Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow

Total Page:16

File Type:pdf, Size:1020Kb

Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow biology Review Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow Eleonora Solari y , Cristiana Marcozzi y , Daniela Negrini and Andrea Moriondo * Department of Medicine and Surgery, University of Insubria, I-21100 Varese, Italy; [email protected] (E.S.); [email protected] (C.M.); [email protected] (D.N.) * Correspondence: [email protected] Both authors have equally contributed. y Received: 7 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Lymphatic vessels are responsible for the drainage of liquids, solutes, and cells from interstitial spaces and serosal cavities. Their task is fundamental in order to avoid fluid accumulation leading to tissue swelling and edema. The lymphatic system does not possess a central pump, instead lymph is propelled against an overall hydraulic pressure gradient from interstitial spaces to central veins thanks to two pumping mechanisms, which rely on extrinsic forces or the intrinsic rhythmic contractility of lymphatic muscle cells embedded in vessel walls. This latter mechanism can very rapidly adapt to subtle changes in the microenvironment due to hydraulic pressure, lymph flow-induced wall shear stress, liquid osmolarity, and local tissue temperature. Thus, endothelial and lymphatic muscle cells possess mechanosensors that sense these stimuli and promote a change in contraction frequency and amplitude to modulate lymph flow accordingly. In this review, we will focus on the known physical parameters that can modulate lymph flow and on their putative cellular and molecular mechanisms of transduction. Abstract: Lymphatic vessels drain and propel lymph by exploiting external forces that surrounding tissues exert upon vessel walls (extrinsic mechanism) and by using active, rhythmic contractions of lymphatic muscle cells embedded in the vessel wall of collecting lymphatics (intrinsic mechanism). The latter mechanism is the major source of the hydraulic pressure gradient where scant extrinsic forces are generated in the microenvironment surrounding lymphatic vessels. It is mainly involved in generating pressure gradients between the interstitial spaces and the vessel lumen and between adjacent lymphatic vessels segments. Intrinsic pumping can very rapidly adapt to ambient physical stimuli such as hydraulic pressure, lymph flow-derived shear stress, fluid osmolarity, and temperature. This adaptation induces a variable lymph flow, which can precisely follow the local tissue state in terms of fluid and solutes removal. Several cellular systems are known to be sensitive to osmolarity, temperature, stretch, and shear stress, and some of them have been found either in lymphatic endothelial cells or lymphatic muscle. In this review, we will focus on how known physical stimuli affect intrinsic contractility and thus lymph flow and describe the most likely cellular mechanisms that mediate this phenomenon. Keywords: lymphatic vessels; intrinsic contractility; extrinsic mechanism; hydraulic pressure; shear stress; lymph flow; osmolarity; tissue temperature 1. Introduction The lymphatic system drains fluid, macromolecules, and cells from the surrounding interstitium and from serosal cavities, thus contributing to tissue homeostasis and fluid balance [1,2]. Lymph Biology 2020, 9, 463; doi:10.3390/biology9120463 www.mdpi.com/journal/biology Biology 2020, 9, 463 2 of 15 Biology 2020, 9, x FOR PEER REVIEW 2 of 15 entersenters blind-endedblind-ended lymphaticlymphatic capillariescapillaries byby meansmeans ofof overlappingoverlapping endothelialendothelial cellscells formingforming primaryprimary unidirectionalunidirectional valves [3–5] [3–5] and and then then it itis ispropelled propelled afferently afferently through through collecting collecting vessels, vessels, lined lined with withmuscle muscle cells cellsin their in their walls walls and and with with intraluminal intraluminal unidirectional unidirectional valves valves [6] [6] delimitingdelimiting adjacentadjacent lymphangions,lymphangions, thethe lymphaticlymphatic functionalfunctional unitsunits (Figure(Figure1 )[1) 7[7,8].,8]. LymphLymph formationformation andand propulsionpropulsion dependdepend uponupon twotwo didifferentfferent mechanisms,mechanisms, namednamed “intrinsic“intrinsic andand extrinsic.”extrinsic.” TheyThey