Signalling from the Gut Lumen

Total Page:16

File Type:pdf, Size:1020Kb

Signalling from the Gut Lumen CSIRO PUBLISHING Animal Production Science, 2017, 57, 2175–2187 Review http://dx.doi.org/10.1071/AN17276 Signalling from the gut lumen John B. Furness A,B,C and Jeremy J. Cottrell A ADepartment of Agriculture and Food, The University of Melbourne, Parkville, Vic. 3010, Australia. BFlorey Institute of Neuroscience and Mental Health, Parkville, Vic. 3010, Australia. CCorresponding author. Email: [email protected] Abstract. The lining of the gastrointestinal tract needs to be easily accessible to nutrients and, at the same time, defend against pathogens and chemical challenges. This lining is the largest and most vulnerable surface that faces the outside world. To manage the dual problems of effective nutrient conversion and defence, the gut lining has a sophisticated system for detection of individual chemical entities, pathogenic organisms and their products, and physico-chemical properties of its contents. Detection is through specific receptors that signal to the gut endocrine system, the nervous system, the immune system and local tissue defence systems. These effectors, in turn, modify digestive functions and contribute to tissue defence. Receptors for nutrients include taste receptors for sweet, bitter and savoury, free fatty acid receptors, peptide and phytochemical receptors, that are primarily located on enteroendocrine cells. Hormones released by enteroendocrine cells act locally, through the circulation and via the nervous system, to optimise digestion and mucosal health. Pathogen detection is both through antigen presentation to T-cells and through pattern-recognition receptors (PRRs). Activation of PRRs triggers local tissue defence, for example, by causing release of antimicrobials from Paneth cells. Toxic chemicals, including plant toxins, are sensed and then avoided, expelled or metabolised. It continues to be a major challenge to develop a comprehensive understanding of the integrated responses of the gastrointestinal tract to its luminal contents. Additional keywords: microbiota, mucosal biology, nutrient receptors. Received 2 May 2017, accepted 3 July 2017, published online 19 July 2017 Introduction cells in other gut regions, hormones from other sources, and The gastrointestinal tract exists in a state of hypervigilance. neural signals including those from the central nervous system It contains a rich assortment of chemicals and microorganisms, (CNS). separated from the body’s internal milieu by only a single layer Roles of gastro-entero-pancreatic hormone-producing of epithelial cells for most of its length. This single layer of cells (enteroendocrine) cells in determining digestive in the small intestine is the largest vulnerable surface of the efficiency body, with a surface area of ~60 m2 (Ferraris et al. 1989). The total external (luminal) surface of the gastrointestinal tract is Optimal conversion of food to essential nutrients, including energy ~100–400 m2, compared with ~2 m2 of skin (MacDonald and substrates and structural and regulatory proteins, depends on the Monteleone 2005; Artis 2008). The lining of the gut is continually control of a range of digestive and digestion-related functions, exposed to food, drink and contaminants they may bring with many of which are influenced by the hormones released by them, to a multitude of microorganisms and their products, to enteroendocrine cells (EEC). These functions include appetite enzymatic and chemical breakdown products of complex and satiety, the rate of gastric emptying, intestinal transit, release molecules, to gastrointestinal secretions, to potentially toxic of digestive enzymes, induction of nutrient transporters, fluid and chemicals and to food additives. electrolyte transport across the mucosa, local blood flow, pancreatic The intestine continuously monitors its contents so as to insulin secretion, modulation of immune responses and tissue optimise nutrient conversion and defend against threats to its growth. The EEC release their hormones in response to integrity. For these purposes it possesses a range of sensory chemicals in the gut lumen, mechanical forces and the bulk receptors and mechanisms (Table 1) that activate four major properties of the luminal contents, such as pH. effector systems: the enteroendocrine system, the nervous fi system, the gut immune system and the non-immune defence Classi cation of