Dr. Philip Willke
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jacob M. Taylor, Arxiv:1508.05966
JACOB M. TAYLOR CONTACT INFORMATION Joint Quantum Institute Work: (301) 975-8586 University of Maryland and NIST E-mail: [email protected] Computer Science and Space Building Twitter: @quantum jake College Park, MD 20742 http://groups.jqi.umd.edu/taylor ACADEMIC HISTORY Joint Center for Quantum Information and Computer Science 2014–present Co-Director and QuICS Fellow Joint Quantum Institute/National Institute of Standards and Technology 2009–present Physicist and JQI Fellow; Adjunct Assistant Professor of Physics at the University of Maryland, College Park Research Center for Advanced Science and Technology, University of Tokyo 2014-2015 RCAST Fellow Isaac Newton Institute, Cambridge University 2014 Visiting Fellow Massachusetts Institute of Technology 2006-2009 Pappalardo Fellow Harvard University, Department of Physics 2001-2006 PhD (advisor: M. D. Lukin; committee: C. M. Marcus, B. I. Halperin) Harvard University 1996-2000 AB in Astronomy & Astrophysics and Physics, summa cum laude, Phi Beta Kappa FELLOWSHIPS AND HONORS • IUPAP C15 Young Scientist award, 2014 • Department of Commerce Silver Medal, 2014 • Samuel J. Heyman Service to America Medal: Call to Service, 2012 • NIST Sigma Xi Young Scientist Award, 2012 • Presidential Early Career Award for Science and Engineering, 2010 • Newcomb Cleveland Prize of the AAAS, 2006 • Luce Scholar (University of Tokyo, Astronomy Department), 2000–2001 • Laura Whipple Prize, 2000 TEACHING EXPERIENCE • Physics 828, “The physics of quantum information” (University of Maryland, College Park, Feb. 2012): an advanced graduate student class covering principles and practices in quantum information science, from quantum cryptography, algorithms, and error correction, to the physics of specific hardware implementations. 1 • Physics 721, “Atomic physics: from cold atoms to quantum information” (University of Maryland, College Park, Sept. -
2018 March Meeting Program Guide
MARCHMEETING2018 LOS ANGELES MARCH 5-9 PROGRAM GUIDE #apsmarch aps.org/meetingapp aps.org/meetings/march Senior Editor: Arup Chakraborty Robert T. Haslam Professor of Chemical Engineering; Professor of Chemistry, Physics, and Institute for Medical Engineering and Science, MIT Now welcoming submissions in the Physics of Living Systems Submit your best work at elifesci.org/physics-living-systems Image: D. Bonazzi (CC BY 2.0) Led by Senior Editor Arup Chakraborty, this dedicated new section of the open-access journal eLife welcomes studies in which experimental, theoretical, and computational approaches rooted in the physical sciences are developed and/or applied to provide deep insights into the collective properties and function of multicomponent biological systems and processes. eLife publishes groundbreaking research in the life and biomedical sciences. All decisions are made by working scientists. WELCOME t is a pleasure to welcome you to Los Angeles and to the APS March I Meeting 2018. As has become a tradition, the March Meeting is a spectacular gathering of an enthusiastic group of scientists from diverse organizations and backgrounds who have broad interests in physics. This meeting provides us an opportunity to present exciting new work as well as to learn from others, and to meet up with colleagues and make new friends. While you are here, I encourage you to take every opportunity to experience the amazing science that envelops us at the meeting, and to enjoy the many additional professional and social gatherings offered. Additionally, this is a year for Strategic Planning for APS, when the membership will consider the evolving mission of APS and where we want to go as a society. -
Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017
Bibliography Physics and Human Rights Michele Irwin and Juan C Gallardo August 18, 2017 Physicists have been actively involved in the defense of Human Rights of colleague physicists, and scientists in general, around the world for a long time. What follows is a list of talks, articles and informed remembrances on Physics and Human Rights by physicist-activists that are available online. The selection is not exhaustive, on the contrary it just reflects our personal knowledge of recent publications; nevertheless, they are in our view representative of the indefatigable work of a large number of scientists affirming Human Rights and in defense of persecuted, in prison or at risk colleagues throughout the world. • “Ideas and Opinions” Albert Einstein