bothboth aaffectffect locallocal pressurepressure gradientsgradients betweenbetween interstitialinterstitial spacesspaces andand vesselvessel lumenlumen andand between adjacent lymphangions. TheThe intrinsicintrinsic mechanism,mechanism, predominantpredominant inin softsoft tissuestissues suchsuch asas thethe mesentery,mesentery, reliesrelies onon thethe lymphaticlymphatic musclemuscle (LM)(LM) netnet [[9–12]9–12] surroundingsurrounding thethe collectingcollecting vesselvessel wall.wall. Lymphatic musclemuscle cellscells spontaneouslyspontaneously contractcontract byby meansmeans ofof electricalelectrical commandscommands arisingarising inin pacemakerpacemaker cellscells withinwithin thethe lymphaticlymphatic musclemuscle layer,layer, duedue to to spontaneous spontaneous transient transient depolarizations depolarizations (STDs,(STDs, inducedinduced byby calcium-dependentcalcium-dependent chloridechloride currents)currents) oror I f-like-like currents currents mediated mediated by by HCN HCN channels channels such such as asit occurs it occurs in the in theheart heart [13–17]. [13– The17]. Theelectrical electrical signal signal then thenpropagates propagates to adjacent to adjacent LM cells LM cellsalong along the lymphatic the lymphatic network network through through GAP GAPjunctions junctions [18]. [Conversely,18]. Conversely, the extrinsic the extrinsic mechanism mechanism depends depends upon upon mechanical mechanical stresses stresses originating originating in insurrounding surrounding tissues tissues [19] [19 ]and and transmitted transmitted to to the the vessel vessel wall wall through fibrousfibrous extracellularextracellular matrixmatrix componentscomponents [[20–22].20–22]. ThisThis mechanismmechanism isis predominantpredominant inin lymphaticslymphatics locatedlocated inin tissuestissues undergoingundergoing significantsignificant cycliccyclic movements,movements, asas thethe heartheart oror skeletalskeletal muscularmuscular tissuetissue [[21],21], oror isis duedue toto cardiogeniccardiogenic oror respiratory-inducedrespiratory-induced displacementdisplacement [[23,24].23,24]. ArteriolarArteriolar vasomotionvasomotion [[25]25] andand externalexternal compressioncompression [[26]26] alsoalso aaffectffect lymphaticlymphatic function,function, eventuallyeventually inducinginducing rhythmicrhythmic vesselvessel compressioncompression andand expansionexpansion (Figure(Figure1 ).1). Figure 1. Functional scheme of how lymph is drained and propelled. Extrinsic forces and/or Figure 1. Functional scheme of how lymph is drained and propelled. Extrinsic forces and/or intrinsic intrinsic rhythmic contractions generate transmural pressure gradients (DPTM) across the wall of initial rhythmic contractions generate transmural pressure gradients (ΔPTM) across the wall of initial lymphatic capillaries and intraluminal pressure gradients (DPLymph) between adjacent lymphangions. lymphatic capillaries and intraluminal pressure gradients (ΔPLymph) between adjacent lymphangions. Intraluminal valve leaflets are devoid of LM. (Pin) interstitial hydraulic pressure; (PL) intraluminal hydraulicIntraluminal pressure; valve (leafletsEC) lymphatic are devoid endothelial of LM. cells;(Pin) interstitial (LM) lymphatic hydraulic muscle pressure; cells. (PL) intraluminal hydraulic pressure; (EC) lymphatic endothelial cells; (LM) lymphatic muscle cells. Extrinsic and intrinsic mechanisms may coexist in several areas of the body, and their relative importanceExtrinsic is variableand intrinsic since themechanisms sources of may extrinsic coexist pumping in several may areas vary of in the strength body, fromand their blood relative vessel vasomotionimportance causedis variable by thesince pulsatile the sources blood of flow extrinsic to external pumping forces may coming vary in from strength nearby from muscles, bloodwhich vessel contractvasomotion and caused relax, to by relatively the pulsatile small blood contributions flow to ex internal the mesentery. forces coming Thoracic from nearby cavity ismuscles, one region which of thecontract body and where relax, the to continuous relatively rhythmicsmall contributions activity of in the the heart mesentery. and respiration Thoracic gives cavity rise is toone a constantregion of interplaythe body ofwhere the two the lymphatic continuous pumping rhythmic mechanisms. activity of the In the heart rat and diaphragm, respiration