A. Terry*, S.F. White and P.J. Warner Plant Science Laboratory, Cranfield University, Bedfordshire, MK45 4DT, UK * Corresponding author. Email address: [email protected] (L. A. Terry). Abstract A disposable prototype pyruvate biosensor was constructed using pyruvate oxidase immobilised on mediated meldolas blue electrodes to determine pungency in onions (Allium cepa L.). The operating potential was +150 mV. A strong correlation between the biosensor response and untreated onion juice of known pyruvate concentration 2 – 12 mol/g fresh weight (FW) was demonstrated. The biosensor was able to differentiate between low and high pungency onions. The detection limit using 1 unit of pyruvate oxidase was 1 – 2 mol/g FW. Optimum concentrations of co-factors TPP and FAD and MgSO4 comprising the enzyme cocktail were determined as being 0.04 mM, 0.1 mM and 30 mM, respectively. Keywords: meldolas blue; fresh produce; quality assurance; sweet onions 1. Introduction Bulb onions are the second most important horticultural crop after tomatoes (Griffiths et al. 2002) and are consumed worldwide for their unique flavour. Increasingly, low pungency bulbs (often referred to colloquially as mild and/or sweet onions) are consumed raw in the USA and elsewhere. Pyruvate concentration (mol/g FW) in macerated onion 1 tissue is used as a quality assurance indicator of pungency (Schwimmer and Weston, 1961; Wall and Corgan, 1992; Crowther et al., 2005) or flavour intensity in most onion producing countries.
    [Show full text]
  • A Guide to Colorimetry
    A Guide to Colorimetry Sherwood Scientific Ltd 1 The Paddocks Cherry Hinton Road Cambridge CB1 8DH England www.sherwood-scientific.com Tel: +44 (0)1223 243444 Fax: +44 (0)1223 243300 Registered in England and Wales Registration Number 2329039 Reg. Office as above Group I II III IV V VI VII VIII Period 1A 8A 1 2 1 H 2A 3A 4A 5A 6A 7A He 1.008 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.939 9.0122 10.811 12.011 14.007 15.999 18.998 20.183 11 12 13 14 15 16 17 18 3 Na Mg 3B 4B 5B 6B 7B [---------------8B-------------] 1B 2B Al Si P S Cl Ar 22.99 24.312 26.982 28.086 30.974 32.064 35.453 39.948 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.102 40.08 44.956 47.9 50.942 51.996 54.938 55.847 58.933 58.71 63.546 65.37 69.72 72.59 74.922 78.96 79.904 83.8 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.52 88.905 91.22 92.906 95.94 [97] 101.07 102.91 106.4 107.87 112.4 114.82 118.69 121.75 127.6 126.9 131.3 55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 132.91 137.34 138.91 178.49 180.95 183.85 186.2 190.2 192.2 195.09 196.97 200.59 204.37 207.19 208.98 209 210 222 87 88 89** 104 105 106 107 108 109 110 111 112 114 116 7 Fr Ra Ac Rt Db Sg Bh Hs Mt 215 226.03 227.03 [261] [262] [266] [264] [269] [268] [271] [272] [277] [289] [289] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 * Lanthanides Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 140.12 140.91 144.24 145 150.35 151.96 157.25 158.92 152.5 164.93 167.26 168.93 173.04 174.97 90 91 92 93 94 95 96 97 98 99 100 101 102 103 ** Actinides Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 232.04 231 238 237.05 239.05 241.06 244.06 249.08 251 252.08 257.1 258.1 259.1 262.11 The ability to analyse and quantify colour in aqueous solutions and liquids using a colorimeter is something today’s analyst takes for granted.
    [Show full text]
  • Kinetics of the Uncatalyzed, Alkaline Decomposition of Hydrogen Peroxide Trice Walter Haas Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1960 Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide Trice Walter Haas Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Haas, Trice Walter, "Kinetics of the uncatalyzed, alkaline decomposition of hydrogen peroxide " (1960). Retrospective Theses and Dissertations. 2645. https://lib.dr.iastate.edu/rtd/2645 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. KINETICS OF THE UN CATALYZED, ALKALINE DECOMPOSITION OF HYDROC-EN PEROXIDE by Trice Walter Haas A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Physical Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa I960 il TABLE OP CONTENTS Page I. INTRODUCTION 1 II. EXPERIMENTAL 8 A. Apparatus 8 B. Quenching Technique 9 C. Analytical Techniques 10 D. Purification Methods 13 III. RESULTS AND DISCUSSION 20 A. The Homogeneous, Uncatalyzed Decomposition 20 1» General 20 2. Impurity effects 20 3* Surface effects 22 L Effect of light 27 5. Inert ions 28 6. Experimental results and discussion 29 7* Sources of error $1 B.
