Porphyrin Basics1

Total Page:16

File Type:pdf, Size:1020Kb

Porphyrin Basics1 ! Porphyrin Basics1 Porphyrins are organic pigments, of both natural and synthetic origin, all of which contain the porphyrin ring (Figure 1) as part of their structure. In addition, porphyrin chemistry deals with various analogues and derivatives of porphyrins and, particularly, with their metal complexes. The porphyrin molecule is usually described as a union of four pyrrolic rings linked by four methine bridges to form a macrocycle. (The term macrocycle refers to ! cyclic molecules large enough to accommodate a metal Figure 1. The porphyrin. Pyrrole rings ion in the interior). are shown in red and methine bridges in green. Numbering of the porphyrin nucleus runs along the ! twenty peripheral carbon atoms as shown in Figure 2. The inner nitrogens are given locants 21-24. Porphyrins are generally substituted on the periphery. There are 12 positions that can be substituted. The eight β positions are those on the pyrrolic rings and the four meso positions correspond to the methine bridges. The unsubstituted porphyrin has been named porphine. The two most frequently encountered substitution patterns are provided by b-octaalkylporphyrins and ! meso-tetraarylporphyrins (Figure 3). Naturally occurring Figure 2. Numbering of the porphyrins are beta-substituted in an unsymmetrical porphyrin molecule. The meso and fashion. beta positions are shown in color. ! ! Figure 3. Favorite substitution patterns: beta-octaethylporphyrin (left), meso- tetraphenylporphyrin (center), protoporphyrin IX (right). ! ! 1! ! Properties Porphyrins are strongly colored compounds. The variety of available colors is apparently unlimited although there is an observable inclination towards red and purple. The color is a consequence of the complicated electronic spectra of porphyrins, which contain intense absorptions in the visible region (called Q bands). Even more intense (ten times and more) is the Soret band found in the near UV, so named after its discoverer (Soret, J. L. Compt. Rend. 1883, 97, 1267). Another conspicuous characteristic of porphyrins, directly associated with their optical properties, is the aromaticity of the macrocycle. It is most evidently manifested in the 1H NMR spectra by the downfield shifts of peripheral protons and the strongly upfield shifts of the inner NH's(usually negative on the d scale). Porphyrin aromaticity is most frequently described in terms of the [18]annulene model, proposed by E. Vogel. According to that model, a delocalization pathway is distinguished in the macrocycle, as shown in Figure 4, which is aromatic in the traditional Hückel sense. The porphyrin is thus viewed as a bridged diaza[18]annulene. ! Figure 4. Delocalization pathway in porphyrin according to Vogel's [18]annulene model. ! Porphyrins are weak bases and can be protonated to form dications. In the unprotonated porphyrin (called free base) the two inner protons are mobile and jump freely among the four nitrogens. The trans (21,23-H) tautomer, shown in all schemes, is energetically preferred to the cis form (21,22-H). Porphyrins form a great number of complexes with metal ions and some nonmetals (Figure 5).The coordinating environment provided by porphyrins is very flexible and canbe fine-tuned to particular oxidation and spin states by varying peripheral substitution and axial ligands. This tunability was probably Nature's reason to choose porphyrin as its "workhorse macrocycle." ! 2! ! ! Figure 5. Elements known to form complexes with porphyrins (green). Metals found in Nature are shown in red. Of the! naturally occurring metalloporphyrins the iron complexes, called hemes, are by far the most important. They make the reactive centers of numerous heme proteins, responsible for oxygen transport and storage (hemo- and myoglobin), electron transfer (cytochromes), and oxidation of organic substrates (oxygenases of the P450 family). ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 1!http://llg.chem.uni.wroc.pl/?Molecules:Porphyrin_Primer:Basics! http://llg.chem.uni.wroc.pl/?Molecules:Porphyrin_Primer:Properties! ! ! 3!.
