Equs Annual Report 2011

Total Page:16

File Type:pdf, Size:1020Kb

Equs Annual Report 2011 ANNUAL REPORT 2011 Science is about understanding nature, understanding what is. By contrast, engineering is synthetic; it is about creating what has never been. ' —Theodore von Kármán, 1902' | 'I heard a fly buzz' by Xanthe Croot (EQuS PhD Student) Close up of a fly wing, on top a blue printed circuit board This Centre of Excellence is a collaboration involving four leading Australian Universities with highly productive and world-renowned efforts in Quantum Science MAILING ADDRESS MAILING ADDRESS ARC COE for Engineered Quantum Systems ARC COE for Engineered Quantum Systems School of Mathematics & Physics School of Physics The University of Queensland The University of Western Australia QLD 4072 Crawley WA 6009 PHYSICAL ADDRESS PHYSICAL ADDRESS Parnell Building Building M013 The University of Queensland The University of Western Australia TELEPHONE (07) 3365 3272 TELEPHONE (08) 6488 2740 FACSIMILE (07) 3365 3328 FACSIMILE (08) 6488 7364 EMAIL [email protected] EMAIL [email protected] MAILING ADDRESS MAILING ADDRESS ARC COE for Engineered Quantum Systems ARC COE for Engineered Quantum Systems School of Physics Department of Physics and Astronomy The University of Sydney Macquarie Univesity NSW 2006 NSW 2109 PHYSICAL ADDRESS PHYSICAL ADDRESS Building A28 Physics Road Building C5C 369 The University of Sydney Macquarie University TELEPHONE (02) 9351 5972 TELEPHONE (02) 9850 8939 FACSIMILE (02) 9351 7726 FACSIMILE (02) 9850 4868 EMAIL [email protected] EMAIL [email protected] | ii 'Conglomerate' by James Colless (EQuS PhD Student) Acetone residue on a GaAs AlGaAs chip TABLE OF CONTENTS TABLE Table of Contents EQuS is dedicated to moving beyond understanding what the quantum world is, to controlling it and “creating what has never been". Table of Contents iii Quantum Science 4 Message from the Director 5 Building the Quantum Future 6 The EQuS Team 8 Quantum Measurement and Control 10 Quantum-Enabled Sensors and Metrology 14 Synthetic Quantum Systems and Simulation 18 Research Infrastructure 22 Education, Outreach and Training 26 Awards and Recognition 31 Industry and Community Engagement 32 Visitors 34 EQuS Summary 2012 36 The Year Ahead 37 EQuS Governance and Management 42 Appendix 1: Publications 44 Appendix 2: Financial Statements 54 Appendix 3: Key Performance Indicators 55 Acknowledgements 59 iii Quantum Science The quantum world was first discovered in atomic systems, where it continues to predict phenomenon with breath-taking precision. But the theory itself is universal, applying on all scales. We are now developing the tools to make even macroscopic systems show quantum phenomenon that would be impossible in the classical physics of Newton and Maxwell. Quantum mechanics has captured our imagination more than any other physical theory because of the intrinsic strangeness of many of its principles—particles as waves, light as particles, hidden correlations between systems separated by huge distances. These phenomena, however, are not manifested in our daily existence and have largely been inaccessible due to the barrier between the classical and quantum worlds. A new discipline—Quantum Science—is opening a door between our world and that of the quantum, allowing classical systems access to the most exotic quantum mechanical phenomena. The past two decades have seen an explosion in the number of systems that have been able to provide entry to the quantum realm: from superconducting circuits and semiconductor nanostructures, to trapped atoms and single-photon optics. Quantum coherent devices are real and accessible to scientists today, but building quantum technologies—exploiting the strangest quantum effects—will take a new kind of effort. It will require systems engineering in the quantum regime. 4 MESSAGE FROM THE DIRECTOR Message from the Director The great aerospace engineer, von Kármán, described his discipline thus: “Science is about understanding nature, understanding what is. By contrast, engineering is synthetic; it is about creating what has never been". The overarching goal of EQuS is to pioneer a future quantum technology engendered by our rapidly growing capability to control the world at is most fundamental level. We chose the word 'engineered' in the title of our Centre to emphasize a different attitude to quantum physics. We wish to move beyond developing experiments to reveal ever more puzzling quantum phenomenon, to engineering quantum systems de novo; to move beyond a view which sees quantum physics as the domain of the atomic realm, to engineer coherent quantum systems of any scale, from atomic dimensions to metres and beyond. This will require the development of new tools for the control of complex hybrid quantum systems. In our first year of operation we have made Professor Gerard Milburn some important first steps to realise this vision, described in more detail in this document. Experiments at The University of Queensland have shown how to control the motion of macroscopic