Moscow Institute of Physics and Technology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stanislav Nikolaevich Rodionov (–)
SCIENCE & GLOBAL SECURITY ,VOL.,NO.,– http://dx.doi.org/./.. Memoriam: Stanislav Nikolaevich Rodionov (–) Oleg Prilutsky and Frank von Hippel Stanislav Rodionov was a member of the first post-World War II generation of Soviet physicists. He began his scientific career in 1953 in what is now known as the National Research Center “Kurchatov Institute” where he carried out an exper- iment in which, for the first time in the Soviet Union, he captured electrons from tritium decay in a magnetic mirror adiabatic trap. From 1958 to 1973, he worked in the Nuclear Physics Institute of the Siberian Division of USSR Academy of Sciences in Akademgorodok near Novosibirsk. Dur- ing the 1960s, while Rodionov was there, this institute, directed by Academician Budker, built one of the first electron-positron colliders in the world (VEPP-2). Rodionov played a very important scientific-organizational role as the Secretary of the institute’s Scientific Council—its “Round Table.” In 1974, Rodionov returned to Moscow to join the staff of the Soviet Academy of Sciences’ Space Research Institute (IKI) directed by Roald Sagdeev. There he partici- pated in the organization of international collaborations in space research programs, which was a pioneering contribution to opening up Soviet science to the world. Rodionov also supported Sagdeev in doing arms-control research under the aus- pices of the Committee of Soviet Scientists for Peace and Against the Nuclear Threat. This Committee was established during a 17–19 May 1983 All-Union conference of scientists within the Soviet Academy called in response to President Reagan’s 23 MarchspeechaskingAmericanscientiststojoininaStrategicDefenseInitiative to make nuclear-armed ballistic missiles “impotent and obsolete.” Evgeny Velikhov was the first chairman with Sagdeev, Sergei Kapitza and Andrei Kokoshin as his Vice Chairmen. -
Annual Report 2018
ANNUAL REPORT 2018 CONTRIBUTION TO THE SUSTAINABLE DEVELOPMENT OF GLOBAL ENERGY Contents 1 ASSOCIATION 2 THE GLOBAL ENERGY PRIZE 4 Key Indicators 44 About the Award 11 Address by the President of the Association 48 The International Award Committee 14 Key Events of 2018 52 Nomination Process 24 History of the Association 53 Nomination Cycle 26 Association Members 54 Nominating Persons 27 Organizational Structure 54 Independent International Experts Pool 29 Mission and Values 55 National Award Support Committees 30 Development Strategy 56 2018 Nomination Cycle Results 35 International Cooperation 57 Award Laureates 40 Financial Results 64 Award Development 65 Position in the Industry 3 PROGRAMS OF THE ASSOCIATION 4 SUSTAINABLE DEVELOPMENT 68 Programs and Contests of the Association. 80 Corporate Governance Development Plans 89 Internal Control and Audit 70 The Energy of Youth Contest 90 Implementation of IT-solutions 72 The Energy of Breakthrough Contest 91 HR Policy 74 The Energy of Thought Scientific Symposium 93 Interaction with Stakeholders 75 The Energy of Knowledge Program 96 Work with Award Laureates and Program Winners 76 The Energy of Education Program 77 The Energy of Inspiration Award 77 The Energy of Words International Media Contest 118 GLOSSARY 119 DISCLAIMER 119 CONTACT DETAILS 120 ANNEXES 120 1. About the Report 121 2. GRI Content Index 126 3. Financial Statements for 2018 130 4. Conclusion on the Results of the Audit of the Association Activities 132 5. Feedback Form TRANSFORMATION ASSOCIATION FOR FUTURE GROWTH 1 OUR ASSOCIATION HELPS TO SHAPE THE ENERGY OF THE FUTURE BY SUPPORTING ADVANCED SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENTS AND STIMULATING 3 INTERNATIONAL ENERGY COOPERATION IN THE INTERESTS CORE ACTIVITIES OF ALL HUMANKIND. -
The True History of the U.S. Fusion Program —And Who Tried to Kill It
PPPL Inside the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory, while it was in con- struction. The TFTR set world records for plasma temperature and fusion power produced in the late 1980s and early 1990s. But budget cuts closed it down before all its planned experiments were completed. The True History of The U.S. Fusion Program An inside analysis of how the U.S. fusion program was —And Who euthanized, dispels the myth that “fusion can’t work.“ Tried To Kill It by Marsha Freeman here is no disputing that the world is facing an energy been visible on the horizon for years, but seemingly never crisis of vast proportions. But this could have been avoid- close at hand. Why? Ted. For more than five decades, scientists, engineers, en- Legend has it that there are more problems in attaining con- ergy planners, policy-makers, and, at times, even the public at trolled nuclear fusion than scientists anticipated, and that little large, have known what the ultimate alternative is to our finite progress has been made. “Fusion is still 50 years away, and energy resources—nuclear fusion. This energy, which powers always has been” has become the common refrain of skeptics. the Sun and all of the stars, and can use a virtually unlimited But the reason that we do not have commercially available supply of isotopes of hydrogen, available from seawater, has fusion energy is not what is commonly believed. 21st Century Science & Technology Winter 2009/2010 15 In 1976, the Energy Research and Development Administra- tion, or ERDA—the predecessor to the Department of Energy—pub- lished a chart showing various policy and funding options for the magnetic fusion energy research program. -