Recommended publications
  • Spectroscopy of Porphyrins
    BORIS F. KIM and JOSEPH BOHANDY SPECTROSCOPY OF PORPHYRINS Porphyrins are an important class of compounds that are of interest in molecular biology because of the important roles they play in vital biochemical systems such as biochemical energy conversion in animals, oxygen transport in blood, and photosynthetic energy conversion in plants. We are studying the physical properties of the energy states of porphyrins using the techniques of ex­ perimental and theoretical spectroscopy with the aim of contributing to a basic understanding of their biochemical behavior. INTRODUCTION Metalloporphin Porphyrins are a class of complex organic chemical compounds found in such diverse places as crude oil, plants, and human beings. They are, in most cases, tailored to carry out vital chemical transformations in intricate biochemical or biophysical systems. They are the key constituents of chlorophyll in plants and of hemoglobin in animals. Without them, life would y be impossible. t Free base porphin These molecules display a wide range of chemical and physical properties that depend on the structural details of the particular porphyrin molecule. All por­ ~x phyrins are vividly colored and absorb light in the visible and ultraviolet regions of the spectrum. Some exhibit luminescence, paramagnetism, photoconduc­ tion, or semiconduction. Spme are photosensitizers Wavelength (nanometers) or catalysts. Scientists from several disciplines have been interested in unraveling the principles that cause Fig. 1-The chemical structures for the two forms of por· this diversity of properties. phin are shown on the left. A carbon atom and a hydrogen The simplest compound of all porphyrins is por­ atom are understood to be at each apex not attached to a nitrogen atom.
    [Show full text]
  • Evidence for the Role of Endogenous Carbon Monoxide in Memory Processing
    Evidence for the Role of Endogenous Carbon Monoxide in Memory Processing M. C. Cutajar and T. M. Edwards Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/19/4/557/1816404/jocn.2007.19.4.557.pdf by guest on 18 May 2021 Abstract & For a decade and a half, nitric oxide (NO) has been impli- number of electrophysiological investigations have concluded cated in memory processing across a wide variety of tasks and that endogenous CO is involved in long-term potentiation. species. Comparatively, endogenously produced carbon mon- Although not evidence for a role in memory per se, these oxide (CO) has lagged behind as a target for research into the studies did point to the possible importance of CO in mem- pharmacological processes underlying memory formation. This ory processing. In addition, there is now evidence to suggest is surprising given that CO is formed in memory-associated that endogenous CO is important in avoidance learning and brain regions, is structurally similar to NO, and along with possible for other tasks. This review therefore seeks to pro- NO can activate guanylate cyclase, which is an enzyme well mote endogenous CO as a potentially important target for characterized in memory processing. Nevertheless, a limited memory research. & INTRODUCTION important in memory processing (Kemenes, Kemenes, Carbon monoxide (CO) is traditionally thought of as Andrew, Benjamin, & O’Shea, 2002; Izquierdo et al., an air pollutant. Indeed, inhalation of environmental 2000; Bernabeu et al., 1997; Kendrick et al., 1997). By CO in sufficient quantities may lead to intoxication detailing the evidence for CO production in the hippo- through the production of carbonmonoxyhemoglobin, campus, its role in synaptic plasticity and those few which results in decreased oxygen storage and trans- behavioral studies implicating CO in memory consoli- port in the bloodstream.
    [Show full text]
  • Photoacoustic Measurements of Porphyrin Triplet-State Quantum Yields and Singlet-Oxygen Efficiencies
    FULL PAPER Photoacoustic Measurements of Porphyrin Triplet-State Quantum Yields and Singlet-Oxygen Efficiencies Marta Pineiro, Ana L. Carvalho, Mariette M. Pereira, A. M. dA. Rocha Gonsalves, Luís G. Arnaut,* and SebastiaÄo J. Formosinho Abstract: Photoacoustic calorimetry was used to measure the quantum yields of singlet molecular oxygen production by the triplet states of tetraphenylporphyrin (TPP), ZnTPP and CuTPP in toluene, yielding values of 0.67 Æ 0.14, 0.68 Æ 0.19 Keywords: metalloporphyrins ´ and 0.03 Æ 0.01, respectively. We show that a novel dichlorophenyl derivative of photoacoustic calorimetry ´ por- ZnTPP is capable of singlet-oxygen production with a 0.90 Æ 0.07 quantum yield. phyrinoids ´ singlet oxygen ´ sensi- The synthesis and characterisation of a new photostable chlorin with high absorptivity tizers in the red that is capable of singlet-oxygen production with 0.54 Æ 0.06 quantum yield is described. Our results suggest that chlorinated chlorins may be interesting new sensitisers for photodynamic therapy. Introduction Type II photooxygenation process in cells.[7, 8] Adequate sensitisers have specific biological and photochemical proper- The ubiquitous tetrapyrrolic macrocycles play highly diverse ties. The desired biological features of the sensitiser are: roles in biological systems.[1±5] The natural roles of these 1) little or no dark toxicity structures stimulated the search for new applications, exploit- 2) selective accumulation and prolonged retention in tumour ing in particular the use of new synthetic porphyrins.[6] One of tissues the more recent and promising applications of porphyrin 3) controlled photofading to reduce the unwanted skin chemistry in medicine is in the detection and cure of photosensitivity side effects and increase light penetration tumours,[7, 8] referred to as photodynamic therapy (PDT).