silica mechanical resonators with light. EQuS CIs at Macquarie University, in collaboration with our Partner investigators in Germany, have shown how to exploit the quantum properties of defects in diamond to engineer a new kind of magnetometer. Theoretical work involving collaborations across the Centre have pointed the way to a new form of quantum matter capable of processing information. When Maxwell wrote down a set of partial differential equations just over 150 years ago he opened a door to a new world of engineering capability harnessing the physical realm of electromagnetism: before Maxwell, the technological world was dominated by dinosaurs of steam and mechanics, a clockwork world of levers, cogs and gears. After Maxwell came international telegraphy, wireless communication, radar, computers and CAT scanners, lasers, optical communication systems and microwave mobile phone networks. In 1926 Schrӧdinger wrote down another partial differential equation, opening a door to new quantum world. After decades of scientific and technological development, Schrӧdinger's partial differential equation is only now offering a similar technological promise to that offered by Maxwell. The world indicated by the quantum theory is strange and wonderful. EQuS is dedicated to moving beyond the wonder to build a new technology; from understanding what the quantum world is, to controlling it and “creating what has never been". 5 Building the Quantum Future Our Mission This Centre of Excellence seeks to initiate the Quantum Era in the 21st century by engineering designer quantum systems. Through focussed and visionary research we will deliver new scientific insights and fundamentally new technical capabilities across a range of disciplines. Impacts of this work will improve the lives of Australians and people all over the world by producing breakthroughs in physics, engineering, chemistry, biology and medicine. The primary goals of EQuS are to • Establish a world-leading research community driving the development of quantum technologies, with Australia as the focus of international efforts. • Stimulate the Australian scientific and engineering communities to exploit quantum devices and quantum coherence in next-generation technologies. • Train a generation of young scientists with the skills needed to lead the future of technology development. • Demonstrate the potential and capabilities of engineered quantum technologies by realizing technological breakthroughs in novel and useful engineered quantum coherent systems. • Create a design methodology supporting the development of all new technologies for the Quantum Era. | 'Silicon Skyline' by Alice Mahoney (EQuS PhD Student) Optical microscopy calibration of a pentium 90 chip 6 BUILDING THE QUANTUM FUTURE EQuS Research Program EQuS Core Research Areas The Centre of Excellence for Research efforts are organised around three Engineered Quantum Systems seeks program themes. to move from Quantum Science to Quantum Measurement and Control Quantum Engineering—building and crafting new quantum technologies Addresses scientific challenges in quantum limited unlike anything the world has seen measurement and control, to enable demonstrations before. of quantum solutions for control engineered problems in each technology platform. EQuS provides the world's first focussed research program on Quantum-Enabled Sensors and Metrology systems engineering in the quantum regime, laying the groundwork for our Delivers unprecedented levels of sensitivity and quantum future. precision in applications of quantum systems for sensing, biomedical imaging, and metrology. We address fundamental questions about the benefits and limits of quantum Synthetic Quantum Systems and Simulation technologies, develop strategies for Produces novel states of light and matter exhibiting producing novel quantum-enhanced strong quantum mechanical correlations that devices, and explore new emergent enable simulations of complex interacting quantum physical phenomena that arise only in systems. the presence of complex, integrated quantum systems. Our diverse range of experimental programs and leading theoretical work provides us with unique opportunities on the world stage. Quantum Science constitutes a new frontier in research that aims to understand, control, and exploit quantum phenomena to create revolutionary new science and technology. 7 The EQuS Team Chief Investigators Gerard Milburn Andrew White Jason Twamley Stephen Bartlett Michael Tobar Michael Biercuk Gavin Brennan Warwick Bowen Andrew Doherty Alexei
Recommended publications
  • Jacob M. Taylor, Arxiv:1508.05966
