Michael Eckert Arnold Sommerfeld. Science, Life and Turbulent Times

Total Page:16

File Type:pdf, Size:1020Kb

Michael Eckert Arnold Sommerfeld. Science, Life and Turbulent Times Michael Eckert Arnold Sommerfeld. Science, Life and Turbulent Times Michael Eckert translated by Tom Artin Arnold Sommerfeld Science, Life and Turbulent Times 1868–1951 Michael Eckert Deutsches Museum Munich , Germany Translation of Arnold Sommerfeld: Atomphysiker und Kulturbote 1868–1951, originally published in German by Wallstein Verlag, Göttingen ISBN ---- ISBN ---- (eBook) DOI ./---- Springer New York Heidelberg Dordrecht London Library of Congress Control Number: © Springer Science+Business Media New York Th is work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. Th e use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. Th e publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Acknowledgment In the case of such a source-dependent work, fi rst thanks are due Sommerfeld’s heirs for access to the private papers and for permission to make full use of their content. Sommerfeld’s granddaughter, Monika Baier, deserves particular thanks for ordering her grandfather’s private papers and for providing valuable information on the family background. Th e archivists of the various public institutions in which Sommerfeld correspondence resides, too, are gratefully acknowledged for their readiness to help. Th e bibliography reveals how much support the project has thereby received. Cited passages from letters and texts from other source materials have been adapted to modern notation for the sake of legibility. Numerous letters cited here only in excerpts are printed in full in editions of correspondence. In these cases, references are given indicating the respective volume of the published corre- spondence (e.g., ASWB I and ASWB II as abbreviations for the two volumes of Arnold Sommerfeld – Wissenschaftlicher Briefwechsel, Band I und II : since in those volumes the letters are printed in chronological order, there is no need to specify page or letter numbers). Th us the reader can study the respective letters in full and in the context of the other correspondence reproduced there. Since Sommerfeld’s private letters are not publicly accessible, they are identifi ed only by date, and no source is given. It is conventional for the published work of a scientist to take precedence over unpublished papers at the beginning of a biographical endeavor. Th is approach refl ects his life’s work as a scientist as it has been perceived by his contemporaries. Usually this kind of biographical work begins with the mile-stone birthdays mark- ing decades of a scientist’s life. 1 Th us, festschrifts were assembled to celebrate Sommerfeld’s 60th, 70th, and 80th birthdays. In 1968, on the occasion of his 100th birthday, the physicists of the University of Munich, organized an “Arnold Sommerfeld Centennial Memorial Meeting,” and an “International Symposium on the Physics of the One- and Two-Electron Atoms.” On this occasion, his succes- sor at the Institute for Th eoretical Physics (Fritz Bopp) was commissioned by the Bavarian Academy of Sciences to arrange for Sommerfeld’s most important scien- tifi c papers to be published in the form of a four-volume edition. 2 Th e biographer is gratefully obliged to all those involved in this preliminary work. Th e editors of the scientifi c correspondence (the author and Karl Märker) had the support of the Munich Physics Department (especially Harald Fritzsch and Herbert Wagner), and the Bavarian Academy of Sciences (in the person of Past President Arnulf Schlüter). Special thanks are also due the Dean of the Faculty of Physics (Axel Schenzle) of Munich University for the fi nancial support that has enabled the translation of the German original of this biography into English. 1 See chapter 14. 