<<

l (1991 ACTA PHYSICA POLONICA A 5

MERCURY 10.6 pm AMBIENT TEMPERATURE PHOTODETECTORS

IOOWSKI IGO td O 5 -9 Wrz lnd (Received March 21' 1991)

hrtl nd xprntl nvttn f rr zn tllrd (M bnt tprtr lnvlnth phtdttr r rprtd h ł- tt dttvt f M phtndtr (C phtdd phtl- trnt (EM nd br dttr t 1 p hv bn l- ltd fntn f trl ptn dpn nd tr f th dv h hh-tprtr lnvlnth C nd EM dttr hv bn fbrtd fr C-dpd bl M rtl rn b dfd nh/nnl thn h rd prfrn h bn nfrntd th thrtl prdtn hn d vrll rnt It nldd tht th hh fr f rt tblt nd hrdn f M th - trl prr n prn t rr d tllrd nd tht t ll rpl th lttr n ppltn fr hh-tprtr phtdttr h prfrn f hh-tprtr M phtdttr n b frthr - prvd b th f ptl rnnt vt nd ptl rn h dv xhbt dttvt b vrl rdr f ntd hhr thn thr- l dttr th bnnnd rpn t nd n hv prfr- n prbl t tht f l thrl dttr ACS nbr 7+ 7E

1 Intrdtn

Gnrl n rdr t hv hh ntvt dttn t nr t rn r t lt thrltr ln h pll prtnt fr dv prtn n th fr I rn h prtn f lnvlnth nrr bnd p ndtr phtdttn n b fll xtndd t bnt tprtr prvdd pprprt ptztn f th dv Abnt tprtr -1 μ Cd phtndtr rprtd fOr th frt t b tr nd thr lh rr [1-] Extnv xprn- tl nd thrtl td n hh-tprtr phtndtn hv l bn

(751 75 J. Piotrowski prfrd n th UK [7-] th USA [9-11] nd n Ylv [1] t b phl lttn th hh-tprtr phtdttn r b-I dttr thrfr prvnt f thr prfrn t f prr prtn A- bnt tprtr 1 μ MC phtndtn r t prnt bn ffrd b vrl nftrr [11 13] h fnd prtnt ppltn n drt nd htrdn I dttn t Mrr zn tllrd (M d t t rltv tblt nd hh fr f rt nddt t rpl Cd n ppltn fr hh-tprtr ln- vlnth phtndtn [1-19] r rprt rnt hvnt n th dn nd thnl f M hh-tprtr lnvlnth phtdttr

hrtl prfrn f hh tprtr phtdttr

2.1. Performance related parameters of MZT

r lltn f th prfrn f phtndtn t nr t d- trn th flln ndtr prprt th bnd p ntrn nntr- tn brptn ffnt nd Ar rbntn t Ardn t l t l [1] th bnd p f M vn b

h ntrn nntrtn lltd n th xprn prpd b óź- nd l [19]

h ltrn nd lht hl fftv n b tblhd rdn t th Kn bnd dl

hr P = 5 x 1 -1 nd ∆ = 1 h hv hl fftv

h ltrn blt lltd

hr s = (95 x 1 - /x 7 5 r = (95 x 1 - /x h frl (5 dftn f th b t l [] xprn fr th bt ft t th xprntl dt n th 9 x < 1 rn f ptn h ltrn-thl blt rt b tn l t 1 Mrr n llrd 1θ μ Abnt prtr 753

In nrr bnd p rr-bd ndtn nd t hh tprtr th Ar 1 nd 7 pr r th dnnt rbntn hn [1-] h ntrn Ar 1 rbntn t

1 r vrlp ntrl f prd lh fntn h vl f [1] = h bn d t ft r xprntl dt fr x = 1 ÷ 1 h hh-frn dltr ntnt f M pprxtd εf = 15 - x + 13x (7 h Ar 1 nd 7 rbntn t r

hr z = p/n h rt f ntrn Ar 7 t Ar 1 rbntn t lltd rdn t []

Abrptn ffnt lltd thn th Kn dl tn nt - nt th M—rtn hft rdn t Andrn xprn [3] r 1

h th lltd brptn ffnt f ntrn nd p-tp M fn- tn f ptn nd tprtr A th fr h p-tp dpn nr brptn rlt f rdd bndflln fft 75 J. Piotrowski