Crown Publishers, 1954, 1982 The most definitive collection of Albert Einstein's writings, gathered under the supervision of Einstein himself. The selections range from his earliest days as a theoretical physicist to his death in 1955; from such subjects as relativity, nuclear war or peace, and religion and science, to human rights, economics, and government. • “Physics and Human Rights: Reflections on the past and the present” Joel L. Lebowitz Physikalische Blatter, Vol 56, issue 7-8, pages 51-54, July/August 2000 http://onlinelibrary.wiley.com/doi/10.1002/phbl.20000560712/pdf Based loosely on the Max von Laue lecture given at the German Physical Society's annual meeting in Dresden, 03/2000. This article focus on the moral and social responsibilities of scientists then -Nazi period in Germany- and now. Max von Laue's principled moral response at the time, distinguished him from many of his contemporary scientists. -
On the Planck-Einstein Relation Peter L
On the Planck-Einstein Relation Peter L. Ward US Geological Survey retired Science Is Never Settled PO Box 4875, Jackson, WY 83001 [email protected] Abstract The Planck-Einstein relation (E=hν), a formula integral to quantum mechanics, says that a quantum of energy (E), commonly thought of as a photon, is equal to the Planck constant (h) times a frequency of oscillation of an atomic oscillator (ν, the Greek letter nu). Yet frequency is not quantized—frequency of electromagnetic radiation is well known in Nature to be a continuum extending over at least 18 orders of magnitude from extremely low frequency (low-energy) radio signals to extremely high-frequency (high-energy) gamma rays. Therefore, electromagnetic energy (E), which simply equals a scaling constant times a continuum, must also be a continuum. We must conclude, therefore, that electromagnetic energy is not quantized at the microscopic level as widely assumed. Secondly, it makes no physical sense in Nature to add frequencies of electromagnetic radiation together in air or space—red light plus blue light does not equal ultraviolet light. Therefore, if E=hν, then it makes no physical sense to add together electromagnetic energies that are commonly thought of as photons. The purpose of this paper is to look at the history of E=hν and to examine the implications of accepting E=hν as a valid description of physical reality. Recognizing the role of E=hν makes the fundamental physics studied by quantum mechanics both physically intuitive and deterministic. Introduction On Sunday, October 7, 1900, Heinrich Rubens and wife visited Max Planck and wife for afternoon tea (Hoffmann, 2001). -
Quantum Theory at Burning Man Inside
american physical society topical group on quantum information Quantum Theory at Burning Man Inside... Once a year, over forty thousand survivalists, hippies, freaks, As you can tell from the picture intellectuals, and artists make a pilgrimage to a dried up Nevada seabed on the left, this isn’t your mother’s to burn a gigantic effigy of a man. The temporary community of Black Quantum Times. Or, perhaps it is if Rock City is constructed for only one week a year, its citizens offering your mother were the type to attend virtually every amenity imaginable, mostly free of charge. The event's the Burning Man festival in Nevada. ideology focuses on radical While Burning Man has a inclusivity, self-expression, reputation for all sorts of oddities, it self-reliance, and also includes some very intelligent, participation. Thus, the deep thinking folks passionate about plethora of free restaurants, a variety of topics including math tea houses, dance halls, spas, and physics. Nathan Babcock, a salons, saloons, educational graduate student at the Institute for workshops, healing centres, Quantum Information Science at the hardware depots, University of Calgary, attended matchmakers (at the Burning Man this year and gave a "soulmate depot"), costumers, seminar on quantum information circuses, pyrotechnic shows, (wearing nothing but a sarong) to a kissing booths, newspapers, rapt audience of math enthusiasts. postal services and other more While certainly unconventional, it bizarre fare (from a larger- provided a forum by which quantum than-life game of tetris to a information can reach an interested pneumatic spanking machine) audience at a level of depth beyond are offered pro bono by the popularization while still remaining attendees themselves. -
Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results