2 Sauter, Sommerfeld , 1969. v acknowledgment Th e biographer owes thanks and acknowledgment also to his colleagues in the history of science who have concerned themselves from a historical perspective with Sommerfeld and his fi elds of research. Atop the list are John L. Heilbron, and Paul Forman, who as participants in the SHQP project actually fi rst set Sommerfeld research in motion. Subsequently, above all Armin Hermann, Ulrich Walter Benz, and Karl von Meyenn have helped cause this spark to jump over to Germany. In recent years, a new project on the history of quantum physics 3 at the Max Planck Institute for History of Science in Berlin brought further impetus to analyze Sommerfeld’s work within the network of modern atomic and quantum theory. For this biography, it was a piece of good fortune to participate in this project. It would lead too far afi eld to list all the names of colleagues and friends who in this and in previous decades have researched the history of quantum physics—and thus also important aspects of the fi eld of Sommerfeld biography. Even if, in retrospect, quantum physics be deemed Sommerfeld’s most signifi - cant area of research, the less spectacular mathematical, physical, and technical work to which he devoted himself in the course of his long scientifi c career deserves inclusion in his biography. Th e gratitude of the historian of science and biographer is therefore directed to all those who have devoted their scholarly attention to these aspects of Sommerfeld’s work, and thus in diverse ways have advanced the work of this biography. Th eir names and contributions are to be found in the bibliography. Special thanks to our colleagues at the Research Institute of the Deutsches Museum, which constitutes a particularly sympathetic setting for the work of history of sci- ence. Last but not least, thanks to the German Research Foundation, without whose fi nancial support this project would not have been possible. 3 http://quantum-history.mpiwg-berlin.mpg.de/main/ (28 January 2013) vi Contents Prologue. xi Königsberg Roots . . Childhood. . School Years . . University Study. . A Competition . . Th e Dissertation. . A Mechanical Basis of Electrodynamics . Setting the Course. . Missed Opportunities . . Military Service . . Mineralogical Interlude . . Stick It Out, or Resign? . . Approach to Felix Klein . . Physics or Mathematics?. Klein’s Assistant . . Physical Mathematics . . Th en I’ll Grow into the Lectureship . . Reading Room and Model Collection . . Habilitation . . Lecturer . . Th e Engagement. Clausthal . . An Off er from America . . Th e Appointment at the Clausthal School of Mining . . Th e School of Mining . . Th e Wedding . . Gyroscope Matters and Electrodynamic Problems. . Encyclopedia Travels. . Gyroscope + Encyclopedia = Aachen-Recommendation . vii contents Aachen . . Backgrounds of an Appointment . . Rapprochement with Engineering. . Technological Expert . . Family Life . . Duties and Inclinations . . Th e “Super-Mechanics” of Electrons. . “In Truth I Am No Engineering Professor; I Am a Physicist” . Munich . . Academic Traditions. . Quarrel over Electron Th eory . . Th e Origins of the Sommerfeld School . . Th e Mathematical Attack . . Th e “h-Discovery” . . Th e First Solvay Congress . . X-Rays and Crystals . Physics in War and Peace . . “For Me, the Political Future Lies in Utter Darkness” . . Return to Th eory . . Letters from the Front . . Elaboration of Bohr’s Atomic Model . . Success . . Military Physics . . An Emotional Roller Coaster . The Quantum Pope . . Atomic Structure and Spectral Lines. . Th e German Physical Society: Internal Strife . . Visiting Bohr . . A New Quantum Number . . Teacher and Students . . Th e Bible of Atomic Physics. . Th e Lusitania Medal. . Karl Schurz Professor at Madison . . California Impressions. . Practical Spectroscopy . viii contents Wave Mechanics. . Th e Crisis of the Models. . “We Believe in Heisenberg, but We Calculate with Schrödinger” . . Electron Th eory of Metals . . Th e Planck Succession. . “Not Sommerfeld, but Schüpfer” . . Th e Volta Congress . . A Wave Mechanics Supplement . Cultural Ambassador. . German Science on the International Stage . . Impressions of India . . German Science at Chinese Outposts . . Birthday in Japan . . Visiting Professor in Pasadena . . Th e Second American Tour . . Critique of Positivism . . Quarrel with Stark . . On the Road Again . . Consolidation of the New Th eories . Descent . . Consequences of the New Civil Service Law . . A Deceptive Normalcy. ..