    [Show full text]
  • Cell Biology
    Cell Biology - Assays Kits Apoptosis For your research Interchim offers a comprehensive line of products : Technical tip ! Membrane assays (AnnexinV, AppolerCentage) ! Caspase assays Apoptosis is a programmed, cell-autonomous death process, known to impact every stage of ! Mitochondria assays life of multicellular eukaryotes. It is involved in a variety of physiological and pathological events, ranging from normal development (embryo Method Advantages Disadvantages growth, postnatal organ modeling and cell Apoptosis membrane alteration : Dye Single apoptotic cell (IHC). Quick and Limited information available on cell turnover) to diseases and disorders (cancer, (uptake bioassay: APOPercentage). easy to use. Assay can also be membrane composition. organ failure and ageing, and quantified, using a digital camera or a neurodegenerative diseases). During microplate colorimeter/fluorimeter. apoptosis, the caspases execute the Necrotic cells cannot retain the dye. disassembly of cellular components by Several hundred assays can be proteolytic cleavage of a variety of substrates, such as poly-(ADP ribose) polymerase (PARP), performed in one day. DNA-dependent protein kinase (DNA-PK), Apoptosis membrane alteration: Sensitivity Single cell (FCM, IHF). Does not discriminate between apoptotic topoisomerases, and protein kinase C (PKC). (Annexin V binding) Confirms the occurrence of and necrotic cells. At least ten caspases have been discovered. phosphatidylserine flippase in Some of these caspases identify and cleave a apoptotic cells, and the activity of specific peptide substrate, while others initiator caspases. recognize the same peptide substrate. Fluorescence Activated Cell Sorter Good option for suspension cells. The equipment is designed for cell (FACS). counting and cell sorting. Excessive physical force, to remove cell clumps, can damage cells. Lower Sensitivity (>100 Selection guide apoptotic cells to discern cluster in a sample scan.
    [Show full text]
  • Reclamation of Hexavalent Chromium Using Catalytic Activity of Highly Recyclable Biogenic Pd(0) Nanoparticles R
    OPEN Reclamation of hexavalent chromium using catalytic activity of highly recyclable biogenic Pd(0) nanoparticles R. M. Tripathi1,2 & Sang J. Chung1* Hexavalent chromium is extremely toxic and increasingly prevalent owing to industrialisation, thereby posing serious human health and environmental risks. Therefore, new approaches for detoxifying high concentrations of Cr (VI) using an ultralow amount of catalyst with high recyclability are increasingly being considered. The catalytic conversion of Cr (VI) into Cr (III) was previously reported; however, it required a large amount of catalyst to reduce a low concentration of Cr (VI); further, pH adjustment and catalyst separation had to be performed, causing issues with large-scale remediation. In this study, an unprecedented eco-friendly and cost-efective method was developed for the synthesis of Pd nanoparticles (PdNPs) with a signifcantly narrow size distribution of 3–25 nm. PdNPs demonstrated the presence of elemental Pd with the zero oxidation state when analysed by energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The PdNPs could detoxify a high concentration of Cr (VI), without the need to adjust the pH or purify the nanoparticles for reusability. The reusability of the PdNPs for the catalytic conversion of Cr (VI) into Cr (III) was >90% for subsequent cycles without the further addition of formic acid. Thus, the study provides new insights into the catalytic reclamation of Cr (VI) for industrial wastewater treatment. Heavy-metal pollution is a serious hazard and a global issue due to the increase in industrial and agricultural activities. Several toxic pollutants, such as inorganic ions, metals, and synthetic organic matter, are released into water.