2.2. Phooconducor parameters

h hh-tprtr phtndtr n b tftrl drbd b pl dl [] n hh h phnn pt fft rf rbn- tn nd th nfln f brnd rdtn n b nltd t ndr tpl phtndtr thn fl f nrr bnd p ndtr rt- nlr n hp h rtvt f th phtdttr

hr l, w, d th lnth dth nd thn f th phtndtr λ th vlnth f rdtn nd K th nt ffn h nt ffn

hr r1 nd r r frnt nd bd rfltn In th pt f r1 = r = 1

h nl-tn prfrn r dttvt f ntrn ndtr phtdttn ltd b th n d b tttl flttn n hr rrr nrtn nd rbntn rt In hh-tprtr phtndtn thr r bll thr r f n t b ndrd th hnn-t th nrtn-rbntn G nd th 1/f n

h 1/f n n b nzd b pprprt fbrtn thn - ltn th 1/f n th rltn n vlt

h nrlzd dttvt

Whn th nrtn-rbntn n dnt

An r1 = nd r = 1

h lt xprn hv t x fr d = /α [1] In th Mrr n llrd 1θ μ Abnt prtr 755

hr

= ατ(z +1/z/n ( h ntt ατ(z+1/z/n n b d nrlzd dpn-dpndnt fr f rt f ndtr hh dtrn th ltt prfrn f hh-tprtr phtndtn t vn vlnth r ntrn n- dtr bn l t ατl/n nd t ατ /n rnll ntrdd th fr f rt r h th nrlzd fr f rt f ntrn nd p- tzd p-tp M fr 1 μ phtndtr fntn f ptn Cptn rrd fr th bt prfrn nr th drn t- prtr d t th tprtr- bnd p dpndn f M h nr th p-tp dpn prd t th ntrn trl rlt f nrn th z — I/z brptn ffnt nd rbntn t nd hv t x vl t z≈3 A frthr nr f dpn rlt n dr f nl d t th rpd dr f th Ar 7 rbntn lft It hld b ntd tht th lltd nd rd vl fr ntrn trl t 3 K r hhr prd t th n lltd b Spr [9]

r 3 h b prtr f nld 1 μ-ptzd phtn- dtn fntn f dpn In th lltn b pr dnt f 1 W/ d th vl hvbl n n ptzd ht dptn d- n A h th nrlzd dttvt nr th b t l b hn thrl n prvl At hh b th dttvt hv th nrtn-r- bntn n lt A vr d b pr dptn rrd t hv 75 tr

th x prfrn h b dfflt t rlz n prt hvr It hld b ntd tht th pt ptn dpn nd dttr thn dpnd n th b pr dnt ttvt f bt 1 x 1 z 1 / /W n b hvd n ptzd dv (x = 113 z = 3 d = 5 μ th 1 W/ b pr dptn hl th nrtn-rbntn n lt f prfrn Mrr n llrd 1θ μ Abnt prtr 757

≈WCln/ x z1t 1 K nr dttvt b n rdr f ntd ( 5; th hvr pnd b n nr f th rpn t

2.3. Photoelectromagnetic detector parameters h phtltrnt fft h l bn d fr bnt tpr- tr M 1 μ phtdttn [ -3] h dffn lnth n th nrr bnd p M ll (d μ hl th brptn f 1 μ rd- tn rltvl (α ≈1/ In h th rdtn nfrl brbd thn th dffn lnth nd lr dffrn n th rf r- bntn vlt nr fr d rpn f EM dttr h vlt rpnvt nd dttvt h bn lltd n th nrlzd thr f EM fft vn b l [] n th pt f nd 1 rfltn ffnt t th frnt nd rr rf rptvl A n bn ppld t th EM dttr th thrl hnn— t n th nl n - r h th lltd dttvt fntn f trl ptn fr dttvt-ptzd dpn thn nd nt fld h x hv- bl vlt rpnvt nd dttvt f nld 1 μ dv r f bt 5 /W (fr 1 d dv nd 35 x 1 7 z1 / / W rptvl nd th dttvt nr b ftr f 9 t K A 7 nd h th pt prfrn f th nld dv hvbl th p-tp trl (α = x 1 17 -3 nd th nt fld f h rpn t f dttvt-ptzd dv f bt 1 n In hh frn dn th rpn t bl 1 p n b hvd th xpn f prfrn 75 J. Piotrowski Mrr n llrd 1 μ Abnt prtr 759