Recommended publications
  • Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017
    Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017 Physicists have been actively involved in the defense of Human Rights of colleague physicists, and scientists in general, around the world for a long time. What follows is a list of talks, articles and informed remembrances on Physics and Human Rights by physicist-activists that are available online. The selection is not exhaustive, on the contrary it just reflects our personal knowledge of recent publications; nevertheless, they are in our view representative of the indefatigable work of a large number of scientists affirming Human Rights and in defense of persecuted, in prison or at risk colleagues throughout the world. • “Ideas and Opinions” Albert Einstein Crown Publishers, 1954, 1982 The most definitive collection of Albert Einstein's writings, gathered under the supervision of Einstein himself. The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government. • “Physics and Human Rights: Reflections on the past and the present” Joel L. Lebowitz Physikalische Blatter, Vol 56, issue 7-8, pages 51-54, July/August 2000 http://onlinelibrary.wiley.com/doi/10.1002/phbl.20000560712/pdf Based loosely on the Max von Laue lecture given at the German Physical Society's annual meeting in Dresden, 03/2000. This article focus on the moral and social responsibilities of scientists then -Nazi period in Germany- and now. Max von Laue's principled moral response at the time, distinguished him from many of his contemporary scientists.
    [Show full text]
  • On Max Born's Vorlesungen ¨Uber Atommechanik, Erster Band
    On Max Born’s Vorlesungen uber¨ Atommechanik, Erster Band Domenico Giulini Institute for Theoretical Physics, University of Hannover Appelstrasse 2, D-30167 Hannover, Germany and Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany. [email protected] Abstract A little more than half a year before Matrix Mechanics was born, Max Born finished his book Vorlesungen uber¨ Atommechanik, Erster Band, which is a state-of-the-art presentation of Bohr-Sommerfeld quantisation. This book, which today seems almost forgotten, is remarkable for its epistemological as well as technical aspects. Here I wish to highlight one aspect in each of these two categories, the first being concerned with the roleˆ of axiomatisation in the heuristics of physics, the second with the problem of quantisation proper be- fore Heisenberg and Schrodinger.¨ This paper is a contribution to the project History and Foundations of Quantum Physics of the Max Planck Institute for the History of Sciences in Berlin and will appear in the book Research and Pedagogy. The History of Quantum Physics through its Textbooks, edited by M. Badino and J. Navarro. Contents 1 Outline 2 2 Structure of the Book 3 3 Born’s pedagogy and the heuristic roleˆ of the deductive/axiomatic method 7 3.1 Sommerfeld versus Born . 7 3.2 A remarkable introduction . 10 4 On technical issues: What is quantisation? 13 5 Einstein’s view 20 6 Final comments 23 1 1 Outline Max Born’s monograph Vorlesungen uber¨ Atommechanik, Erster Band, was pub- lished in 1925 by Springer Verlag (Berlin) as volume II in the Series Struktur der Materie [3].
    [Show full text]
  • On the Planck-Einstein Relation Peter L
    On the Planck-Einstein Relation Peter L. Ward US Geological Survey retired Science Is Never Settled PO Box 4875, Jackson, WY 83001 [email protected] Abstract The Planck-Einstein relation (E=hν), a formula integral to quantum mechanics, says that a quantum of energy (E), commonly thought of as a photon, is equal to the Planck constant (h) times a frequency of oscillation of an atomic oscillator (ν, the Greek letter nu). Yet frequency is not quantized—frequency of electromagnetic radiation is well known in Nature to be a continuum extending over at least 18 orders of magnitude from extremely low frequency (low-energy) radio signals to extremely high-frequency (high-energy) gamma rays. Therefore, electromagnetic energy (E), which simply equals a scaling constant times a continuum, must also be a continuum. We must conclude, therefore, that electromagnetic energy is not quantized at the microscopic level as widely assumed. Secondly, it makes no physical sense in Nature to add frequencies of electromagnetic radiation together in air or space—red light plus blue light does not equal ultraviolet light. Therefore, if E=hν, then it makes no physical sense to add together electromagnetic energies that are commonly thought of as photons. The purpose of this paper is to look at the history of E=hν and to examine the implications of accepting E=hν as a valid description of physical reality. Recognizing the role of E=hν makes the fundamental physics studied by quantum mechanics both physically intuitive and deterministic. Introduction On Sunday, October 7, 1900, Heinrich Rubens and wife visited Max Planck and wife for afternoon tea (Hoffmann, 2001).