    JACOB M. TAYLOR CONTACT INFORMATION Joint Quantum Institute Work: (301) 975-8586 University of Maryland and NIST E-mail: [email protected] Computer Science and Space Building Twitter: @quantum jake College Park, MD 20742 http://groups.jqi.umd.edu/taylor ACADEMIC HISTORY Joint Center for Quantum Information and Computer Science 2014–present Co-Director and QuICS Fellow Joint Quantum Institute/National Institute of Standards and Technology 2009–present Physicist and JQI Fellow; Adjunct Assistant Professor of Physics at the University of Maryland, College Park Research Center for Advanced Science and Technology, University of Tokyo 2014-2015 RCAST Fellow Isaac Newton Institute, Cambridge University 2014 Visiting Fellow Massachusetts Institute of Technology 2006-2009 Pappalardo Fellow Harvard University, Department of Physics 2001-2006 PhD (advisor: M. D. Lukin; committee: C. M. Marcus, B. I. Halperin) Harvard University 1996-2000 AB in Astronomy & Astrophysics and Physics, summa cum laude, Phi Beta Kappa FELLOWSHIPS AND HONORS • IUPAP C15 Young Scientist award, 2014 • Department of Commerce Silver Medal, 2014 • Samuel J. Heyman Service to America Medal: Call to Service, 2012 • NIST Sigma Xi Young Scientist Award, 2012 • Presidential Early Career Award for Science and Engineering, 2010 • Newcomb Cleveland Prize of the AAAS, 2006 • Luce Scholar (University of Tokyo, Astronomy Department), 2000–2001 • Laura Whipple Prize, 2000 TEACHING EXPERIENCE • Physics 828, “The physics of quantum information” (University of Maryland, College Park, Feb. 2012): an advanced graduate student class covering principles and practices in quantum information science, from quantum cryptography, algorithms, and error correction, to the physics of specific hardware implementations. 1 • Physics 721, “Atomic physics: from cold atoms to quantum information” (University of Maryland, College Park, Sept.
    [Show full text]
  • 2018 March Meeting Program Guide
    MARCHMEETING2018 LOS ANGELES MARCH 5-9 PROGRAM GUIDE #apsmarch aps.org/meetingapp aps.org/meetings/march Senior Editor: Arup Chakraborty Robert T. Haslam Professor of Chemical Engineering; Professor of Chemistry, Physics, and Institute for Medical Engineering and Science, MIT Now welcoming submissions in the Physics of Living Systems Submit your best work at elifesci.org/physics-living-systems Image: D. Bonazzi (CC BY 2.0) Led by Senior Editor Arup Chakraborty, this dedicated new section of the open-access journal eLife welcomes studies in which experimental, theoretical, and computational approaches rooted in the physical sciences are developed and/or applied to provide deep insights into the collective properties and function of multicomponent biological systems and processes. eLife publishes groundbreaking research in the life and biomedical sciences. All decisions are made by working scientists. WELCOME t is a pleasure to welcome you to Los Angeles and to the APS March I Meeting 2018. As has become a tradition, the March Meeting is a spectacular gathering of an enthusiastic group of scientists from diverse organizations and backgrounds who have broad interests in physics. This meeting provides us an opportunity to present exciting new work as well as to learn from others, and to meet up with colleagues and make new friends. While you are here, I encourage you to take every opportunity to experience the amazing science that envelops us at the meeting, and to enjoy the many additional professional and social gatherings offered. Additionally, this is a year for Strategic Planning for APS, when the membership will consider the evolving mission of APS and where we want to go as a society.
    [Show full text]
  • Quantum Theory at Burning Man Inside
    american physical society topical group on quantum information Quantum Theory at Burning Man Inside... Once a year, over forty thousand survivalists, hippies, freaks, As you can tell from the picture intellectuals, and artists make a pilgrimage to a dried up Nevada seabed on the left, this isn’t your mother’s to burn a gigantic effigy of a man. The temporary community of Black Quantum Times. Or, perhaps it is if Rock City is constructed for only one week a year, its citizens offering your mother were the type to attend virtually every amenity imaginable, mostly free of charge. The event's the Burning Man festival in Nevada. ideology focuses on radical While Burning Man has a inclusivity, self-expression, reputation for all sorts of oddities, it self-reliance, and also includes some very intelligent, participation. Thus, the deep thinking folks passionate about plethora of free restaurants, a variety of topics including math tea houses, dance halls, spas, and physics. Nathan Babcock, a salons, saloons, educational graduate student at the Institute for workshops, healing centres, Quantum Information Science at the hardware depots, University of Calgary, attended matchmakers (at the Burning Man this year and gave a "soulmate depot"), costumers, seminar on quantum information circuses, pyrotechnic shows, (wearing nothing but a sarong) to a kissing booths, newspapers, rapt audience of math enthusiasts. postal services and other more While certainly unconventional, it bizarre fare (from a larger- provided a forum by which quantum than-life game of tetris to a information can reach an interested pneumatic spanking machine) audience at a level of depth beyond are offered pro bono by the popularization while still remaining attendees themselves.