2.4. Dember detectors

h dffn phtvlt (br fft rlt fr dffn f ph- tnrtd rrr [31-33] ndtn r t b t fr nrtn f th phtvlt th dtrbtn f phtnrtd rrr hld b nnfr nd th dffn ffnt f ltrn nd hl t b dffrnt h rdnt - ll rlt fr nnnfr ptl nrtn nd fr dffrn n rf rbntn vlt t th frnt nd b rf f th dv h - br fft ltrl fld rtrn th ltrn th hhr blt hl hl r lrtd th n bth flx l h bt prfrn hv- bl fr thn f th dv f th rdr f th dffn lnth nd fr l rbntn vlt t th frnt nd hh t th b rf f th dv h br fft dttn n b nlzd b lvn th trnprt nd ntnt tn [31] r 9 h th lltd nrlzd dttvt f 1 μ MC br dttn fntn f ptn nd tpr- tr ttvt hh 3 x 1 z1//W nd 1 x 1 9 z1//W r prdtd fr ptzd 1 μ dv t 3 nd K rptvl r 1 h th dpn dpndn f th lltd nrlzd rpnvt dttvt nd rpn t fr nld 1 μ MC br dttr th dttvt-ptzd thn h bt prfrn hvd n p-tp dpd trl h lltd dttvt f -3 K br dttr hhr prd t tht f phtndtn prtd t th ndtn r l 7 J. Piotrowski Mrr n llrd 1θ μ Abnt prtr 71

rtn l vlt rpnvt nd n vlt ll bl th n lvl f th bt plfr p r prbl n hvn th ptntl prfrn hvr r xpl nld 1 μ dv th z 5 x 5 μ ll hv rtvt nd n vlt f f 5 p/z 151 / hr r Ω pbl t vr th dfflt h n nntn f ll r br dttr n r r xpl t btn rnbl rtvt (~ 5 Ω n 1 ttl r ntv lnt f nld 1 μ dttr t nr t dvd t r nt 5 x 5 μt lnt nntd n r th l rtvt ntrnntn Sh dv fbl th thd f drn - rltrn h rpn t f dttvt ptzd dv f bt 1 n d- rn th p-tp dpn t xpn n prfrn h frn ptzd br dttn hld b prprd fr trnl dpd trl nd thr thn hld b pt l r xpl fr dttn th α = 5 x 1 17 -3 nd d = μ τr ≈5 p Anthr pbl lttn f th r- pn t th RC ntnt nt prtnt d t th l rtvt nd l pt f br dttr

2.5. Phoodiodes

htdd hv bn xtnvl d prrl ld hh pd dttn f CO lr rdtn n th drt nd htrdn d nd n thrl n t n 3-5 nd -1 μ tphr bnd h dv hv l ptntl fr prtn t lvtd tprtr h lltd prfrn f phtdd lhtl lr prd t tht f phtndtn bt hhr prd t tht f EM dttr h l nrlzd rtvt nd rpnvt rl rtrt th fl- n f nvntnl phtdd t th hrt nd d vbnd r x- pl th rtvt f 1 x 1 μ 1 μ phtdd prtd t 3 nd K l t bt 5 nd 1 Ω rptvl Undr h ndtn th n f plflr bv th dd n h nbl t hv th ptntl dt- tvt f th dv nd th th rn h phtndtn nd EM dttr r t prnt th t frntl d phtdttn fr hh-tprtr p- pltn