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • PAUL SOPHUS EPSTEIN March 20, 1883-February 8, 1966
    NATIONAL ACADEMY OF SCIENCES P AUL SOPHUS E PSTEIN 1883—1966 A Biographical Memoir by J E S S E W . M . D UMOND Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1974 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. PAUL SOPHUS EPSTEIN March 20, 1883-February 8, 1966 BY JESSE W. M. DuMOND AUL SOPHUS EPSTEIN was one of the group of prominent and P very gifted mathematical physicists whose insight, creative originality, and willingness to abandon accepted classical con- cepts brought about that veritable revolution in our under- standing of nature which may be said to have created "modern physics," i.e., the physics which has been widely accepted during the Twentieth Century. Paul Epstein's name is closely associ- ated with those of that group, such as H. A. Lorentz, Albert Einstein, H. Minkowski, J. J. Thomson, E. Rutherford, A. Sommerfeld, W. C. Rontgen, Max von Laue, Niels Bohr, L. de Broglie, Paul Ehrenfest, and Karl Schwarzschild. Paul Epstein was born in 1883 in Warsaw, which was then a part of Russia. His parents, Siegmund Simon Epstein, a busi- nessman, and Sarah Sophia (Lurie) Epstein, were of a moder- ately well-to-do Jewish family. He himself has told how, when he was but four years old, his mother recognized his potential mathematical gifts and predicted that he was going to be a mathematician. After receiving his secondary education in the Humanistic Hochschule of Minsk (Russia), he entered the school of physics and mathematics of the Imperial University of Moscow in 1901.
    [Show full text]
  • Ludwig Maximilians Universit¨At M
    LUDWIG MAXIMILIANS UNIVERSITAT¨ MUNCHEN¨ ARNOLD SOMMERFELD CENTER FOR THEORETICAL PHYSICS Elite Master Program in Theoretical and Mathematical Physics MASTER THESIS in COSMOLOGY Cosmological aspects of Mimetic Gravity Candidate: Supervisor: Roberto Caroli Prof. Dr. Ivo Sachs October 2018 M¨unchen Declaration of authorship I hereby certify that the thesis I am submitting is my own original work: it has been composed by me and is based on my own work, unless stated otherwise. Any use of the works of any other author is properly stated when needed: all references have been quoted, and all sources of information have been acknowledged. Date: Signature: 1 Acknowledgements First I would like to thank my supervisor Prof. Dr. Ivo Sachs for his support, patience and time. His suggestions and discussions with him during the last months have been very useful to carry out this work. Thanks also to Prof. Dr. Stefan Hofmann, who accepted to be my second referee. A special thank goes to my family for its constant help and support during my Bachelor and Master degrees. Another person that I would like to thank is Prof. Fabio Benatti, whose support goes beyond the supervision of my Bachelor thesis. Thanks to all the professors and teachers that contributed to my education at school and at University: without their contributions my studies will not be completed. 2 Abstract The thesis reviews the original proposal of Mimetic Dark Matter, a refor- mulation of General Relativity, in which the physical metric is parametrized in terms of an auxiliary metric and a scalar field. The equations of motion result to be a modified Einstein equation and a continuity equation for the scalar field, whose kinematical constraint leads to its identification with cos- mological time in synchronous reference frame.
    [Show full text]
  • Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: a Study in German Culture
    Heisenberg and the Nazi Atomic Bomb Project http://content.cdlib.org/xtf/view?docId=ft838nb56t&chunk.id=0&doc.v... Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ Heisenberg and the Nazi Atomic Bomb Project A Study in German Culture Paul Lawrence Rose UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1998 The Regents of the University of California In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday ― ix ― ACKNOWLEDGMENTS For hospitality during various phases of work on this book I am grateful to Aryeh Dvoretzky, Director of the Institute of Advanced Studies of the Hebrew University of Jerusalem, whose invitation there allowed me to begin work on the book while on sabbatical leave from James Cook University of North Queensland, Australia, in 1983; and to those colleagues whose good offices made it possible for me to resume research on the subject while a visiting professor at York University and the University of Toronto, Canada, in 1990–92. Grants from the College of the Liberal Arts and the Institute for the Arts and Humanistic Studies of The Pennsylvania State University enabled me to complete the research and writing of the book.