    [Show full text]
  • Electronic Spectroscopy of Free Base Porphyrins and Metalloporphyrins
    Absorption and Fluorescence Spectroscopy of Tetraphenylporphyrin§ and Metallo-Tetraphenylporphyrin Introduction The word porphyrin is derived from the Greek porphura meaning purple, and all porphyrins are intensely coloured1. Porphyrins comprise an important class of molecules that serve nature in a variety of ways. The Metalloporphyrin ring is found in a variety of important biological system where it is the active component of the system or in some ways intimately connected with the activity of the system. Many of these porphyrins synthesized are the basic structure of biological porphyrins which are the active sites of numerous proteins, whose functions range from oxygen transfer and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome oxidase) to energy conversion (chlorophyll). They also have been proven to be efficient sensitizers and catalyst in a number of chemical and photochemical processes especially photodynamic therapy (PDT). The diversity of their functions is due in part to the variety of metals that bind in the “pocket” of the porphyrin ring system (Fig. 1). Figure 1. Metallated Tetraphenylporphyrin Upon metalation the porphyrin ring system deprotonates, forming a dianionic ligand (Fig. 2). The metal ions behave as Lewis acids, accepting lone pairs of electrons ________________________________ § We all need to thank Jay Stephens for synthesizing the H2TPP 2 from the dianionic porphyrin ligand. Unlike most transition metal complexes, their color is due to absorption(s) within the porphyrin ligand involving the excitation of electrons from π to π* porphyrin ring orbitals. Figure 2. Synthesis of Zn(TPP) The electronic absorption spectrum of a typical porphyrin consists of a strong transition to the second excited state (S0 S2) at about 400 nm (the Soret or B band) and a weak transition to the first excited state (S0 S1) at about 550 nm (the Q band).
    [Show full text]
  • On Conducting Polymer Coated Electrodes: a Versatile Platform for the Modification of Electrode Surfacesa
    Full Paper http://www.paper.edu.cn ‘‘Click’’ on Conducting Polymer Coated Electrodes: A Versatile Platform for the Modification of Electrode Surfacesa Yan Li, Weixia Zhang, Jing Chang, Jinchun Chen, Guangtao Li,* Yong Ju* Two types of N-substituted pyrroles with azide and terminal alkyne groups have been synthesized and electropolymerized. ‘‘Click’’ chemistry, specifically Huisgen 1,3-dipolar cycloaddition, was used as a general method for functionalization of the polypyrrole films. Several model compounds, including redox active (quinone), bioactive (cholic acid) and recognition elements (carbohydrate and thymi- dine) could easily be attached onto the electrode surfaces without loss of functionality or the elec- troactivity of the underlying conducting polymers. The results suggest that the polypyrrole films are clickable and provide a novel biocompatible and versatile platform for efficient modifications on electrode surfaces. Introduction catalysis.[1,2] A key factor in such investigations and applications is the achievement of an efficient interface The immobilization of functional units, such as electro- between the functional groups and the conductive active, bioactive and biological recognition elements, onto surface.[3,4] conductive surfaces is of enormous interest, both in Compared to various protocols developed for confining studies of functional groups themselves and in numerous functional units onto solid surfaces, electrodeposition of applications ranging from disease diagnosis to electro- conducting polymers offers a simple and
    [Show full text]
  • Porphyrins & Bile Pigments