    [Show full text]
  • Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results
    Missouri University of Science and Technology Scholars' Mine Physics Faculty Research & Creative Works Physics 01 Aug 2018 Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results Stefan Wilfert Paolo Sessi Zhiwei Wang Henrik Schmidt et. al. For a complete list of authors, see https://scholarsmine.mst.edu/phys_facwork/1711 Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork Part of the Physics Commons Recommended Citation S. Wilfert and P. Sessi and Z. Wang and H. Schmidt and M. C. Martínez-Velarte and S. H. Lee and Y. S. Hor and A. F. Otte and Y. Ando and W. Wu and M. Bode, "Scanning Tunneling Spectroscopy Investigations of Superconducting-Doped Topological Insulators: Experimental Pitfalls and Results," Physical Review B, vol. 98, no. 8, American Physical Society (APS), Aug 2018. The definitive version is available at https://doi.org/10.1103/PhysRevB.98.085133 This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research & Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. PHYSICAL REVIEW B 98, 085133 (2018) Scanning tunneling spectroscopy investigations of superconducting-doped topological insulators: Experimental pitfalls and
    [Show full text]
  • Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic
    Frontiers of Quantum and Mesoscopic Thermodynamics 14 - 20 July 2019, Prague, Czech Republic Under the auspicies of Ing. Miloš Zeman President of the Czech Republic Jaroslav Kubera President of the Senate of the Parliament of the Czech Republic Milan Štˇech Vice-President of the Senate of the Parliament of the Czech Republic Prof. RNDr. Eva Zažímalová, CSc. President of the Czech Academy of Sciences Dominik Cardinal Duka OP Archbishop of Prague Supported by • Committee on Education, Science, Culture, Human Rights and Petitions of the Senate of the Parliament of the Czech Republic • Institute of Physics, the Czech Academy of Sciences • Department of Physics, Texas A&M University, USA • Institute for Theoretical Physics, University of Amsterdam, The Netherlands • College of Engineering and Science, University of Detroit Mercy, USA • Quantum Optics Lab at the BRIC, Baylor University, USA • Institut de Physique Théorique, CEA/CNRS Saclay, France Topics • Non-equilibrium quantum phenomena • Foundations of quantum physics • Quantum measurement, entanglement and coherence • Dissipation, dephasing, noise and decoherence • Many body physics, quantum field theory • Quantum statistical physics and thermodynamics • Quantum optics • Quantum simulations • Physics of quantum information and computing • Topological states of quantum matter, quantum phase transitions • Macroscopic quantum behavior • Cold atoms and molecules, Bose-Einstein condensates • Mesoscopic, nano-electromechanical and nano-optical systems • Biological systems, molecular motors and
    [Show full text]
  • Single-Atom Gating of Quantum State Superpositions
    SLAC-PUB-13993 Published in Nature Physics 4, 454-458 (2008). Single-Atom Gating of Quantum State Superpositions Christopher R. Moon1, Christopher P. Lutz2 & Hari C. Manoharan1* 1Department of Physics, Stanford University, Stanford, California 94305, USA 2IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA *To whom correspondence should be addressed. E-mail: [email protected] – 1/13 – SIMES, SLAC National Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94309 Work supported in part by US Department of Energy contract DE-AC02-76SF00515. The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space—or Hilbert space—is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom2 we demonstrate how single spins and quantum mirages3 can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real- space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
    [Show full text]
  • Download the Abstract Book
    IBS Conference on Quantum Nanoscience September 25th - 27th, 2019 Lee SamBong Hall, Ewha Womans University, Seoul ABSTRACT BOOK 1 PROGRAM CONTENTS 2019 IBS Conference on Quantum Nanoscience Day Day Day 1 2 3 Wednesday, September 25, 2019 Thursday, September 26, 2019 Friday, September 27, 2019 09:00-09:15 Participants Registration 09:00 - 09:15 Coffee break 09:00 - 09:15 Coffee break 09:15-09:30 Opening Remarks from Andreas Heinrich Session 3 Session 4 Theory Challenges in Quantum Nanoscience Quantum Surface Science at the Nanoscale Session 1 General Introduction General Introduction 09:15-10:00 09:15-10:00 What is Quantum Nanoscience? Daniel Loss Taeyoung Choi General Introduction 