both gives extrinsic rise andto a intrinsicconstant mechanismsinterplay of cooperatethe two lymphatic [27], as the extrinsicpumping rhythmic mechanisms. respiratory In the movements rat diaphragm, mainly both sustain extrinsic lymphatic and propulsionintrinsic mechanisms in the central cooperate tendon and[27], in as the the medial extrinsic muscular rhythmic region. respiratory In this movements regard, longitudinal mainly sustain rather thanlymphatic perpendicular propulsion lymphatic in the central orientation tendon [28] and with in respect the medial to muscle muscular fibers arrangementregion. In this results regard, in longitudinal rather than perpendicular lymphatic orientation [28] with respect to muscle fibers arrangement results in functional differences. On the contrary,
Recommended publications
  • 29 Assessing the Cardiovascular and Lymphatic Systems
    29 Assessing the Cardiovascular and Lymphatic Systems LEARNING OUTCOMES 1. Describe the anatomy, physiology, and functions of the 5. Explain techniques used to assess cardiovascular and cardiovascular and lymphatic systems. lymphatic structure and function. 2. Describe normal variations in cardiovascular assessment 6. Identify manifestations of impaired cardiovascular structure findings for the older adult. and functions. 3. Give examples of genetic disorders of the cardiovascular system. 4. Identify specific topics for consideration during a health history assessment interview of the patient with cardiovascu- lar or lymphatic disorders. CLINICAL COMPETENCIES 1. Complete a health history for patients having alterations in 3. Assess an ECG strip and identify normal rhythm and cardiac the structure and functions of the cardiovascular or lymphatic events and abnormal cardiac rhythm. systems. 4. Monitor the results of diagnostic tests and communicate 2. Conduct and document a physical assessment of cardiovas- abnormal findings within the interprofessional team. cular and lymphatic status. MAJOR CHAPTER CONCEPTS • Correct structure and function of the cardiovascular and • Manifestations of dysfunction, injury, and disorders affecting lymphatic systems are vital to the transport of oxygen and the cardiovascular and lymphatic systems may be detected carbon dioxide throughout the body and for the return of during a general health assessment as well as during focused excess tissue fluids back to the bloodstream. cardiovascular and lymphatic system
    [Show full text]
  • Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple
    Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple By Amy Crenshaw Pritchett February 19, 2014 1 Agenda In this webinar: Expand your understanding of ICD-10-PCS with can’t miss ICD-10-PCS coding conventions & guidelines. Understand the basic differences between ICD-9-CM Volume 3 and ICD-10-PCS. Learn code structure, organization, & characters: Step 1 to coding section “0” ICD-10-PCS? Pinpoint the body system. To build your ICD-10-PCS code, you must identify the root operation. Study 7 options when assigning your PCS code’s 5th character. Master how to determine the device value for your PCS code’s character. Raise your awareness of unique ICD-10-PCS challenges pertaining to documentation and specificity: Prepare physicians now for more detailed transfusion notes under ICD- 10-PCS. Discover why writing “Right Carotid Endarterectomy” won’t be enough. Know where to find ICD-10-PCS tools, techniques, and best practices. 2 Understanding ICD-10-PCS ICD-10-PCS is a major departure from ICD-9-CM procedure coding, requiring you to know which root word applies. Effective October 1, 2014, this procedure coding system will be used to collect data, determine payment, and support the electronic health record for all inpatient procedures performed in the US. 3 Gear Up for ICD-10-PCS This procedure coding system is starkly different from ICD-9-CM procedure coding: Every ICD-10-PCS code has seven characters, each character defining one aspect of the procedure performed. For instance, not correctly identifying your physician’s approach – the fifth character – and not being able to distinguish between similar root operations can throw off your claims accuracy! 4 Converting to ICD-10-PCS Have your inpatient coders and clinical documentation specialists begun preparing for ICD-10-PCS yet? That’s why we’re here today … to ease your transition from ICD-9-CM procedure coding to ICD-10-PCS.