3 ht dttr fbrtn nd rd prfrn

h bnt tprtr phtdttr hv bn fbrtd fr bl C-dpd M rtl rn b th nh/nnl thn [3] r 11 h th ttr f th hh-tprtr phtndtn nd EM dt- tr h dv r thn fl f nrr bnd p ndtr ppld th ltrd nd fxd t ht ndtv btrt h prprtn f th d- v nld dptn f nS nd ld lr n rfll plhd fr f n pxn th fr t ln r pphr btrt plhn th fr t t fnl thn f bt 5 μ dlntn f tv r nd tllztn fr 7 J. Piotrowski

ntt ltrd h thn f th px lr hld b l 1 μ fr d ht dptn In th f EM dttr th b rf f th pl- hd n fr bjtd t trtnt fr hh rf rbntn vlt h ntv lnt r hd n hh-frn n h EM l- nt r ntd n hn hh nrprt ntr prnnt - nt h f rr rth nt trl ll t btn nt fld bv 1 h bv-vr rd dttvt f th bnt tprtr ph tdttn hn n nd 5 h rd prfrn f C nd EM dttr n rdr f ntd hhr prd t n prltr dt- tr th bnnnd rpn t nd phtn dr dttr A prn f th xprntl rlt th th thr h tht t tll pbl t prv th prfrn nfntl

blt f frthr prvnt f th prfrn

4.1. Optical immersion

h ptl rn f dttn nt hh rfrtn ndx hphrl r hprphrl ln rd th z b ftr dpndnt n n th rfrtn ffnt f th ln h z rdd b ftr l t n f th dttr pld n th ntr f hphrl ln r b n f th dttr pld t th frt Wrtr pnt f hprhphrl ln xtndn bnd th ntr f th phr Wth ptl rn lr dttr rpld b llr n tht h th vlnt pprnt ptl r h rn nr th nrlzd dttvt b ftr l t n n th f hphrl rn nd b n n tht f hprhphrl rn [35-3] pt th lr nr f dttvt hphrl rn fr- ntl d fr th flln rn h hphrl 1n b nldd n th xtn ptl t n n hn n th ptn f th fl pln Mrr n llrd 1θ μ Abnt prtr 763

and introducing no restrictions on the system numerical aperture. A hyperspheri- cal lens will introduce an image shift that will increase with the lens radius, and the maximum numerical aperture of the host system is determined by the refrac- tion coefficient. The higher n, the slower the optics. The significant reduction of the electrical area of the immersed detectors compared to the optical one results in a significant reduction (by a factor of n or n 5 ) of the bias power. This is an important advantage in the high temperature photoconductors, which for the best performance, require high biasing. For the best result, the materials for immer- sion lenses should have a high refraction coefficient and low absorption at the wavelengths of interest. Reflection losses can be prevented by the use of a suit- able antireflection coating of the lenses. Germanium (n = 4) is typically used for rn ln hh n prt bth n th 3-5 μ nd -1 μ bnd - ntl nlth ptll rd hh-tprtr phtdttn hv bn rprtd [37] n hh th ln r frd n btrt f dttr plr Optical immersion seems to be very promising for photodiodes and Dember detectors. Apart from the usual n or n gain, immersion results in a large increase in resistivity. For example, the resistivity increases by a factor of n = 256 with the use of Ge hyperimmersion lens, compared to that of a conventional device of the same apparent area, highly easing matching to low noise preamplifiers.

Resonant optical cavity

The voltage responsivity and detectivity increase with decreasing thickness of a photoconductor if the quantum efficiency remains high. The effective absorption of radiation in thin photoconduction can be increased using the interference effect to set up the resonant optical cavity. The structure of the resonant cavity consists of a semiconductor flake, is sandwiched between two dielectric layers, with the rear dielectric layer surface covered with a highly reflective coating. All the surfaces must be sufficiently flat. It has been shown [38] that the use of an optical resonant cavity can improve the performance of photoresistors by a factor of 2.5 and an improvement by a factor of 5 is possible for photodiodes, Dember and PEM detectors.

4.3. Non-equilibrium devices

Recently, British workers have shown that the performance of high-tempera- ture longwavelength photoresistion and photodiodes can be improved with the use of exclusion and extraction effects at 1-h or at heterojunction contacts [39-41], making possible to achieve BLIP performance at near room temperature. The practical realization of such devices will require well established epitaxial technol- ogy, but the first practical non-equilibrium (Hg,Cd)Te devices/ based on existing technology have already been demonstrated. 7 tr