Missouri University of Science and Technology Scholars' Mine Physics Faculty Research & Creative Works Physics 01 Aug 2018 Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results Stefan Wilfert Paolo Sessi Zhiwei Wang Henrik Schmidt et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/1711 Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork Part of the Physics Commons Recommended Citation S. Wilfert and P. Sessi and Z. Wang and H. Schmidt and M. C. Martínez-Velarte and S. H. Lee and Y. S. Hor and A. F. Otte and Y. Ando and W. Wu and M. Bode, "Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results," Physical Review B, vol. 98, no. 8, American Physical Society (APS), Aug 2018. The definitive version is available at https://doi.org/10.1103/PhysRevB.98.085133 This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. PHYSICAL REVIEW B 98, 085133 (2018) Scanning tunneling spectroscopy investigations of superconducting-doped topological insulators: Experimental pitfalls and -
Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic
Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic Under the auspicies of Ing. Miloš Zeman President of the Czech Republic Jaroslav Kubera President of the Senate of the Parliament of the Czech Republic Milan Štˇech Vice-President of the Senate of the Parliament of the Czech Republic Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Department of Physics, Texas A&M University, USA • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Many body physics, quantum field theory • Quantum statistical physics and thermodynamics • Quantum optics • Quantum simulations • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Cold atoms and molecules, Bose-Einstein condensates • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors and -
Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: a Study in German Culture
Heisenberg and the Nazi Atomic Bomb Project http://content.cdlib.org/xtf/view?docId=ft838nb56t&chunk.id=0&doc.v... Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ Heisenberg and the Nazi Atomic Bomb Project A Study in German Culture Paul Lawrence Rose UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1998 The Regents of the University of California In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday Preferred Citation: Rose, Paul Lawrence. Heisenberg and the Nazi Atomic Bomb Project, 1939-1945: A Study in German Culture. Berkeley: University of California Press, c1998 1998. http://ark.cdlib.org/ark:/13030/ft838nb56t/ In affectionate memory of Brian Dalton (1924–1996), Scholar, gentleman, leader, friend And in honor of my father's 80th birthday ― ix ― ACKNOWLEDGMENTS For hospitality during various phases of work on this book I am grateful to Aryeh Dvoretzky, Director of the Institute of Advanced Studies of the Hebrew University of Jerusalem, whose invitation there allowed me to begin work on the book while on sabbatical leave from James Cook University of North Queensland, Australia, in 1983; and to those colleagues whose good offices made it possible for me to resume research on the subject while a visiting professor at York University and the University of Toronto, Canada, in 1990–92. Grants from the College of the Liberal Arts and the Institute for the Arts and Humanistic Studies of The Pennsylvania State University enabled me to complete the research and writing of the book. -
Single-Atom Gating of Quantum State Superpositions
SLAC-PUB-13993 Published in Nature Physics 4, 454-458 (2008). Single-Atom Gating of Quantum State Superpositions Christopher R. Moon1, Christopher P. Lutz2 & Hari C. Manoharan1* 1Department of Physics, Stanford University, Stanford, California 94305, USA 2IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA *To whom correspondence should be addressed. E-mail: [email protected] – 1/13 – SIMES, SLAC National Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94309 Work supported in part by US Department of Energy contract DE-AC02-76SF00515. The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space—or Hilbert space—is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom2 we demonstrate how single spins and quantum mirages3 can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real- space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter. -
Equs Annual Report 2011