    [Show full text]
  • Overview of Gastrointestinal Function
    Overview of Gastrointestinal Function George N. DeMartino, Ph.D. Department of Physiology University of Texas Southwestern Medical Center Dallas, TX 75390 The gastrointestinal system Functions of the gastrointestinal system • Digestion • Absorption • Secretion • Motility • Immune surveillance and tolerance GI-OP-13 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Structure of a villus Villus Lamina propria Movement of substances across the epithelial layer Tight junctions X Lumen Blood Apical membrane Basolateral membrane X X transcellular X X paracellular GI-OP-19 Histology of the GI tract Blood or Lumenal Serosal Side or Mucosal Side Motility in the gastrointestinal system Propulsion net movement by peristalsis Mixing for digestion and absorption Separation sphincters Storage decreased pressure GI-OP-42 Intercellular signaling in the gastrointestinal system • Neural • Hormonal • Paracrine GI-OP-10 Neural control of the GI system • Extrinsic nervous system autonomic central nervous system • Intrinsic (enteric) nervous system entirely with the GI system GI-OP-14 The extrinsic nervous system The intrinsic nervous system forms complete functional circuits Sensory neurons Interneurons Motor neurons (excitatory and inhibitory) Parasympathetic nerves regulate functions of the intrinsic nervous system Y Reflex control of gastrointestinal functions Vago-vagal Afferent reflex Salivary Glands Composition of Saliva O Proteins α−amylase lactoferrin lipase RNase lysozyme et al mucus O Electrolyte solution water Na+ , K + - HCO3
    [Show full text]
  • Sporadic (Nonhereditary) Colorectal Cancer: Introduction
    Sporadic (Nonhereditary) Colorectal Cancer: Introduction Colorectal cancer affects about 5% of the population, with up to 150,000 new cases per year in the United States alone. Cancer of the large intestine accounts for 21% of all cancers in the US, ranking second only to lung cancer in mortality in both males and females. It is, however, one of the most potentially curable of gastrointestinal cancers. Colorectal cancer is detected through screening procedures or when the patient presents with symptoms. Screening is vital to prevention and should be a part of routine care for adults over the age of 50 who are at average risk. High-risk individuals (those with previous colon cancer , family history of colon cancer , inflammatory bowel disease, or history of colorectal polyps) require careful follow-up. There is great variability in the worldwide incidence and mortality rates. Industrialized nations appear to have the greatest risk while most developing nations have lower rates. Unfortunately, this incidence is on the increase. North America, Western Europe, Australia and New Zealand have high rates for colorectal neoplasms (Figure 2). Figure 1. Location of the colon in the body. Figure 2. Geographic distribution of sporadic colon cancer . Symptoms Colorectal cancer does not usually produce symptoms early in the disease process. Symptoms are dependent upon the site of the primary tumor. Cancers of the proximal colon tend to grow larger than those of the left colon and rectum before they produce symptoms. Abnormal vasculature and trauma from the fecal stream may result in bleeding as the tumor expands in the intestinal lumen.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • Lumen Retiree and Inactive Health Care Plan* Standard Consumer
    Lumen Retiree and Inactive Health Care Plan * Standard Consumer Driven Health Plan (CDHP) (Administered by UnitedHealthcare) Summary Plan Description (SPD) For Retired and Inactive Former Employees CenturyLink, Embarq, Qwest Post-1990 Management, Qwest Post-1990 Occupational Retirees (including Inactive and COBRA Participants) Effective January 1, 2021 This SPD must be read in conjunction with the Retiree General Information SPD , which explains many details of your coverage and provides a listing of the other Benet options under the Plan. * The Lumen brand was launched on September 14, 2020. As a result, Lumen, Inc. is referred to as Lumen Technologies, or simply Lumen. The legal name Lumen, Inc. is expected to be formally changed to Lumen Technologies, Inc. upon the completion of all applicable requirements. Issued Jan. 1, 2021 Table of Contents INTRODUCTION 1 The Patient Protection and Affordable Care Act Known as the “Affordable Care Act” ....................................... 1 The Required Forum for Legal Disputes .......................................................................................................... 2 How to Use This Document ............................................................................................................................... 2 Exempt Retiree Medical Plan Status Notice ...................................................................................................... 2 Lumen’s right to use your Social Security number for administration of benets .............................................