Cnln 1 h fr f rt rpnvt rpn t nd ltt prfrn f -3 K lnvlnth M phtndtr phtdd - br nd EM dttn hv bn lltd fntn f tprtr ptn dpn nd thr ftr It h bn hn tht th bnt tprtr 1 μ phtdttr hvn bnnnd rpn t n hv prfrn f th l thrl dttr h hh tprtr M phtndtn nd EM dttn hv bn fbrtd fr C-dpd bl M rtl rn b th nh/nnl thn nd hrtrzd 3 h ptzd "nvntnl" bnt tprtr 1 μ M phtn- dtr nd br dttn n hv dttvt hhr thn 1 z1//W h prfrn f bnt tprtr phtdttn n b prvd n th prnpl f ptl rnnt vt nd ptl rn I- rn l fltt thn f phtdd nd br dttn t l-n ltrn nbln t hv thr ptntl prfrn Sh dv th bnnnd rpn t n rp th prfrn f th bt l thrl dttr 5 A frthr prvnt f prfrn pbl b th f nn-- lbr fft t th l-h r t htrjntn ntt h bntn f ll th thd vntll ll t hv th I prfrn t nr bnt tprtr

frn [1] tr Properties of HgCdTe Layers, h h Mltr Ad f Sn Wr 197 (n lh [] tr Electron Technol. 5 7 (197 [3] E Ir r tr n Proc. 6th Symp. of IMEKO

Technical Committee on Photon Detectors, Siofok - Budapest 1987, IMEKO Sr- trt -1371 dpt 197 p 1 [] W Gl r tr Infrared Phys. 19 9 (1979 [5] W Gl rr Laser Focus, 7 (19 [] tr A l ółprzdn dttr pdzrn W Wrz 195 (n lh nd rltd ppr td thrn [7] C Ett Handbook on 77 (191 [] A Cp A rr MC Wln E ln E Wr n Proc. 2nd Inter. Conf. on Advanced Infrared Detector and Systems, I EE ndn 193 p [9] Spr n Proc. of IRIS Specialty Group on IR Detectors, Sn 19 p 1 [1] Spr n Proc. of IRIS Active Systems, Sn 19 p 331 Mrr n llrd 1 μ Abnt prtr 75

[11] S Wn Lasers and Applications, 59 (197 [1] jr tr jnv Electron. Lett. 159 (19 [13] IGO td rl dt ht Wr (lnd [1] A Shr A Shn WE Spr CK Shh J. Vac. Sci. Technol. A 3 15 (195 [15] A Shr Er A l Appl. Phys. Lett. 59 (195 [1] K Ad A M tr Appl. Phys. Lett. 5 13 (199 [17] r Mh tr Phys. Status Solidi A 11 K37 (199 [1] l Grnr S nd rblt J. Phys. 7 (197 [19] K óź A l Infrared Phys. 11 (19 [] b E Str S r K l J. Appl. Phys. 53 3 (19 [1] E trn Semiconductors and Semimetals 1 11 (191 [] Cln J. Appl. Phys. 5 (191 [3] WW Andrn Infrared Phys. 33 (19 [] l Phys. Rev. B 7 (1973 [5] W Gl M Grdzn dzl tr n Proc. 9th Symp. of IMEKO Tech. Comm.' Visegrad 1980, IMEKO Srtrt dpt 19 p 3 [] dzl Design of MCT PEM Detectors, h h Mltr Ad f hnl (WA Wr 193 [7] Gnz A óź K óź dzl tr Infrared Phys. 1 (19 [] K óź M tr Infrared Phys. 371 (19 [9] dzl tr J. Tech. Phys. 7 5 (19 [3] M Prog. Quantum Electron. 11, (197 [31] Ath Gnz K rrnn Photoelectrische Erscheinungen, Ad rl rln 1977 [3] dzl tr f. Tech. Phys. 173 (197 [33] dzl tr J. Tech. Phys. 75 (197 [3] tr t J. Cryst. Growth 9 37 (19 [35] E Slv ndl Infrared Phys. 1 15 (191 [3] IC Crhl A n Wln Advances Infrared Detector and Systems, IEE ndn 193 p 5 [37] M Grdzń tr Infrared Phys. 9 51 (199 [3] dzl (t b pblhd [39] Ahl C Ett Electron Lett. 1 51 (195 [] Ahl C Ett A rr Infrared Phys. 33 (19 [1] C Ett n Proc. Symp. on Narrow Semiconductors Gaithersburg, Ed G Slr C ttr rtl Yr 199 p S-3