    [Show full text]
  • Book Review Hydrogen
    Book Review Hydrogen. The Essential Element by John S. Rigden (Harvard University Press, 2002) 280 pp, ISBN 0674007387, $28.00 Reviewed by Leverett J. Zompa Department of Chemistry University of Massachusetts Boston, MA 02125-3393 This book provides a view of the development of modern physics based upon fundamental research on hydrogen by experimental and theoretical physicists. John Rigden presents this seminal research of twentieth century physics in a clear and concise manner. At the same time, he weaves in the enticing historical events that began with early quantum theory and advanced to recent validations of quantum electrodynamics, weighing theory against extremely precise measurements of hydrogen atomic spectral parameters. The centrality of hydrogen to the studies of Balmer, Bohr, and Sommerfeld is carried through to the modern day research on Bose-Einstein condensates by Nobel Prize winners Cornell, Wieman, and Ketterle. The early chapters of the book will be quite familiar to chemists, as the struggles are described of early twentieth century physicists attempting to understand the nature of the hydrogen atom. The atomic structure of hydrogen provided by Niels Bohr and his idea of the quantized atom was grudgingly accepted by some because it could explain the data from the bright line spectrum of hydrogen. Some of the frustration felt by many physicists of the time is so aptly expressed by the quotation of Otto Stern (p. 39) who threatened to leave physics if “that crazy model of Bohr” turned out to be correct. Also described are the changes made to the Bohr model as more precise spectral data were obtained.
    [Show full text]
  • Sommerfeld: the Eternal Nobel Candidate Sommerfeld: the Eternal Nobel Candidate
    FollowFollow us soWe uswe wantso canVisit we youchat uscan onin onchat ourYoutube Twitter! onGoogle+ Facebook! circles :) Sharing knowledge for a Books Authors Collaborators English Sign in better future Science Technology Economy Environment Humanities About Us Home Sommerfeld: the Eternal Nobel Candidate Sommerfeld: the Eternal Nobel Candidate Share 24 July 2017 Physics, Science Augusto Beléndez Sign in or register to rate this publication Full Professor of Applied Physics at the University In late 1928, a famous German physicist wrote to one of his colleagues to tell him with of Alicante (Spain) since chagrin that he had once again been passed over for the Nobel Prize in Physics: 1996. [...] 7 “But to dispel all suspicion of false modesty, I must simultaneously note that it is gradually posts becoming a public scandal that I have still not received the Prize [Nobel Prize in Physics].” (1) The theoretical physicist Arnold Sommerfeld (1868-1951) was born in Königsberg, a city Related topics in what was formerly East Prussia, today Kaliningrad in Russia, and also the birthplace of the mathematicians Christian Goldbach and David Hilbert, the philosopher Immanuel Kant and Aeronautics Astrophysics the writer E. T. A. Hoffmann. After receiving his doctorate from the University of Königsberg Biology Biomedicine in 1891, he moved to the University of Göttingen, the mecca of mathematics in Germany at General Science Genetics that time, where he eventually became assistant to the mathematician Felix Klein and gave Mathematics Medicine classes on mathematics and theoretical physics. After spending some years at RWTH @en Physics Aachen University, in 1906 he succeeded Ludwig Boltzmann as professor of theoretical physics and director of the Institute of Theoretical Physics at the University of Munich, View all OpenMind topics where he set up a school of theoretical physics which gained worldwide renown.