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Structure, Function, and Molecular Control of the Skin Lymphatic System
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Structure, Function, and Molecular Control of the Skin Lymphatic System Mihaela Skobe and Michael Detmar Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, U.S.A. The mechanisms of angiogenesis have been studied phatic vasculature and the differences between blood extensively over the past years. The focus, however, and lymphatic vessels. Special attention has been has been almost exclusively on blood vessels, whereas given to the methods employed in research of the little effort has been directed toward understanding lymphatic system. Finally, we describe molecular lymphangiogenesis and the role of lymphatic vessels mechanisms involved in the regulation of lymphan- in physiology and pathology. The lymphatic system, giogenesis. Vascular endothelial growth factor and acting in concert with the blood vascular system, is vascular endothelial growth factor-C, expressed by of fundamental importance in maintaining tissue distinct skin cell populations, play an important role homeostasis, and disorders of the lymphatic system in the molecular control of skin angiogenesis and are common, often resulting in chronic, disabling lymphangiogenesis. Key words: lymphatic vessels/lymph- conditions. This overview summarizes the most angiogenesis/skin/VEGF-C. Journal of Investigative important aspects of the structure and function of Dermatology Symposium Proceedings 5:14±19, 2000 the lymphatic system with emphasis on the skin lym- ur understanding of the biology of the lymphatic covered'' (Bartels, 1909). The ancient Greeks observed structures system is well illustrated by the word lymphatic containing colorless ¯uid (Hippocrates spoke of ``white blood'') but itself; the derivation of the latin word lymphaticus their function was not understood and the signi®cance of the signi®es ``distracted and confused'' (Witte et al, ®nding was not recognized.
    [Show full text]
  • Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6*
    Alderfer et al. Journal of Biological Engineering (2018) 12:32 https://doi.org/10.1186/s13036-018-0122-7 REVIEW Open Access Lymphatic Tissue Engineering and Regeneration Laura Alderfer1, Alicia Wei1 and Donny Hanjaya-Putra1,2,3,4,5,6* Abstract The lymphatic system is a major circulatory system within the body, responsible for the transport of interstitial fluid, waste products, immune cells, and proteins. Compared to other physiological systems, the molecular mechanisms and underlying disease pathology largely remain to be understood which has hindered advancements in therapeutic options for lymphatic disorders. Dysfunction of the lymphatic system is associated with a wide range of disease phenotypes and has also been speculated as a route to rescue healthy phenotypes in areas including cardiovascular disease, metabolic syndrome, and neurological conditions. This review will discuss lymphatic system functions and structure, cell sources for regenerating lymphatic vessels, current approaches for engineering lymphatic vessels, and specific therapeutic areas that would benefit from advances in lymphatic tissue engineering and regeneration. Keywords: Lymphangiogenesis, Tissue Engineering, Disease Modeling, Wound Healing, Lymphedema, Stem Cells, Biomaterials, Interstitial Fluid, Regeneration I. Introduction to the Lymphatic System and its role Interstitial fluid (IF) is a plasma filtrate that is generated Function by transcapillary filtration and is governed by Starling The lymphatic system is nearly ubiquitous in the human forces, the net difference between hydrostatic and body, present in all tissues except the epidermis, cartil- osmotic pressures, at the microcirculatory level [9]. In age, eye lens, cornea, retina, and bone marrow [1, 2]. order to maintain fluid homeostasis, lymph formation in The main functions of the lymphatic system include the initial lymphatic vessels must be balanced by the net fluid homeostasis and interstitial fluid drainage, immune flux of plasma being filtered out [4].
    [Show full text]
  • Lymph and Lymphatic Vessels
    Cardiovascular System LYMPH AND LYMPHATIC VESSELS Venous system Arterial system Large veins Heart (capacitance vessels) Elastic arteries Large (conducting lymphatic vessels) vessels Lymph node Muscular arteries (distributing Lymphatic vessels) system Small veins (capacitance Arteriovenous vessels) anastomosis Lymphatic Sinusoid capillary Arterioles (resistance vessels) Postcapillary Terminal arteriole venule Metarteriole Thoroughfare Capillaries Precapillary sphincter channel (exchange vessels) Copyright © 2010 Pearson Education, Inc. Figure 19.2 Regional Internal jugular vein lymph nodes: Cervical nodes Entrance of right lymphatic duct into vein Entrance of thoracic duct into vein Axillary nodes Thoracic duct Cisterna chyli Aorta Inguinal nodes Lymphatic collecting vessels Drained by the right lymphatic duct Drained by the thoracic duct (a) General distribution of lymphatic collecting vessels and regional lymph nodes. Figure 20.2a Lymphatic System Outflow of fluid slightly exceeds return Consists of three parts 1. A network of lymphatic vessels carrying lymph 1. Transports fluid back to CV system 2. Lymph nodes 1. Filter the fluid within the vessels 3. Lymphoid organs 1. Participate in disease prevention Lymphatic System Functions 1. Returns interstitial fluid and leaked plasma proteins back to the blood 2. Disease surveillance 3. Lipid transport from intestine via lacteals Venous system Arterial system Heart Lymphatic system: Lymph duct Lymph trunk Lymph node Lymphatic collecting vessels, with valves Tissue fluid Blood Lymphatic capillaries Tissue cell capillary Blood Lymphatic capillaries capillaries (a) Structural relationship between a capillary bed of the blood vascular system and lymphatic capillaries. Filaments anchored to connective tissue Endothelial cell Flaplike minivalve Fibroblast in loose connective tissue (b) Lymphatic capillaries are blind-ended tubes in which adjacent endothelial cells overlap each other, forming flaplike minivalves.