    Bio. 2. ASPU. Lectu.6. Prof. Dr. F. ALQuobaili Porphyrins & Bile Pigments • Biomedical Importance These topics are closely related, because heme is synthesized from porphyrins and iron, and the products of degradation of heme are the bile pigments and iron. Knowledge of the biochemistry of the porphyrins and of heme is basic to understanding the varied functions of hemoproteins in the body. The porphyrias are a group of diseases caused by abnormalities in the pathway of biosynthesis of the various porphyrins. A much more prevalent clinical condition is jaundice, due to elevation of bilirubin in the plasma, due to overproduction of bilirubin or to failure of its excretion and is seen in numerous diseases ranging from hemolytic anemias to viral hepatitis and to cancer of the pancreas. • Metalloporphyrins & Hemoproteins Are Important in Nature Porphyrins are cyclic compounds formed by the linkage of four pyrrole rings through methyne (==HC—) bridges. A characteristic property of the porphyrins is the formation of complexes with metal ions bound to the nitrogen atom of the pyrrole rings. Examples are the iron porphyrins such as heme of hemoglobin and the magnesium‐containing porphyrin chlorophyll, the photosynthetic pigment of plants. • Natural Porphyrins Have Substituent Side Chains on the Porphin Nucleus The porphyrins found in nature are compounds in which various side chains are substituted for the eight hydrogen atoms numbered in the porphyrin nucleus. As a simple means of showing these substitutions, Fischer proposed a shorthand formula in which the methyne bridges are omitted and a porphyrin with this type of asymmetric substitution is classified as a type III porphyrin.
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • Combined Experimental and Theoretical Study of Poly(Aniline-Co-Pyrrole) Oligomer
    ORE Open Research Exeter TITLE Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer AUTHORS Kamran, Muhammad; Ullah, Habib; Shah, Anwar-ul-Haq A.; et al. JOURNAL Polymer DEPOSITED IN ORE 15 March 2016 This version available at http://hdl.handle.net/10871/20729 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Combined Experimental and Theoretical Study of Poly(Aniline-co-Pyrrole) Oligomer Habib Ullah*,a,b, Muhammad Kamranb, Salma Bibic, Anwar-ul-Haq A. Shah*,b, Asif A. Tahira, Khurshid Ayub*,d aEnvironment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK bInstitute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan cNational Centre of Excellence in Physical Chemistry, University of Peshawar, 25120 Peshawar, Pakistan. dDepartment of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan * To whom corresponding should be addressed Email: [email protected] Abstract Quantum mechanical calculations are performed to establish the structure of an oligomer of aniline and pyrrole [Poly(Ani-co-Py)], through comparison of experimental and theoretically calculated properties, including conductivity. The copolymer was synthesized through chemical oxidative polymerization and then confirmed from the experimental IR, UV-vis, mass spectra, elemental, XRD, TGA, and SEM analysis. Quantum mechanical calculations are performed at Density Functional Theory (DFT) and Time dependent DFT (TD-DFT) methods for the electronic and spectroscopic properties of the oligomer.
    [Show full text]
  • Design of Porphyrin Solids
    DESIGN OF PORPHYRIN SOLIDS ZN···NO2 RECOGNITION, MULTI-STEP SINGLE CRYSTAL TO SINGLE CRYSTAL TRANSFORMATIONS AND COFACIAL DIMERS By SALIMGEREY ADILOV A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemistry by July 2008 APPROVED: Dr. Venkat R. Thalladi Dr. Dhandapani Venkataraman Advisor External Reviewer; UMass Amherst Dr. James P. Dittami Dr. Weiyong Yu Committee Member Committee Member Dr. Kristin N. Wobbe Head of Department ACKNOWLEDGEMENTS I would like to thank my research advisor Professor Venkat R. Thalladi for his scientific supervision as well as moral support during my stay at WPI. He has always been inspiring and his scientific discussions have been highly encouraging. I learnt a lot from him about science and about life. I would like to thank all the faculty and staff of the Department of Chemistry and Biochemistry at WPI. Thanks to my graduate committee Professors James P. Dittami, Weiyong Yu and Dhandapani Venkataraman. I would like to thank Professor John MacDonald for his discussions throughout my Ph.D. career. Special thanks to Dr. Richard Staples and Dr. Jingwei Huang of Harvard University and Dr. Hans-Christoph Weiss of Bayer, Germany and Professor Roland Bose of University Duisburg-Essen for collecting single crystal X-ray data on some of the structures reported in this thesis. I would like to thank my friendly and supportive labmates. In particular, I thank Marta Dabros, Jason R. Cox, Taner Gokcen and Paul Emery for their help, critical reading and valuable discussions that helped my thesis look better.