    [Show full text]
  • Dr. Philip Willke
    Dr. Philip Willke Affiliation: Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany E-mail address: [email protected] Date of birth: 03.10.1987 Nationality: German Website: www.atomholics.de Research Experience 10/2020 - current: Independent Junior Research Group Leader in the Emmy-Noether Program of the German Science Foundation, Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany Starting my own lab on Quantum Coherent Control of Atomic and Molecular Spins on Surfaces 06/2020 – 10/2020: Young Investigator Group Preparation Program of the Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany Preparation to set up my own lab, acquiring equipment 05/2018 - 05/2020: Postdoctoral Researcher and Feodor-Lynen Fellow (05/2018-05/2019), IBS Center for Quantum Nanoscience and Ewha Womans University, Seoul, South Korea (Advisor: Prof. Andreas Heinrich, Prof. Taeyoung Choi) Setting up a new lab for electron spin resonance scanning tunneling microscopy at the newly founded Center for Quantum Nanoscience 02/2017-04/2018: Postdoctoral Researcher at the IBM Almaden Research Center (CA, USA, Advisor: Christopher Lutz, Prof. Andreas Heinrich) Pioneering the field of electron spin resonance scanning tunneling microscopy 12/2013-01/2017: PhD at Georg-August Universität Göttingen (Summa cum Laude), Scanning Tunneling Microscopy group (Advisor: PD Dr. Martin Wenderoth) Thesis title: Atomic-scale transport in graphene: the role of localized defects and substitutional doping
    [Show full text]
  • Analysis of Hot-Carrier Luminescence for Infrared Single-Photon Upconversion and Readout
    UC San Diego UC San Diego Previously Published Works Title Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout Permalink https://escholarship.org/uc/item/0pw9x6vs Journal IEEE Journal of Selected Topics in Quantum Electronics, 13(4) Authors Finkelstein, Hod Gross, Matthias Lo, Yu-Hwa et al. Publication Date 2007-07-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 13, NO. 4, JULY/AUGUST 2007 959 Analysis of Hot-Carrier Luminescence for Infrared Single-Photon Upconversion and Readout Hod Finkelstein, Student Member, IEEE, Matthias Gross, Yu-Hwa Lo, and Sadik Esener, Fellow, IEEE Abstract—We propose and analyze a new method for single- cannot generate an avalanche pulse in response to a photon. photon wavelength up-conversion using optical coupling between This time is called the device dead time and depends on the a primary infrared (IR) single-photon avalanche diode (SPAD) recharge mechanism, on the overbias above breakdown, and and a complementary metal oxide semiconductor (CMOS) silicon SPAD, which are fused through a silicon dioxide passivation layer. most significantly, on the junction’s capacitance. A primary IR photon induces an avalanche in the IR SPAD. The Dark counts result from avalanches, which are not induced photons produced by hot-carrier recombination are subsequently by absorbed photons. They can originate from thermally gen- sensed by the silicon SPAD, thus, allowing for on-die data pro- erated carriers; from band-to-band tunneling; via trap-assisted cessing. Because the devices are fused through their passivation tunneling; and by afterpulsing—the release of carriers trapped layers, lattice mismatch issues between the semiconductor materi- als are avoided.
    [Show full text]
  • NATURE August 27, 1960 VOL. 187 OBITUARY
    738 NATURE August 27, 1960 VOL. 187 400 150 :;' S 300 ~ d 100 .5 t- o:> ~ .:l [lj 0 50 200 ",,,':':' 200 1,000 2,000 3,000 4,000 Mean annual precipitation (mm.) !!, ' Fig. 4 also quite possible that the variations in the specific cffisium-137 activity in precipitation are smaller. If the values for Bergen and station 1 are excluded the mean value of the cffisium-137 deposit is 18·7 mc./km." and the standard deviation is 3·5 mc./km.". 100 200 300 400 500 600 The corresponding precipitation values vary within ± Precipitation (mm.) Nov. 1, 1958, to sampling date 20 per cent. This precipitation interval applies to Fig. 3 the greater part of Sweden, and the above value can thus be regarded as a reasonable mean value for the since the beginning of considerable global fall-out, country. and the zirconium + niobium-95 deposit with the Peirson has recently published a corresponding precipitation since the autumn, 1958. study concerning the deposit in the United Kingdom As can be seen in Figs. 2 and 3, a strong linear on samples taken during the summer, 1959". In relationship seems to exist between cffisium-137 Fig. 4, Pierson's and our values of the cffisium-137 deposit and precipitation (p = 0·99 with the 95 deposit are plotted against the mean annual precipita­ per cent confidence limit 0 ·95 and 1'00), whereas the tion. No significant differences between the two zirconium + niobium-95 values are more scattered sets of values can be detected. As the latitude of the (p = 0·74 with the 95 per cent confidence limits British sampling sites is 50-55° N., while the Swedish 0·35 and 0 ·90).
    [Show full text]