09:30-10:00 Andreas Heinrich 10:00-10:30 Jelena Klinovaja 10:00-10:30 Harald Brune 10:00-10:30 William D. Oliver 10:30-11:00 Martin B. Plenio 10:30-10:45 Deungjang Choi 10:30-11:00 Yonuk Chong 11:00-11:15 Stanislav Avdoshenko 10:45-11:00 Saiful Islam 11:00-11:30 Andrew Dzurak 11:15-11:30 Hosung Seo 11:00-11:40 Fabio Donati 11:30-13:00 Lunch 11:30-13:00 Lunch 11:40-13:00 Lunch Session 2 13:00-14:00 Poster Session (Daesan Gallery) Session 5 Quantum Sensing with Nanoscale Systems A Chemical Route to Quantum Nanoscience PROGRAM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 02 14:00-14:30 Coffee Break General Introduction General Introduction 13:00-13:45 13:00-13:45 Ania Jayich Roberta Sessoli 14:30-15:30 Poster Session (Daesan Gallery) 13:45-14:15 Jörg Wrachtrup
    [Show full text]
  • Dr. Philip Willke
    Dr. Philip Willke Affiliation: Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany E-mail address: [email protected] Date of birth: 03.10.1987 Nationality: German Website: www.atomholics.de Research Experience 10/2020 - current: Independent Junior Research Group Leader in the Emmy-Noether Program of the German Science Foundation, Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany Starting my own lab on Quantum Coherent Control of Atomic and Molecular Spins on Surfaces 06/2020 – 10/2020: Young Investigator Group Preparation Program of the Karlsruhe Institute of Technology, Physikalisches Institut, Karlsruhe, Germany Preparation to set up my own lab, acquiring equipment 05/2018 - 05/2020: Postdoctoral Researcher and Feodor-Lynen Fellow (05/2018-05/2019), IBS Center for Quantum Nanoscience and Ewha Womans University, Seoul, South Korea (Advisor: Prof. Andreas Heinrich, Prof. Taeyoung Choi) Setting up a new lab for electron spin resonance scanning tunneling microscopy at the newly founded Center for Quantum Nanoscience 02/2017-04/2018: Postdoctoral Researcher at the IBM Almaden Research Center (CA, USA, Advisor: Christopher Lutz, Prof. Andreas Heinrich) Pioneering the field of electron spin resonance scanning tunneling microscopy 12/2013-01/2017: PhD at Georg-August Universität Göttingen (Summa cum Laude), Scanning Tunneling Microscopy group (Advisor: PD Dr. Martin Wenderoth) Thesis title: Atomic-scale transport in graphene: the role of localized defects and substitutional doping
    [Show full text]
  • Magnetism Division Fachverband Magnetismus (MA) Overview Of
    Regensburg 2019 – MA Overview Magnetism Division Fachverband Magnetismus (MA) Manfred Fiebig Andy Thomas Department of Materials, ETH Zurich Leibniz Institute for Vladimir-Prelog-Weg 4 Solid State and Materials Research Dresden 8093 Zurich, Switzerland Helmholtzstraße 20 manfred.fi[email protected] 01069 Dresden [email protected] Overview of Invited Talks and Sessions (Lecture halls H33, H37, H38, H39, H48, H52, and H53; Poster C and E) Invited Talks MA 3.1 Mon 9:30–10:00 H38 Three-dimensional solitons in magnetism, nuclei and particle physics — ∙Paul Sutcliffe MA 3.2 Mon 10:00–10:30 H38 Simulations of particlelike states in three-dimensional magnets: chiral skyrmions, bobbers and hopfions — ∙Filipp N. Rybakov MA 3.4 Mon 10:45–11:15 H38 Quantitative measurements of three dimensional magnetic textures us- ing off-axis electron holography — ∙András Kovács, Nikolai Kiselev, Jan Caron, Thibaud Denneulin, Fengshan Zheng, Dongsheng Song, Stefan Blügel, Rafal E Dunin-Borkowski MA 3.5 Mon 11:30–12:00 H38 Three-dimensional nanomagnetism: Present and future — ∙Amalio Fernandez-Pacheco MA 3.7 Mon 12:15–12:45 H38 Revealing magnetic configurations with X-ray magnetic nanotomogra- phy — ∙Valerio Scagnoli MA 7.1 Mon 15:00–15:30 H37 The Surface Spin Flop in Synthetic Antiferromagnets with Perpendic- ular Magnetic Anisotropy — ∙Benny Böhm, Nikolai Kiselev, Darius Pohl, Lorenzo Fallarino, Leopold Koch, Bernd Rellinghaus, Kor- nelius Nielsch, Olav Hellwig MA 11.1 Mon 15:45–16:15 H38 Microstructure optimization for rare-earth efficient permanent magnets
    [Show full text]
  • Vision Contents