EEC systems of the gut, including mucosal repair (Fig. 1). Enteroendocrine cells (EEC) are scattered as single cells in the This review concerns exteroception, particularly sensing of lining epithelium of the stomach, and small and large intestine, chemicals that are in the luminal contents or arise from the which collectively form the largest endocrine organ of the body luminal contents. The digestive tract also senses messages from (Rehfeld 2004; Janssen and Depoortere 2013). Closely related the internal environment. These include hormones released by cells are found in the biliary tract and in the pancreatic islets; Journal compilation Ó CSIRO 2017 www.publish.csiro.au/journals/an 2176 Animal Production Science J. B. Furness and J. J. Cottrell Table 1. Some factors that are sensed in the gut lumen and the associated receptors (italic) The table lists the major known properties of the contents and states of the gastrointestinal tract that are specifically sensed and that lead to endocrine, neural or other signals that change organ or body states. FFAR, free fatty acid receptor; GPCR, G protein-coupled receptor; Nod, nucleotide-binding oligomerisation domain; PRR, pattern-recognition receptor; TGR, Takeda G protein receptor; T1R–T2R, Tastant 1 receptor–Tastant 2 receptor; TRP, transient receptor-potential; 5-HT, 5-hydroxytryptamine Nutrients and food components The taste receptors: simple sugars, the sweet taste receptor, T1R2–T1R3; aminoacids, the umami (savoury) receptor, T1R1–T1R3; the bitter receptor family, T2Rs; the sour (acid) receptor, TRPP2. Protein breakdown products (peptones and amino acids): GPR92/93, GPRC6A, T1R1–T1R3 Free fatty acid receptors: FFARs 1–3, GPR119, GPR120 Phytochemicals (specific chemical entities of herbs and spices): TRP receptors, including TRPV1, TRPV2, TRPV5, TRPV6, TRPA1, TRPP2; the bitter receptor, T2R; olfactory receptors Mechanical distortion, stretch and tension Mechanosensitive channels of nerve endings and enteroendocrine cells Other physico-chemical attributes Temperature, osmolarity, acidity Internal secretions Bile acid receptors, TGR5 Bacteria, viruses, fungi, protozoa and helminths: their antigens and products Pattern-recognition receptors (PRRs): toll-like receptors 1–9, Nod1, 2. T-cell receptors: peptides, lipopolysaccharides, vitamin B metabolites. Toxins and emetogenic compounds Receptors for emetogenic toxins on 5-HT-containing enteroendocrine cells in the stomach and proximal small intestine. Receptors for advanced glycation end products (RAGE). Foreign compound transporters/receptors that recognise foreign compounds including pharmaceuticals: peptide transporter (PTR) family members, oligopeptide transporters and organic anion transporters (OATPs). together with EEC, these form the gastro-entero-pancreatic and that there is both diversity of 5-HT-containing EEC and a endocrine system. Until very recently, EEC were classified into wide range of roles of gut-derived 5-HT (Diwakarla et al. 2017; 12 types, each with a single letter code representing the hormone Martin et al. 2017). Although the classification of EEC needs that the cells contain and release, for example, G cells being gastrin substantial revision, the major roles of the hormones in the containing, S cells being secretin containing and I cells being control of digestive function can be identified (Table 2). cholecystokinin (CCK)-containing. The exception was L cells Nutrient receptors are mostly, but not exclusively, located on that contain both glucagon gene products (glucagon-like peptides EEC cells. A summary of the nutrient receptor types that (GLP-1, GLP-2), glicentin and oxyntomodulin) and peptide influence the release of the different hormones is included in tyrosine–tyrosine (PYY). It is now clear that the one cell–one Table 2. The patterns of co-expression of hormones, and the hormone (or hormone combination) classificationisnolonger differences along the gut, provide a much greater complexity tenable (Helander and Fändriks 2012; Gribble and Reimann than is represented in the table, and that has been covered in 2015;Fothergillet al. 2017). For example, when cells expressing depth in recent reviews (Psichas et al. 2015; Husted et al. 2017). a reporter transgene under CCK promotor control are isolated and The hormones released from the EEC can act locally on other molecularly analysed, it is found that CCK gene transcripts are cells, including immune cells, on nerve endings, or