John A. Shanahan, Corresponding Author January 11, 2010 Dr. John P. Holdren Director, Office of Science & Technology Policy
John A. Shanahan, Corresponding Author January 11, 2010 Dr. John P. Holdren Director, Office of Science & Technology Policy, Executive Office of the President Washington, D.C. Dear John, We met in Palo Alto, California in 1970, while you were working on your doctorate at Stanford University and I was starting an engineering career in nuclear power. You visited my family in Switzerland in the 1980s, where I was working on Nuclear Power Plant Leibstadt. You have also answered questions over the years on applications of Einstein‘s equations that is much appreciated. Nearly 40 years have passed. We are both still working to make genuine contributions through science and engineering for the lasting benefit of society and the planet. Please hear our statement and pass it on to the President. Peace on earth and preservation of the marvels of nature will not be achieved without a sound energy policy. This policy must include well-managed and well-governed slow- and fast-neutron nuclear power, recycling spent fuels and depleted uranium and possibly thorium. This was the goal of the founding scientists in the 1940s and still is the best way to a reliable and secure energy future. But the world is leaving us behind. At present, 58 new nuclear plants (including two fast reactors, one in Russia and one in India) are under construction in 14 countries. Of these, 20 are in China, 9 in Russia, 6 each in India and South Korea. Only one is in North America, and that is resumed work on a plant that was mothballed in 1988 when it was 80% finished. -
Canada Bulletin of (He National Fusion Proyrnm Issuu 28, Juin; 1
r CÀ9600782 Canada Bulletin of (he National Fusion Proyrnm Issuu 28, Juin; 1 ¥M> h t h| i s Issue Canada-US Collaboration Review Fast electrons in tokamaks: New data from TdeV CFFTP: New Manager and New Rôle y INIS-mf — 14893 CCFM: Program review Canada-Chile Fusion Work Velikhov to address Montréal fusion ISSN 0835-488X News Notes meeting INTERNATIONAL INTERNATIONAL Canada-US fusion meeting in Montréal: Fusion Breeder Work 'Joint CNS/FPA Fusion Symposium' in Chile Montréal, Canada, September 6-8,1995 Canadian experts assist Chilean fusion breeder researchers Evgeny Velikhov (ITER) to give keynote address Chilean researchers have a long- N. Anne Davies (USDOE) to review US Fusion Program term goal of manufacturing lithium ceramic tritium breeder materials The program for the Joint • ITER (JCT and Home Teams for fusion power reactors. CNS/FPA Fusion Symposium in work). Researchers at Chile's La Reina Montréal, September 6-8, has nuclear research site near Santiago been finalized. The Canadian • Tritium work (Canada, US, have been developing their lithium Nuclear Society (CNS) and the TFTR). ceramics fusion breeder program USA's Fusion Power Associates for several years. A tritium mea- (FPA) are jointly presenting the • Spherical tokamaks and TPX. surement laboratory is being Symposium. established at La Reina for this Other presentation topics work. Dr. Evgeny Velikhov, Chair of the include: compact toroid fuelling, ITER Council, will deliver the inertia) confinement (NIF), educa- Canada-Chile cooperation in fusion keynote address. tional activities and plasma-aided breeders began in 1993, and is manufacturing. centred on the eventual manufac- Dr. N. -
Appendix E • Nobel Prizes
Appendix E • Nobel Prizes All Nobel Prizes in physics are listed (and marked with a P), as well as relevant Nobel Prizes in Chemistry (C). The key dates for some of the scientific work are supplied; they often antedate the prize considerably. 1901 (P) Wilhelm Roentgen for discovering x-rays (1895). 1902 (P) Hendrik A. Lorentz for predicting the Zeeman effect and Pieter Zeeman for discovering the Zeeman effect, the splitting of spectral lines in magnetic fields. 1903 (P) Antoine-Henri Becquerel for discovering radioactivity (1896) and Pierre and Marie Curie for studying radioactivity. 1904 (P) Lord Rayleigh for studying the density of gases and discovering argon. (C) William Ramsay for discovering the inert gas elements helium, neon, xenon, and krypton, and placing them in the periodic table. 1905 (P) Philipp Lenard for studying cathode rays, electrons (1898–1899). 1906 (P) J. J. Thomson for studying electrical discharge through gases and discover- ing the electron (1897). 1907 (P) Albert A. Michelson for inventing optical instruments and measuring the speed of light (1880s). 1908 (P) Gabriel Lippmann for making the first color photographic plate, using inter- ference methods (1891). (C) Ernest Rutherford for discovering that atoms can be broken apart by alpha rays and for studying radioactivity. 1909 (P) Guglielmo Marconi and Carl Ferdinand Braun for developing wireless telegraphy. 1910 (P) Johannes D. van der Waals for studying the equation of state for gases and liquids (1881). 1911 (P) Wilhelm Wien for discovering Wien’s law giving the peak of a blackbody spectrum (1893). (C) Marie Curie for discovering radium and polonium (1898) and isolating radium. -
