Report on Allium Columbia Basin Scientific Assessment Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Dissection of Three Giant Genomes: Allium Cepa, Allium Sativum, and Allium Ursinum
International Journal of Molecular Sciences Article Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum Vratislav Peška 1,* , Terezie Mandáková 2 , Veronika Ihradská 1,2,† and Jiˇrí Fajkus 1,2,* 1 Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; [email protected] 2 Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected] (V.P.); [email protected] (J.F.); Tel.: +420-541-517-199 (V.P.); +420-549-494-003 (J.F.) † Current address: Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 2, P.O. Box 39A, 950 07 Nitra, Slovakia. Received: 4 January 2019; Accepted: 2 February 2019; Published: 9 February 2019 Abstract: Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. -
Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea -
Nutritional and Therapeutic Potential of Allium Vegetables
18 Journal of Nutritional Therapeutics, 2017, 6, 18-37 Nutritional and Therapeutic Potential of Allium Vegetables Ravi Kant Upadhyay* Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, U.P., India Abstract: Allium vegetables are highly nutritional, its dietary use improves digestion and mental health and lower down cholesterol level. Use of onions, garlic, scallions, chives and leeks show therapeutic efficacy against cardiovascular disease, hyperglycemia, and stomach cancer, Onions contain allylsulfides and flavonoids particularly quercetin that is an important anti-oxidative and reduces hepatocytes apoptosis in streptozotocin-induced diabetic rat. Steroid saponins and sapogenins present in garlic bulbs are used to prepare soft soaps. β-chlorogenin is a characteristic steroid sapogenin from garlic that is used for skin ointment and as a shiner. Both garlic paste and soft garlic preparations are used for flavoring the food items. Garlic products that contain the most safe, effective, stable, and odorless components are the most valuable as dietary supplements. Garlic also contains non sulfur compounds such as steroid saponins. Alliums showed antimicrobial, antithrombotic, antitumor, anti-hyperlipidaemic, antiarthritic, anti-hyperglycemic anticarcinogenic potential. Allium vegetables contain organosulfur compounds, including DATS, diallyl disulfide (DADS), ajoene, and S- allylmercaptocysteine (SAMC), have been found to induce cell cycle arrest in cancer cells. Alliums have great ethnomedicinal importance as these are used as native remedies against wide spectrum of diseases including diabetes. Allium origin natural products are of great therapeutic and dietary use. These are most preferred items used by nutritionists, physicians, food technologists, food chemists. Green allium vegetables are good source of natural pharmaceutics which are good for health and act against nutritionally induced acute and chronic diseases. -
UPDATED 18Th February 2013
7th February 2015 Welcome to my new seed trade list for 2014-15. 12, 13 and 14 in brackets indicates the harvesting year for the seed. Concerning seed quantity: as I don't have many plants of each species, seed quantity is limited in most cases. Therefore, for some species you may only get a few seeds. Many species are harvested in my garden. Others are surplus from trade and purchase. OUT: Means out of stock. Sometimes I sell surplus seed (if time allows), although this is unlikely this season. NB! Cultivars do not always come true. I offer them anyway, but no guarantees to what you will get! Botanical Name (year of harvest) NB! Traditional vegetables are at the end of the list with (mostly) common English names first. Acanthopanax henryi (14) Achillea sibirica (13) Aconitum lamarckii (12) Achyranthes aspera (14, 13) Adenophora khasiana (13) Adenophora triphylla (13) Agastache anisata (14,13)N Agastache anisata alba (13)N Agastache rugosa (Ex-Japan) (13) (two varieties) Agrostemma githago (13)1 Alcea rosea “Nigra” (13) Allium albidum (13) Allium altissimum (Persian Shallot) (14) Allium atroviolaceum (13) Allium beesianum (14,12) Allium brevistylum (14) Allium caeruleum (14)E Allium carinatum ssp. pulchellum (14) Allium carinatum ssp. pulchellum album (14)E Allium carolinianum (13)N Allium cernuum mix (14) E/N Allium cernuum “Dark Scape” (14)E Allium cernuum ‘Dwarf White” (14)E Allium cernuum ‘Pink Giant’ (14)N Allium cernuum x stellatum (14)E (received as cernuum , but it looks like a hybrid with stellatum, from SSE, OR KA A) Allium cernuum x stellatum (14)E (received as cernuum from a local garden centre) Allium clathratum (13) Allium crenulatum (13) Wild coll. -
Conservation Easement Management Plan