    [Show full text]
  • Esophageal Dilation: an Overview
    JWST654-c100 JWST654-Talley Printer: Yet to Come July 4, 2016 14:6 279mm×216mm CHAPTER 100 Esophageal Dilation: An Overview Parth J. Parekh and David A. Johnson Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA CHAPTER 100 Summary Esophageal strictures may develop from both benign and malig- slowly advancing to a more normal diet as tolerated. She is instructed nant causes. Patients with esophageal strictures typically present to notify the gastroenterologist if persistent or recurrent dysphagia is evident or if she develops heartburn. with progressive dysphagia for solids, which if left untreated may progress to include liquids. Esophageal dilation is frequently required for the symptomatic management of dysphagia. There are a number of available options for successful dilation of most stric- Introduction tures, as well as adjunctive techniques reserved for more “refractory” Esophageal strictures arise from an intrinsic disease (such as inflam- cases. In order to optimize therapy and minimize risk, it is essential mation, fibrosis, or neoplasia) that narrows the esophageal lumen, to fully understand the underlying cause and anatomy of the stric- an extrinsic disease compromising the esophageal lumen by direct ture.Carefulselectionofdilationtechniqueandestablishmentofthe or indirect invasion, or diseases disrupting esophageal peristalsis goals for luminal restoration are important as, in each case, these and/or lower esophageal sphincter (LES) function. Esophageal stric- factors may need to be altered to
    [Show full text]
  • Lymphatic System Urls
    Lymphatic System URLs Human Anatomy & Physiology 16 http://www.howstuffworks.com/immune-system.htm http://www.thebody.com/step/immune.html http://www.emc.maricopa.edu/faculty/farabee/BIOBK/ BioBookIMMUN.html & http://www.cayuga-cc.edu/about/facultypages/greer/ r http://www.acm.uiuc.edu/sigbio/project/updated- lymphatic/lymph1.html http://www.pblsh.com/Healthworks/lymphart.html Karen Webb Smith Unit Fou Introduction A. The lymphatic system is closely associated with the cardiovascular system and is comprised of a network of vessels that circulate body fluids. B. Lymphatic vessels transport excess fluid away from interstitial spaces between cells in most tissues & return it to the bloodstream. C. Lymphatic vessels called lacteals (located in the in the lining of the smallsmall intestine) absorb fats resulting from digestion, & then transport fats to the circulatory system. D. The organs of the lymphatic system help defend Lymphatic vessels against disease. transporting fluid from interstitial spaces to the bloodstream Lymphatic Pathways A. Lymphatic pathways start as lymphatic capillaries that merge to form larger vessels that empty into the circulatory system. (This is key to understanding this chapter.) B. Lymphatic Capillaries *are microscopic, close-ended tubes that extend into interstitial spaces forming networks that parallel the networks of the blood capillaries *walls consist of single layer squamous epithelial cells which enables interstitial fluid to enter the lymphatic capillaries *lymph – the fluid inside a lymph capillary C. Lymphatic Vessels *walls of lymphatic vessels are thinner than walls of veins * have semilunar valves to prevent backflow of lymph *lymph nodes – specialized lymph organs that are composed of a mass of lymphoid tissue located along the course of a lymphatic vessel D.
    [Show full text]