    [Show full text]
  • UTMB Testing Packet/Order Form
    Galveston Porphyria Laboratory The University of Texas Medical Branch Galveston, Texas Instructions for Collecting, Processing and Shipping Samples for Porphyria Testing This packet contains the following: • Instructions for collecting, processing and shipping samples • Order form for testing • A primer on laboratory testing for porphyrias Updated 9 June 2021 Page 1 Instructions for Collecting, Processing and Shipping Samples I. Sample Collection and Processing GENERAL INSTRUCTIONS 1. Types of samples used for porphyria testing (For choice of tests, see the attached Primer): a. Urine – spot (random or single void) urine sample is recommended with no preservative. A first-void sample on arising in the morning is preferred. i. Creatinine is measured on all urine samples for “normalization” of the results. The amount of creatinine excreted every day is quite constant because it reflects muscle mass. Most adults excrete 1-2 grams of creatinine daily in urine. Expressing results per gram of creatinine corrects for variation in the hydration state of the patient over time. The sample should be light protected (e.g. by wrapping the container in aluminum foil) and immediately refrigerated or frozen. ii. A 24-hour collection is also suitable, but 5 gm of sodium carbonate (not sodium bicarbonate) should be added to the container before starting the collection, the container should be refrigerated and protected from light during the collection (e.g. by using a dark-colored plastic collection bottle). The total volume must be measured in a single container and only a portion (an “aliquot”) sent to the laboratory for testing. Detailed instructions on how to properly collect a 24-hour urine must be given verbally to the patient along with the container containing the preservative.
    [Show full text]
  • Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin A, and Chlorophyll a by the SAC/SAC-CI Method
    1320 J. Phys. Chem. B 1998, 102, 1320-1326 Theoretical Study of the Excited States of Chlorin, Bacteriochlorin, Pheophytin a, and Chlorophyll a by the SAC/SAC-CI Method J. Hasegawa, Y. Ozeki, K. Ohkawa, M. Hada, and H. Nakatsuji*,† Department of Synthetic and Biological Chemistry, Faculty of Engineering, Kyoto UniVersity, Sakyo-ku, Kyoto 606-01, Japan ReceiVed: September 4, 1997; In Final Form: NoVember 19, 1997 Excited states of free base chlorin (FBC), free base Bacteriochlorin (FBBC), pheophytin a (Pheo a), and chlorophyll a (Chlo a), which are derivatives of free base porphine (FBP), were calculated by the SAC (symmetry adapted cluster)/SAC-CI (configuration interaction) method. The results reproduced well the experimentally determined excitation energies. The reduction of the outer double bonds in the porphine ring in the order of FBP, FBC, and FBBC causes a breakdown of the symmetry and a narrowing of the HOMO- LUMO gap, which result in a red shift of the Qx band and an increase of its intensity. In the change from Pheo a to Chlo a, the Mg coordination reduces the quasidegeneracy in the Qx state and then increases the spectral intensity. The disappearance of the Qy humps from the absorption spectrum of Pheo a, compared with that of Chlo a, is due to the red shift of the Qy state. Introduction Many biological systems contain porphyrins, chlorins, and bacteriochlorins.1,2 These compounds often take an important part in biochemical reactions, such as light absorption, electron transfer,1 and oxygen transport and storage.2 Because of their scientific importance, they have been the subject of a wide variety of studies.
    [Show full text]