at a distance co-expressed with secretin, glucagon-like insulinotropic peptide on other organs, including the pancreatic islets and the CNS. It (GIP), GLP-1, PYY and neurotensin transcripts in subsets of is notable that the hormones do not act alone; for example, CCK EEC, and co-expression of the peptide hormones has been and 5-HT both increase the release of digestive enzymes from confirmed by mass spectrometry and immunohistochemistry the pancreas (Li et al. 2000) and CCK, GLP-1 and PYY are all (Egerod et al. 2012). Isolation of GIP-expressing and GLP- satiety factors. GLP-1 and PYY, which are commonly localised expressing EEC and correlated immunohistochemical analysis in the same cells, have synergistic effects. Infusion of GLP-1 or has
Recommended publications
  • Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple
    Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple By Amy Crenshaw Pritchett February 19, 2014 1 Agenda In this webinar: Expand your understanding of ICD-10-PCS with can’t miss ICD-10-PCS coding conventions & guidelines. Understand the basic differences between ICD-9-CM Volume 3 and ICD-10-PCS. Learn code structure, organization, & characters: Step 1 to coding section “0” ICD-10-PCS? Pinpoint the body system. To build your ICD-10-PCS code, you must identify the root operation. Study 7 options when assigning your PCS code’s 5th character. Master how to determine the device value for your PCS code’s character. Raise your awareness of unique ICD-10-PCS challenges pertaining to documentation and specificity: Prepare physicians now for more detailed transfusion notes under ICD- 10-PCS. Discover why writing “Right Carotid Endarterectomy” won’t be enough. Know where to find ICD-10-PCS tools, techniques, and best practices. 2 Understanding ICD-10-PCS ICD-10-PCS is a major departure from ICD-9-CM procedure coding, requiring you to know which root word applies. Effective October 1, 2014, this procedure coding system will be used to collect data, determine payment, and support the electronic health record for all inpatient procedures performed in the US. 3 Gear Up for ICD-10-PCS This procedure coding system is starkly different from ICD-9-CM procedure coding: Every ICD-10-PCS code has seven characters, each character defining one aspect of the procedure performed. For instance, not correctly identifying your physician’s approach – the fifth character – and not being able to distinguish between similar root operations can throw off your claims accuracy! 4 Converting to ICD-10-PCS Have your inpatient coders and clinical documentation specialists begun preparing for ICD-10-PCS yet? That’s why we’re here today … to ease your transition from ICD-9-CM procedure coding to ICD-10-PCS.
    [Show full text]
  • Overview of Gastrointestinal Function
    Overview of Gastrointestinal Function George N. DeMartino, Ph.D. Department of Physiology University of Texas Southwestern Medical Center Dallas, TX 75390 The gastrointestinal system Functions of the gastrointestinal system • Digestion • Absorption • Secretion • Motility • Immune surveillance and tolerance GI-OP-13 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Structure of a villus Villus Lamina propria Movement of substances across the epithelial layer Tight junctions X Lumen Blood Apical membrane Basolateral membrane X X transcellular X X paracellular GI-OP-19 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Motility in the gastrointestinal system Propulsion net movement by peristalsis Mixing for digestion and absorption Separation sphincters Storage decreased pressure GI-OP-42 Intercellular signaling in the gastrointestinal system • Neural • Hormonal • Paracrine GI-OP-10 Neural control of the GI system • Extrinsic nervous system autonomic central nervous system • Intrinsic (enteric) nervous system entirely with the GI system GI-OP-14 The extrinsic nervous system The intrinsic nervous system forms complete functional circuits Sensory neurons Interneurons Motor neurons (excitatory and inhibitory) Parasympathetic nerves regulate functions of the intrinsic nervous system Y Reflex control of gastrointestinal functions Vago-vagal Afferent reflex Salivary Glands Composition of Saliva O Proteins α−amylase lactoferrin lipase RNase lysozyme et al mucus O Electrolyte solution water Na+ , K + - HCO3
    [Show full text]
  • Sporadic (Nonhereditary) Colorectal Cancer: Introduction