    vision contents EXECUTIVE SUMMARY 2 RESEARCH PROGRAM OVERVIEW 4 RESEARCH HIGHLIGHTS 7 Awards ...........................................................................................................9 MANAGEMENT & MEMBERSHIP 13 Proposed Structure and Governance .......................................................13 Members ........................................................................................................14 PUBLICATIONS 22 Refereed Journals ........................................................................................22 Refereed Conference Proceedings ...........................................................30 Books and Chapters .....................................................................................32 Student Theses .............................................................................................32 Intellectual Property ....................................................................................33 Invited Presentations at Workshops/Conferences .................................34 LINKAGE 38 Collaborations ...............................................................................................38 Visitors ............................................................................................................40 GRADUATE COURSES 41 SERVICES AND OUTREACH 43 Conferences/Workshops .............................................................................43 Professional Services ..................................................................................43
    [Show full text]
  • Mesurment of Foundry Structures – Mathematics
    INTERNATIONAL SCIENTIFIC JOURNAL "INDUSTRY 4.0" WEB ISSN 2534-997X; PRINT ISSN 2543-8582 MESURMENT OF FOUNDRY STRUCTURES – MATHEMATICS Maneva A., Chief Assistent, PhD, Eng., Bushev S., Associate Professor, PhD, Eng. Institute of metal science, equipment and technology with hydro- and aerodynamics center “Acad. A. Balevski” Bulgarian academy of sciences, Sofia 1574, 67 “Shipchenski prohod” Str. Bulgaria Republic [email protected] , [email protected] Abstract: Mathematics is a technological necessity for manufacturing but casting in micro-foundry. The need to describe the first-order phase transition process is based on physical experiments with this transition based on theoretical and mathematical physics. The natural basis of any science is the use of mathematics, which is a basic motivation for its self-development. Keywords: MATHEMATICS, FOUNDRY, MICROSTRUCTURE, INFRASTRUCTUR OF KNOWLEDGE TRANSFER 1. Introduction represented by the density of the packing density coefficient in Fig. 2 The capabilities of foundries and computational mathematics are presented very clearly in Fig. 1 Fig. 2 Scheme – casting structure of meso- level [3]: a) η – packing density coefficient, vS – volume of atom, vSη – volume of cell, where have only one atom; b) 2D an ideal crystal lattice composed of Wigner-Seitz cells. The calculations of the casting structure at the meso-level are carried out at scales of Å and nm. It is well known that a scale of 1 µm is a macro size. The theoretical model [3] includes the tasks: Stephan and Stephan - Schwarz; the atomic level is the model of Kosel-Stranski-Folmer-Kaishev and the basic equation of Kashchiev with variable thermodynamic driving force and thermodynamics of supesaturation (supercooling).
    [Show full text]
  • Realistic Read-Out and Control for Si:P Based Quantum Computers
    Realistic read-out and control for Si:P based quantum computers by Matthew James Testolin BSc(Hons) Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy School of Physics The University of Melbourne Australia August, 2008 Abstract This thesis identifies problems with the current operation proposals for Si:P based solid-state quantum computing architectures and outlines realistic alter- natives as an effective fix. The focus is qubit read-out and robust two-qubit control of the exchange interaction in the presence of both systematic and environmental errors. We develop a theoretical model of the doubly occupied D− read-out state found in Si:P based nuclear spin architectures. We test our theory by using it to determine the binding energy of the D− state, comparing to known re- sults. Our model can be used in detailed calculations of the adiabatic read-out protocol proposed for these devices. Regarding this protocol, preliminary cal- culations suggest the small binding energy of the doubly occupied read-out state will result in a state dwell-time less than that required for measurement using a single electron transistor (SET). We propose and analyse an alterna- tive approach to single-spin read-out using optically induced spin to charge transduction, showing that the top gate biases required for qubit selection are significantly less than those demanded by the adiabatic scheme, thereby in- + creasing the D D− lifetime. Implications for singlet-triplet discrimination for electron spin qubits are also discussed. On the topic of robust two-qubit control, we demonstrate how by using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known.
    [Show full text]