Conservation Easement Management Plan Prepared by: Hidden Springs Town Association Boise, ID January 2015 1 TABLE OF CONTENTS Contents TABLE OF CONTENTS.............................................................................................................................. 2 CONSERVATION EASEMENT MANAGEMENT PLAN HIDDEN SPRINGS, IDAHO .... 3 1.0 INTRODUCTION ....................................................................................................... 3 2.0 PURPOSE AND IMPLEMENTATION ........................................................................ 9 3.0 ENVIRONMENTAL SETTINGS ................................................................................. 9 3.1 GEOLOGY AND SOILS ......................................................................................................................... 9 3.2 HYDROLOGY....................................................................................................................................... 10 3.3 CLIMATE ............................................................................................................................................. 11 3.4 FLORA ................................................................................................................................................. 12 3.5 FAUNA ................................................................................................................................................. 18 3.6 WILDLAND-URBAN INTERFACE ........................................................................................ -
Allium Albanicum (Amaryllidaceae), a New Species from Balkans and Its
A peer-reviewed open-access journal PhytoKeys 119: 117–136Allium (2019) albanicum (Amaryllidaceae), a new species from Balkans... 117 doi: 10.3897/phytokeys.119.30790 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy Salvatore Brullo1, Cristian Brullo2, Salvatore Cambria1, Giampietro Giusso del Galdo1, Cristina Salmeri2 1 Department of Biological, Geological and Environmental Sciences, Catania University, Via A. Longo 19, 95125 Catania, Italy 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Palermo University, Via Archirafi 38, 90123 Palermo, Italy Corresponding author: Cristina Salmeri ([email protected]) Academic editor: L. Peruzzi | Received 26 October 2018 | Accepted 9 January 2019 | Published 11 April 2019 Citation: Brullo S, Brullo C, Cambria S, Giusso del Galdo G, Salmeri C (2019) Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy. PhytoKeys 119: 117–136. https://doi.org/10.3897/phytokeys.119.30790 Abstract A new species, Allium albanicum, is described and illustrated from Albania (Balkan Peninsula). It grows on serpentines or limestone in open rocky stands with a scattered distribution, mainly in mountain loca- tions. Previously, the populations of this geophyte were attributed to A. meteoricum Heldr. & Hausskn. ex Halácsy, described from a few localities of North and Central Greece. These two species indeed show close relationships, chiefly regarding some features of the spathe valves, inflorescence and floral parts. They also share the same diploid chromosome number 2n =16 and similar karyotype, while seed testa micro- sculptures and leaf anatomy reveal remarkable differences. -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
Mise Au Point D'une Méthode De Détection
Caractérisation des agents phytopathogènes responsables des pertes de la filière ail : mise au point d’une méthode de détection Paul L. Chretien To cite this version: Paul L. Chretien. Caractérisation des agents phytopathogènes responsables des pertes de la filière ail : mise au point d’une méthode de détection. Sciences agricoles. Université d’Avignon, 2021. Français. NNT : 2021AVIG0363. tel-03211009 HAL Id: tel-03211009 https://tel.archives-ouvertes.fr/tel-03211009 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT D’AVIGNON UNIVERSITÉ Ecole Doctorale 536 Agrosciences & Sciences Spécialité / Discipline de doctorat : BIOLOGIE Laboratoire Pathologie Végétale – INRAE PACA Présentée par Paul Chrétien Caractérisation des agents phytopathogènes responsables des pertes de la filière ail Mise au point d’une méthode de détection Soutenue publiquement le 18/02/2021 devant le jury composé de : Marie-Hélène Balesdent, Directrice de recherche, INRAE Rapporteure Philippe Reignault, Professeur, ANSES Rapporteur François Lecompte, Chargé de recherche, INRAE Examinateur Frédéric Suffert, Ingénieur de recherche, INRAE Examinateur Christel Leyronas, Ingénieure de recherche, INRAE Directrice de thèse Cindy Morris, Directrice de recherche, INRAE Directrice de thèse Céline Vézian, Responsable R&D, Alinéa coopérative Invitée À toi qui retombera sur ces pages. -
Plants of Witcher Meadow Area, Inyo National Forest California Native Plant Society Bristlecone Chapter
Plants of Witcher Meadow Area, Inyo National Forest California Native Plant Society Bristlecone Chapter PTERIDOPHYTES (Ferns and Allies) EQUISETACEAE - Horsetail Family Equisetum arvense Common horsetail E. laevigatum Smooth scouring rush GYMNOSPERMS (Coniferous Plants) CUPRESSACEAE - Cypress Family Juniperus grandis (J. occidentalis v. australis) Mountain juniper EPHEDRACEAE - Ephedra family Ephedra viridis Green ephedra PINACEAE - Pine Family Pinus jeffreyi Jeffrey pine P. monophylla Single-leaf pinyon pine ANGIOSPERMS (Flowering Plants) APIACEAE - Carrot Family Cymopterus aborginum White cymopteris APOCYNACEAE - Dogbane Family Apocynum cannabinum Indian hemp ASTERACEAE - Sunflower family Achillea millefolium Yarrow Agoseris glauca Mountain dandelion Antennaria rosea Pussy toes Arnica mollis Cordilleran arnica Artemisia douglasiana Mugwort A. dracunculus Tarragon/Lemon sage A. ludoviciana Silver wormwood A. tridentata v. tridentata Great basin sage Balsamorhiza sagittata Balsamroot Chrysothamnus nauseosus Rubber rabbitbrush C. viscidiflorus Yellow or Wavy-leaf rabbitbrush Crepis intermedia Hawksbeard Erigeron sp. Fleabane Hulsea heterochroma Red-rayed hulsea Layia glandulosa ssp. glandulosa Tidytips Madia elegans ssp. wheeleri Common madia Tetrademia canescens Soft-leaved horsebrush Tragopogon dubius Goat's beard (WEED) Wyethia mollis Mule ears 1 BETULACEAE - Birch Family Betula occidentalis Western water birch BORAGINACEAE - Borage Family Cryptantha circumscissa v. circumscissa Capped cryptantha C. pterocarya C. utahensis Fragrant -