    Sporadic (Nonhereditary) Colorectal Cancer: Introduction Colorectal cancer affects about 5% of the population, with up to 150,000 new cases per year in the United States alone. Cancer of the large intestine accounts for 21% of all cancers in the US, ranking second only to lung cancer in mortality in both males and females. It is, however, one of the most potentially curable of gastrointestinal cancers. Colorectal cancer is detected through screening procedures or when the patient presents with symptoms. Screening is vital to prevention and should be a part of routine care for adults over the age of 50 who are at average risk. High-risk individuals (those with previous colon cancer , family history of colon cancer , inflammatory bowel disease, or history of colorectal polyps) require careful follow-up. There is great variability in the worldwide incidence and mortality rates. Industrialized nations appear to have the greatest risk while most developing nations have lower rates. Unfortunately, this incidence is on the increase. North America, Western Europe, Australia and New Zealand have high rates for colorectal neoplasms (Figure 2). Figure 1. Location of the colon in the body. Figure 2. Geographic distribution of sporadic colon cancer . Symptoms Colorectal cancer does not usually produce symptoms early in the disease process. Symptoms are dependent upon the site of the primary tumor. Cancers of the proximal colon tend to grow larger than those of the left colon and rectum before they produce symptoms. Abnormal vasculature and trauma from the fecal stream may result in bleeding as the tumor expands in the intestinal lumen.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Lumen Retiree and Inactive Health Care Plan* Standard Consumer
    Lumen Retiree and Inactive Health Care Plan * Standard Consumer Driven Health Plan (CDHP) (Administered by UnitedHealthcare) Summary Plan Description (SPD) For Retired and Inactive Former Employees CenturyLink, Embarq, Qwest Post-1990 Management, Qwest Post-1990 Occupational Retirees (including Inactive and COBRA Participants) Effective January 1, 2021 This SPD must be read in conjunction with the Retiree General Information SPD , which explains many details of your coverage and provides a listing of the other Benet options under the Plan. * The Lumen brand was launched on September 14, 2020. As a result, Lumen, Inc. is referred to as Lumen Technologies, or simply Lumen. The legal name Lumen, Inc. is expected to be formally changed to Lumen Technologies, Inc. upon the completion of all applicable requirements. Issued Jan. 1, 2021 Table of Contents INTRODUCTION 1 The Patient Protection and Affordable Care Act Known as the “Affordable Care Act” ....................................... 1 The Required Forum for Legal Disputes .......................................................................................................... 2 How to Use This Document ............................................................................................................................... 2 Exempt Retiree Medical Plan Status Notice ...................................................................................................... 2 Lumen’s right to use your Social Security number for administration of benets .............................................
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6*
    Alderfer et al. Journal of Biological Engineering (2018) 12:32 https://doi.org/10.1186/s13036-018-0122-7 REVIEW Open Access Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6* Abstract The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration. Keywords: Lymphangiogenesis, Tissue Engineering, Disease Modeling, Wound Healing, Lymphedema, Stem Cells, Biomaterials, Interstitial Fluid, Regeneration I. Introduction to the Lymphatic System and its role Interstitial fluid (IF) is a plasma filtrate that is generated Function by transcapillary filtration and is governed by Starling The lymphatic system is nearly ubiquitous in the human forces, the net difference between hydrostatic and body, present in all tissues except the epidermis, cartil- osmotic pressures, at the microcirculatory level [9]. In age, eye lens, cornea, retina, and bone marrow [1, 2]. order to maintain fluid homeostasis, lymph formation in The main functions of the lymphatic system include the initial lymphatic vessels must be balanced by the net fluid homeostasis and interstitial fluid drainage, immune flux of plasma being filtered out [4].