ANNUAL REPORT 2011 Science is about understanding nature, understanding what is. By contrast, engineering is synthetic; it is about creating what has never been. ' —Theodore von Kármán, 1902' | 'I heard a fly buzz' by Xanthe Croot (EQuS PhD Student) Close up of a fly wing, on top a blue printed circuit board This Centre of Excellence is a collaboration involving four leading Australian Universities with highly productive and world-renowned efforts in Quantum Science MAILING ADDRESS MAILING ADDRESS ARC COE for Engineered Quantum Systems ARC COE for Engineered Quantum Systems School of Mathematics & Physics School of Physics The University of Queensland The University of Western Australia QLD 4072 Crawley WA 6009 PHYSICAL ADDRESS PHYSICAL ADDRESS Parnell Building Building M013 The University of Queensland The University of Western Australia TELEPHONE (07) 3365 3272 TELEPHONE (08) 6488 2740 FACSIMILE (07) 3365 3328 FACSIMILE (08) 6488 7364 EMAIL [email protected] EMAIL [email protected] MAILING ADDRESS MAILING ADDRESS ARC COE for Engineered Quantum Systems ARC COE for Engineered Quantum Systems School of Physics Department of Physics and Astronomy The University of Sydney Macquarie Univesity NSW 2006 NSW 2109 PHYSICAL ADDRESS PHYSICAL ADDRESS Building A28 Physics Road Building C5C 369 The University of Sydney Macquarie University TELEPHONE (02) 9351 5972 TELEPHONE (02) 9850 8939 FACSIMILE (02) 9351 7726 FACSIMILE (02) 9850 4868 EMAIL [email protected] EMAIL [email protected] | ii 'Conglomerate' by James Colless (EQuS PhD Student) Acetone residue on a GaAs AlGaAs chip TABLE OF CONTENTS TABLE Table of Contents EQuS is dedicated to moving beyond understanding what the quantum world is, to controlling it and “creating what has never been". -
Download the Abstract Book
IBS Conference on Quantum Nanoscience September 25th - 27th, 2019 Lee SamBong Hall, Ewha Womans University, Seoul ABSTRACT BOOK 1 PROGRAM CONTENTS 2019 IBS Conference on Quantum Nanoscience Day Day Day 1 2 3 Wednesday, September 25, 2019 Thursday, September 26, 2019 Friday, September 27, 2019 09:00-09:15 Participants Registration 09:00 - 09:15 Coffee break 09:00 - 09:15 Coffee break 09:15-09:30 Opening Remarks from Andreas Heinrich Session 3 Session 4 Theory Challenges in Quantum Nanoscience Quantum Surface Science at the Nanoscale Session 1 General Introduction General Introduction 09:15-10:00 09:15-10:00 What is Quantum Nanoscience? Daniel Loss Taeyoung Choi General Introduction 09:30-10:00 Andreas Heinrich 10:00-10:30 Jelena Klinovaja 10:00-10:30 Harald Brune 10:00-10:30 William D. Oliver 10:30-11:00 Martin B. Plenio 10:30-10:45 Deungjang Choi 10:30-11:00 Yonuk Chong 11:00-11:15 Stanislav Avdoshenko 10:45-11:00 Saiful Islam 11:00-11:30 Andrew Dzurak 11:15-11:30 Hosung Seo 11:00-11:40 Fabio Donati 11:30-13:00 Lunch 11:30-13:00 Lunch 11:40-13:00 Lunch Session 2 13:00-14:00 Poster Session (Daesan Gallery) Session 5 Quantum Sensing with Nanoscale Systems A Chemical Route to Quantum Nanoscience PROGRAM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 02 14:00-14:30 Coffee Break General Introduction General Introduction 13:00-13:45 13:00-13:45 Ania Jayich Roberta Sessoli 14:30-15:30 Poster Session (Daesan Gallery) 13:45-14:15 Jörg Wrachtrup -
Magnetism Division Fachverband Magnetismus (MA) Overview Of
Regensburg 2019 – MA Overview Magnetism Division Fachverband Magnetismus (MA) Manfred Fiebig Andy Thomas Department of Materials, ETH Zurich Leibniz Institute for Vladimir-Prelog-Weg 4 Solid State and Materials Research Dresden 8093 Zurich, Switzerland Helmholtzstraße 20 manfred.fi[email protected] 01069 Dresden [email protected] Overview of Invited Talks and Sessions (Lecture halls H33, H37, H38, H39, H48, H52, and H53; Poster C and E) Invited Talks MA 3.1 Mon 9:30–10:00 H38 Three-dimensional solitons in magnetism, nuclei and particle physics — ∙Paul Sutcliffe MA 3.2 Mon 10:00–10:30 H38 Simulations of particlelike states in three-dimensional magnets: chiral skyrmions, bobbers and hopfions — ∙Filipp N. Rybakov MA 3.4 Mon 10:45–11:15 H38 Quantitative measurements of three dimensional magnetic textures us- ing off-axis electron holography — ∙András Kovács, Nikolai Kiselev, Jan Caron, Thibaud Denneulin, Fengshan Zheng, Dongsheng Song, Stefan Blügel, Rafal E Dunin-Borkowski MA 3.5 Mon 11:30–12:00 H38 Three-dimensional nanomagnetism: Present and future — ∙Amalio Fernandez-Pacheco MA 3.7 Mon 12:15–12:45 H38 Revealing magnetic configurations with X-ray magnetic nanotomogra- phy — ∙Valerio Scagnoli MA 7.1 Mon 15:00–15:30 H37 The Surface Spin Flop in Synthetic Antiferromagnets with Perpendic- ular Magnetic Anisotropy — ∙Benny Böhm, Nikolai Kiselev, Darius Pohl, Lorenzo Fallarino, Leopold Koch, Bernd Rellinghaus, Kor- nelius Nielsch, Olav Hellwig MA 11.1 Mon 15:45–16:15 H38 Microstructure optimization for rare-earth efficient permanent magnets