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Formation of Phenylacetic Acid and Benzaldehyde by Degradation Of
    Food Chemistry: X 2 (2019) 100037 Contents lists available at ScienceDirect Food Chemistry: X journal homepage: www.journals.elsevier.com/food-chemistry-x Formation of phenylacetic acid and benzaldehyde by degradation of phenylalanine in the presence of lipid hydroperoxides: New routes in the amino acid degradation pathways initiated by lipid oxidation products ⁎ Francisco J. Hidalgo, Rosario Zamora Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario – Edificio 46, 41013 Seville, Spain ARTICLE INFO ABSTRACT Chemical compounds studied in this article: Lipid oxidation is a main source of reactive carbonyls, and these compounds have been shown both to degrade Benzaldehyde (PubChem ID: 240) amino acids by carbonyl-amine reactions and to produce important food flavors. However, reactive carbonyls 4-Oxo-2-nonenal (PubChem ID: 6445537) are not the only products of the lipid oxidation pathway. Lipid oxidation also produces free radicals. 13-Hydroperoxy-9Z,11E-octadecadienoic acid Nevertheless, the contribution of these lipid radicals to the production of food flavors by degradation of amino (PubChem ID: 5280720) acid derivatives is mostly unknown. In an attempt to investigate new routes of flavor formation, this study Phenylacetaldehyde (PubChem ID: 998) describes the degradation of phenylalanine, phenylpyruvic acid, phenylacetaldehyde, and β-phenylethylamine Phenylacetic acid (PubChem ID: 999) β-Phenylethylamine (PubChem ID: 1001) in the presence of the 13-hydroperoxide of linoleic acid, 4-oxononenal (a reactive carbonyl derived from this Phenylalanine (PubChem ID: 6140) hydroperoxide), and the mixture of both of them. The obtained results show the formation of phenylacetic acid Phenylpyruvic acid (PubChem ID: 997) and benzaldehyde in these reactions as a consequence of the combined action of carbonyl-amine and free radical reactions for amino acid degradation.
    [Show full text]
  • COMPILATION of AMINO ACIDS, DRUGS, METABOLITES and OTHER COMPOUNDS in MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S
    COMPILATION OF AMINO ACIDS, DRUGS, METABOLITES AND OTHER COMPOUNDS IN MASSTRAK AMINO ACID ANALYSIS SOLUTION Paula Hong, Kendon S. Graham, Alexandre Paccou, T homas E. Wheat and Diane M. Diehl INTRODUCTION LC conditions Physiological amino acid analysis is commonly performed to LC System: Waters ACQUITY UPLC® System with TUV monitor and study a wide variety of metabolic processes. A wide Column: MassTrak AAA Column 2.1 x 150 mm, 1.7 µm variety of drugs, foods, and metabolic intermediates that may Column Temp: 43 ˚C be present in biological fluids can appear as peaks in amino Flow Rate: 400 µL/min. acid analysis, therefore, it is important to be able to identify Mobile Phase A: MassTrak AAA Eluent A Concentrate, unknown compounds.1,2,3 The reproducibility and robustness of diluted 1:10 the MassTrak Amino Acid Analysis Solution make this method well Mobile Phase B: MassTrak AAA Eluent B suited to such a study as well.4 Weak Needle Wash: 5/95 Acetonitrile/Water Strong Needle Wash: 95/5 Acetonitrile/Water Gradient: MassTrak AAA Standard Gradient (as provided in kit) Detection: UV @ 260 nm Injection Volume: 1 µL EXPERIMENTAL Injection Mode: Partial Loop with Needle Overfill (PLNO) Compound sample preparation A library of compounds was assembled. Each compound was derivatized individually and spiked into the MassTrak™ AAA Solution Standard prior to chromatographic analysis. The elution RESULTS AND DISCUSSION position of each tested compound could be related to known amino acids. A wide variety of antibiotics, pharmaceutical compounds and metabolite by-products are found in biological fluids. The reten- 1.
    [Show full text]
  • Impacts of Dietary Exposure to Pesticides on Faecal Microbiome
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448511; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Impacts of dietary exposure to pesticides on faecal microbiome 2 metabolism in adult twins 3 4 Robin Mesnage1, Ruth C E Bowyer2, Souleiman El Balkhi3, Franck Saint-Marcoux3, Arnaud 5 Gardere3, Quinten Raymond Ducarmon4, Anoecim Robecca Geelen4, Romy Daniëlle Zwittink4, 6 Dimitris Tsoukalas5, Evangelia Sarandi5, Efstathia I. Paramera6, Timothy Spector2, Claire J Steves2, 7 Michael N Antoniou1* 8 9 1 Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, 10 Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK. 11 12 2 Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK 13 14 3 Service de pharmacologie, toxicologie et pharmacovigilance, UF Toxicologie analytique environnementale 15 et santé au travail, CHU de Limoges, Limoges, France 16 17 4 Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, The 18 Netherlands 19 20 5 Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, 21 Greece 22 23 6 NEOLAB S.A., Medical laboratory, 125 Michalakopoulu Str., 11527 Athens, Greece 24 25 26 *Correspondence: [email protected] 27 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448511; this version posted June 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]