    [Show full text]
  • Esophageal Dilation: an Overview
    JWST654-c100 JWST654-Talley Printer: Yet to Come July 4, 2016 14:6 279mm×216mm CHAPTER 100 Esophageal Dilation: An Overview Parth J. Parekh and David A. Johnson Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA CHAPTER 100 Summary Esophageal strictures may develop from both benign and malig- slowly advancing to a more normal diet as tolerated. She is instructed nant causes. Patients with esophageal strictures typically present to notify the gastroenterologist if persistent or recurrent dysphagia is evident or if she develops heartburn. with progressive dysphagia for solids, which if left untreated may progress to include liquids. Esophageal dilation is frequently required for the symptomatic management of dysphagia. There are a number of available options for successful dilation of most stric- Introduction tures, as well as adjunctive techniques reserved for more “refractory” Esophageal strictures arise from an intrinsic disease (such as inflam- cases. In order to optimize therapy and minimize risk, it is essential mation, fibrosis, or neoplasia) that narrows the esophageal lumen, to fully understand the underlying cause and anatomy of the stric- an extrinsic disease compromising the esophageal lumen by direct ture.Carefulselectionofdilationtechniqueandestablishmentofthe or indirect invasion, or diseases disrupting esophageal peristalsis goals for luminal restoration are important as, in each case, these and/or lower esophageal sphincter (LES) function. Esophageal stric- factors may need to be altered to
    [Show full text]
  • Development of the ICD-10 Procedure Coding System (ICD-10-PCS)
    Development of the ICD-10 Procedure Coding System (ICD-10-PCS) Richard F. Averill, M.S., Robert L. Mullin, M.D., Barbara A. Steinbeck, RHIT, Norbert I. Goldfield, M.D, Thelma M. Grant, RHIA, Rhonda R. Butler, CCS, CCS-P The International Classification of Diseases 10th Revision Procedure Coding System (ICD-10-PCS) has been developed as a replacement for Volume 3 of the International Classification of Diseases 9th Revision (ICD-9-CM). The development of ICD-10-PCS was funded by the U.S. Centers for Medicare and Medicaid Services (CMS).1 ICD-10- PCS has a multiaxial seven character alphanumeric code structure that provides a unique code for all substantially different procedures, and allows new procedures to be easily incorporated as new codes. ICD10-PCS was under development for over five years. The initial draft was formally tested and evaluated by an independent contractor; the final version was released in the Spring of 1998, with annual updates since the final release. The design, development and testing of ICD-10-PCS are discussed. Introduction Volume 3 of the International Classification of Diseases 9th Revision Clinical Modification (ICD-9-CM) has been used in the U.S. for the reporting of inpatient pro- cedures since 1979. The structure of Volume 3 of ICD-9-CM has not allowed new procedures associated with rapidly changing technology to be effectively incorporated as new codes. As a result, in 1992 the U.S. Centers for Medicare and Medicaid Services (CMS) funded a project to design a replacement for Volume 3 of ICD-9-CM.
    [Show full text]
  • DIGESTIVE SYSTEM -3 Emma Jakoi
    Introductory Human Physiology ©copyright Emma Jakoi DIGESTIVE SYSTEM -3 Emma Jakoi. Ph.D. LEARNING OBJECTIVES 1. Explain the mechanisms of digestion and absorption of nutrients and identify where these occur within the gastrointestinal tube. 2. Explain the mechanisms of absorption of water and identify where this occurs within the gastrointestinal tube. 3. Explain the underlying mechanism for diarrhea and its causes. SMALL INTESTINE & NUTRIENT ABSORPTION Muscle contractions cause a ripple like movement that carries the food down the small intestine –like a conveyor belt. This transit is normally slow occurring over several hours. As complex food moves within the lumen of the small intestine, it is digested into small molecules. Subsequently these small molecules such as amino acids and sugars are absorbed into the body. These functions are coordinated by hormones. The small intestine is divided into three regions: duodenum, jejunum and ileum. The first, duodenum, is 10 inches long; the other two total 10 feet. The initial segment, the duodenum, receives the acidic chyme. Here the epithelium contains mucous glands and goblet cells which secrete mucus to neutralize the pH of the chyme. The duodenal epithelium cells also secrete hormones (Fig 1), cholecystokinin (CCK) and secretin, which signal the arrival of food to the pancreas, gall bladder, and stomach, respectively (Fig 1). Secretions from the pancreas and gall bladder are delivered directly to the lumen of the duodenum. Chyme G cells of stomach Duodenum CHO fats & peptides acid GLP-1 CCK Secretin Pancreas Pancreas Gall bladder Pancreas Islet Insulin enzymes bile salts HCO3- (Blood, feedforward) Figure 1. Digestive products signal the release of 2 hormones CCK and secretin from the duodenum and glucagon like peptide 1 (GLP-1) from the ileum.