Growing Scallions (Green Onions) for Market Gardeners
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Historical Materials from University of Nebraska-Lincoln Extension Extension 2004 Growing Scallions (Green Onions) for Market Gardeners Laurie Hodges University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/extensionhist Part of the Agriculture Commons, and the Curriculum and Instruction Commons Hodges, Laurie, "Growing Scallions (Green Onions) for Market Gardeners" (2004). Historical Materials from University of Nebraska-Lincoln Extension. 76. https://digitalcommons.unl.edu/extensionhist/76 This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NF607 Growing Scallions (Green Onions) for Market Gardeners By Laurie Hodges, Extension Horticulturist Growing scallions (green onions) can provide market pricing. For a list of seed sources, see NebFact 92-80, gardeners with early cash flow and customers with quality General and Specialty Mail-Order Seed Sources, and NebFact increases in storage life, freshness and flavor. Growing 96-274, Seed Sources for Commercial Vegetable Production. quality scallions is easier than growing quality bulb onions A few suppliers are listed at the end of this publication. simply because they are in the field for a shorter time and Optimum growing conditions for scallions include well- bulb formation is not an issue when growing true scallions. drained sandy loam soil and cool conditions. The soil must The scallion is not the same as the leafy top of a be prepared to create a fine, smooth seed bed because the bulbing onion. -
Vascular Plants of Williamson County Allium Canadense Var. Fraseri − FRASER WILD ONION [Alliaceae/Liliaceae]
Vascular Plants of Williamson County Allium canadense var. fraseri − FRASER WILD ONION [Alliaceae/Liliaceae] Allium canadense L. var. fraseri Owney, FRASER WILD ONION. Perennial herb, geophytic, bulb-bearing, rosetted, fibrous-rooted, scapose, inflorescence to 40 cm tall; shoot from bulb with 2−6 basal leaves with white sheath belowground, glabrous, when crushed with odor like onion (Allium); bulb to 60 mm deep, ovoid, at maturity 12−20 × 10−20 mm, outer coats brown and several persisting as a fibrous reticulum, lacking bulblets (bulbils) on inflorescence and also without basal bulbils; adventitious roots from base (stem) of bulb. Leaves: helically alternate, simple with sheath; sheath closed from bulb upward to ground level, white; blade flattened on upper side to crescent-shaped in ×-section, 65−280 × 3−6.3 mm, < leaves, minutely bumpy on margins, acuminate at tip, parallel-veined, midrib not evident. Inflorescence: umbel-like, hemispheroid, ca. 40 mm across, 20−30+-flowered, bracteate, glabrous; peduncle ascending to erect, cylindric, 1.7−3 mm diameter, green, glabrous; bract at top of peduncle enclosing flower buds, closed, having 3 prominent veins and splitting downward with 3 tail-like tips aging reflexed, membranous drying scarious and papery, 12−16 mm long, parallel-veined; bractlet subtending pedicel (except outer pedicels), membranous, slender, to 7.5 mm long; pedicels radiating, mostly 13−21 × ± 0.5 mm. Flower: bisexual, radial, 10−12 mm across; tepals 6 in 2 whorls, ± monomorphic, spreading, narrowly ovate to elliptic, 5.5−7 -
A Taxonomic Re-Evaluation of the Allium Sanbornii Complex
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1986 A taxonomic re-evaluation of the Allium sanbornii complex Stella Sue Denison University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Denison, Stella Sue. (1986). A taxonomic re-evaluation of the Allium sanbornii complex. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/2124 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. A TAXONOMIC RE-EVALUATION OF THE ALLIUM SANBORNII COMPLEX A Thesis Presented to the Faculty of the Graduate School University of the Pacific In Partial Fulfillment of the Requirements for the Degree Master of Science by Stella S. Denison August 1986 ACKNOWLEDGMENTS Many contributions have been made for my successful completion of this work. Appreciation is extended to: Drs. Dale McNeal, Alice Hunter, and Anne Funkhouser for their advice and assistance during the research and in the preparation of this manuscript, the entire Biology faculty for their, friendship and suggestions, Ginger Tibbens for the typing of this manuscript, and to my husband, Craig, and my children, Amy, Eric and Deborah for their continued support and encouragement. Grateful acknowledgement is made to the curators of the herbaria from which material was borrowed during this investigation. These herbaria are indicated below by the standard abbreviations of Holmgren and Keuken (1974}.