Underpinning of Soviet Industrial Paradigms
Science and Social Policy: Underpinning of Soviet Industrial Paradigms by Chokan Laumulin Supervised by Professor Peter Nolan Centre of Development Studies Department of Politics and International Studies Darwin College This dissertation is submitted for the degree of Doctor of Philosophy May 2019 Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. 2 Chokan Laumulin, Darwin College, Centre of Development Studies A PhD thesis Science and Social Policy: Underpinning of Soviet Industrial Development Paradigms Supervised by Professor Peter Nolan. Abstract. Soviet policy-makers, in order to aid and abet industrialisation, seem to have chosen science as an agent for development. Soviet science, mainly through the Academy of Sciences of the USSR, was driving the Soviet industrial development and a key element of the preparation of human capital through social programmes and politechnisation of the society. -
RUSSIAN SCIENCE and TECHNOLOGY STRUCTURE There Are Around 4000 Organizations in Russia Involved in Research and Development with Almost One Million Personnel
RUSSIAN SCIENCE AND TECHNOLOGY STRUCTURE There are around 4000 organizations in Russia involved in research and development with almost one million personnel. Half of those people are doing scientific research. It is coordinated by Ministry of industry, science and technologies, where strategy and basic priorities of research and development are being formulated. Fundamental scientific research is concentrated in Russian Academy of Sciences, which now includes hundreds of institutes specializing in all major scientific disciplines such as mathematics, physics, chemistry, biology, astronomy, Earth sciences etc. The applied science and technology is mainly done in Institutions and Design Bureaus belonging to different Russian Ministers. They are involved in research and development in nuclear energy (Ministry of atomic energy), space exploration (Russian aviation and space agency), defense (Ministry of defense), telecommunications (Ministry of communications) and so on. Russian Academy of Sciences Russian Academy of Sciences is the community of the top-ranking Russian scientists and principal coordinating body for basic research in natural and social sciences, technology and production in Russia. It is composed of more than 350 research institutions. Outstanding Russian scientists are elected to the Academy, where membership is of three types - academicians, corresponding members and foreign members. The Academy is also involved in post graduate training of students and in publicizing scientific achievements and knowledge. It maintains -
Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013)
Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013) Laser: Light Amplification by Stimulated Emission of Radiation ________________________________________________________________________ Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning physicist and educator. Townes is known for his work on the theory and application of the maser, on which he got the fundamental patent, and other work in quantum electronics connected with both maser and laser devices. He shared the Nobel Prize in Physics in 1964 with Nikolay Basov and Alexander Prokhorov. The Japanese FM Towns computer and game console is named in his honor. http://en.wikipedia.org/wiki/Charles_Hard_Townes http://physics.aps.org/assets/ab8dcdddc4c2309c?1321836906 ________________________________________________________________________ Nikolay Gennadiyevich Basov (Russian: Никола́й Генна́диевич Ба́сов; 14 December 1922 – 1 July 2001) was a Soviet physicist and educator. For his fundamental work in the field of quantum electronics that led to the development of laser and maser, Basov shared the 1964 Nobel Prize in Physics with Alexander Prokhorov and Charles Hard Townes. 1 http://en.wikipedia.org/wiki/Nikolay_Basov ________________________________________________________________________ Alexander Mikhaylovich Prokhorov (Russian: Алекса́ндр Миха́йлович Про́хоров) (11 July 1916– 8 January 2002) was a Russian physicist known for his pioneering research on lasers and masers for which he shared the Nobel Prize in Physics in 1964 with Charles Hard Townes and Nikolay Basov. http://en.wikipedia.org/wiki/Alexander_Prokhorov Nobel prizes related to laser physics 1964 Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for developing masers (1951–1952) and lasers. 2 1981 Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spectroscopy and Kai M. -
Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953- 1968