    [Show full text]
  • Clinical Abbreviations & Glossary
    Clinical Reference Manual Thanks to Megan E. Wren, MD, FACP (pronouns: she/her/hers) Professor of Medicine Associate Director, Internal Medicine Residency Division of General Medicine, Department of Medicine Washington University School of Medicine CLINICAL ABBREVIATIONS & GLOSSARY Page 1 – Common abbreviations in medication orders Page 2 – Clinical Glossary Page 3 – Full list of abbreviations Also see the Medical Etymology section of the online Clinical Reference Manual for more help with vocabulary. Common abbreviations in medication orders: Q or q Every (always used with some time interval, such as Q6 hrs) Q day every day BID or bid bis in die, twice a day TID or tid ter in die, three time a day QID or qid quarter in die, four times a day PRN or prn pro re nata, as often as needed Q x hours (eg, Q 4hrs or q 4 hrs) Every x hours i, ii, iii, iv (lower case Roman #s) 1, 2, 3, 4 PO or po per os = by mouth SL sublingual PR Per rectum IV Intravenously BJH Guidelines on Abbreviations: Unacceptable form Acceptable form Zero after decimal (1.0 mg) No terminal zero (1 mg) No zero before decimal (.5mg) Zero before decimal (0.5 mg) U or u Write “unit” µg Write “mcg” or “microgram” cc Write “mL” or “ml” or “milliliters” or “cubic centimeters” QOD or qod Write “every other day” QD or Q.D. Write “daily” or “every day” or “Q day” or “Q 24 hours” HS Write “half-strength” or “at bedtime” AU, AS, AD Write “both ears” or “left ear” or “right ear” OU, OS, OD Write “both eyes” or “left eye” or “right eye” TIW Write “three times weekly” or specify days (“Q
    [Show full text]
  • CBI 203 Mini Physiology
    Introductory Human Physiology ©copyright Emma Jakoi DIGESTIVE SYSTEM -1 Emma Jakoi. Ph.D. LEARNING OBJECTIVES 1. Describe the functional anatomy and role of the digestive system. 2. Describe the production of gastric acid in the stomach. 3. Describe the time course of acid secretion in the fed and fasted states OVERVIEW The digestive system provides nutrients, water, and electrolytes to the cells of the body from the external environment. Food enters the oral cavity and is propelled by muscular contractions through the gastrointestinal (GI) tract moving towards the anus. At various points along the GI tract, acid, digestive enzymes, and buffers are added to facilitate the breakdown of complex foods (such as steak and rice) into simple molecules (such as amino acids, glucose, and fatty acids). These products are then absorbed into the body and delivered to the liver. The various secretions of the GI tract (enzymes, mucus, and water) sum to about 7 liters. This fluid is reabsorbed to prevent dehydration. Unabsorbed nutrients and waste products are eliminated from the body as feces (100 mL – 500mL per day). ANATOMY The digestive system includes the gastrointestinal tract and accessory organs (Fig 1). The gastrointestinal tract is a muscular tube about 5 meters in length. It includes the mouth, pharynx, esophagus, stomach, small intestine and large intestine (colon). Voluntary control occurs at the top and bottom of the tube. Movement through the rest of the gastrointestinal tract is involuntary and unidirectional from mouth to anus. Salivary glands Liver Pancreas Gall bladder Figure 1. Functional regions of the gastrointestinal tract. X marks the sphincters under voluntary control.
    [Show full text]