ORBIT-OnlineRepository ofBirkbeckInstitutionalTheses Enabling Open Access to Birkbeck’s Research Degree output A Compass in the Sea of Life: Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953- 1968 https://eprints.bbk.ac.uk/id/eprint/40022/ Version: Full Version Citation: Huxtable, Simon (2013) A Compass in the Sea of Life: Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953-1968. [Thesis] (Unpublished) c 2020 The Author(s) All material available through ORBIT is protected by intellectual property law, including copy- right law. Any use made of the contents should comply with the relevant law. Deposit Guide Contact: email A Compass in the Sea of Life Soviet Journalism, the Public, and the Limits of Reform After Stalin, 1953-1968 Simon Huxtable Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of London 2012 2 I confirm that the work presented in this thesis is my own, and the work of other persons is appropriately acknowledged. Simon Huxtable The copyright of this thesis rests with the author, who asserts his right to be known as such according to the Copyright Designs and Patents Act 1988. No dealing with the thesis contrary to the copyright or moral rights of the author is permitted. 3 ABSTRACT This thesis examines the development of Soviet journalism between 1953 and 1968 through a case study of the youth newspaper Komsomol’skaia pravda. Stalin’s death removed the climate of fear and caution that had hitherto characterised Soviet journalism, and allowed for many values to be debated and renegotiated. -
How to Get a Nobel Prize in Physics
LANDAU’S NOBEL PRIZE IN PHYSICS Mats Larsson Department of Physics, Stockholm University Member of the Royal Swedish Academy of Sciences 2013 Member of the Nobel Committee for Physics OUTLINE Description of the Nobel Prize procedure Landau’s Nobel Prize (with some discussions about Pyotr Kapitsa) "The whole of my remaining realizable estate shall be dealt with in the following way: the capital, invested in safe securities by my executors, shall constitute a fund, the interest on which shall be annually distributed in the form of prizes to those who, during the preceding year, shall have conferred the greatest benefit on mankind. The said interest shall be divided into five equal parts, which shall be apportioned as follows: one part to the person who shall have made the most important discovery or invention within the field of physics; one part to the person who shall have made the most important chemical discovery or improvement; one part to the person who shall have made the most important discovery within the domain of physiology or medicine; one part to the person who shall have produced in the field of literature the most outstanding work in an ideal direction; and one part to the person who shall have done the most or the best work for fraternity between nations, for the abolition or reduction of standing armies and for the holding and promotion of peace congresses. The prizes for physics and chemistry shall be awarded by the Swedish Academy of Sciences; that for physiology or medical works by the Karolinska Institute in Stockholm; that for literature by the Academy in Stockholm, and that for champions of peace by a committee of five persons to be elected by the Norwegian Storting. -
Pages from the History of Quantum Electronics Research in the Soviet Union*
Journal of Modern Optics Vol. 52, No. 12, 15 August 2005, 1657–1669 Pages from the history of quantum electronics research in the Soviet Union* SERGEI BAGAYEVz, OLEG KROKHIN} and ALEXANDER MANENKOVôy zInstitute for Laser Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia }Lebedev Physical Institute of Russian Academy of Sciences, Moscow, Russia ôProkhorov General Physics Institute of Russian Academy of Sciences, Moscow, Russia (Received 15 March 2005) 1. Introduction 50 years of quantum electronics is an outstanding event in the history of modern science. Having started in 1954 in two countries, the Soviet Union at Lebedev Physical Institute and in the United States at Columbia University, with proposals for a new concept of amplification and generation of electromagnetic radiation based on using stimulated emission of radiation by atomic systems, this field nowadays has become a very developed multidiscipline science with very broad applications. Outstanding contributions of many scientists to the development of quantum electronics and related fields were awarded with the Nobel Prize. Among these scientists, Nikolai Basov, Alexander Prokhorov and Charles Townes, who shared the Nobel Prize in 1964 for their pioneering works founding quantum electronics (QE), should be emphasized especially. Unfortunately two of QE’s co-founders, Nikolai Basov and Alexander Prokhorov, were not present among us at this session: they passed away some time ago, in 2001 (Basov) and 2002 (Prokhorov). For this reason the authors of this paper, as their successorsk, take responsibility to present here the history of QE in the Soviet Union. Of course, we understand how extremely hard it is to speak about QE history in a brief presentation, since so many research groups and persons in the Soviet Union contributed significantly to the development of QE.