CONCISE STUDY NOTES for BG 4Th Semester (UNIT: Amines and Heterocyclic Compounds)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inductive Effect
Dr Anju K. Gupta Associate Professor Department of Chemistry A.N. College, Patna Lecture note for B.Sc. (I) Subsidiary Inductive Effect If a covalent bond is formed between atoms having similar electronegativity, the bonding electrons will be shared equally between the two atoms. For example, in hydrogen molecule, the two hydrogen atoms have identical electronegativities. Therefore, the electron pair is shared equally between the two hydrogen atoms and so the molecular orbital (σ-bond) will be symmetrically distributed. Similarly, if we consider a chlorine molecule, the molecular orbital (σ- bond) formed between the two identical chlorine atoms is symmetrically distributed. This type of bond is called a non-polar covalent bond. However, if we consider a hydrogen chloride molecule, the electron pair is not equally shared between hydrogen and chlorine because chlorine has a greater electronegativity than hydrogen. Therefore, the electron pair shifts towards the more electronegative atom. This causes polarization in the bond in which the more electronegative atom chlorine acquires a partial positive charge. This type of bond in which unequal sharing of electron pair between two atoms of different electronegativities are involved is called a polar covalent bond. The atom which has a greater share of the paired electrons is given a symbol δ- and the atom with a smaller share is given a symbol δ+. Thus, a polar covalent bond can be represented as: 1 Dr Anju K. Gupta Associate Professor Department of Chemistry A.N. College, Patna Lecture note for B.Sc. (I) Subsidiary Consider a chain of carbon atoms such as C4—C3—C2—C1—X with an atom X at the terminal having higher electronegativity than carbon. -
On Conducting Polymer Coated Electrodes: a Versatile Platform for the Modification of Electrode Surfacesa
Full Paper http://www.paper.edu.cn ‘‘Click’’ on Conducting Polymer Coated Electrodes: A Versatile Platform for the Modification of Electrode Surfacesa Yan Li, Weixia Zhang, Jing Chang, Jinchun Chen, Guangtao Li,* Yong Ju* Two types of N-substituted pyrroles with azide and terminal alkyne groups have been synthesized and electropolymerized. ‘‘Click’’ chemistry, specifically Huisgen 1,3-dipolar cycloaddition, was used as a general method for functionalization of the polypyrrole films. Several model compounds, including redox active (quinone), bioactive (cholic acid) and recognition elements (carbohydrate and thymi- dine) could easily be attached onto the electrode surfaces without loss of functionality or the elec- troactivity of the underlying conducting polymers. The results suggest that the polypyrrole films are clickable and provide a novel biocompatible and versatile platform for efficient modifications on electrode surfaces. Introduction catalysis.[1,2] A key factor in such investigations and applications is the achievement of an efficient interface The immobilization of functional units, such as electro- between the functional groups and the conductive active, bioactive and biological recognition elements, onto surface.[3,4] conductive surfaces is of enormous interest, both in Compared to various protocols developed for confining studies of functional groups themselves and in numerous functional units onto solid surfaces, electrodeposition of applications ranging from disease diagnosis to electro- conducting polymers offers a simple and -
Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory
Hindawi Publishing Corporation Journal of Quantum Chemistry Volume 2014, Article ID 850163, 12 pages http://dx.doi.org/10.1155/2014/850163 Research Article Topological Model on the Inductive Effect in Alkyl Halides Using Local Quantum Similarity and Reactivity Descriptors in the Density Functional Theory Alejandro Morales-Bayuelo1,2 and Ricardo Vivas-Reyes1 1 Grupo de Qu´ımica Cuantica´ y Teorica,´ Universidad de Cartagena, Programa de Qu´ımica, Facultad de Ciencias Exactas y Naturales, Cartagena de Indias, Colombia 2 Departamento de Ciencias Qu´ımicas, Universidad Nacional Andres Bello, Republica 275, Santiago, Chile Correspondence should be addressed to Alejandro Morales-Bayuelo; [email protected] and Ricardo Vivas-Reyes; [email protected] Received 19 September 2013; Revised 16 December 2013; Accepted 16 December 2013; Published 19 February 2014 Academic Editor: Daniel Glossman-Mitnik Copyright © 2014 A. Morales-Bayuelo and R. Vivas-Reyes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present a topological analysis to the inductive effect through steric and electrostatic scales of quantitative convergence. Using the molecular similarity field based in the local guantum similarity (LQS) with the Topo-Geometrical Superposition Algorithm (TGSA) alignment method and the chemical reactivity in the density function theory (DFT) context, all calculations were carried out with Amsterdam Density Functional (ADF) code, using the gradient generalized approximation (GGA) and local exchange correlations PW91, in order to characterize the electronic effect by atomic size in the halogens group using a standard Slater-type- orbital basis set. -
Heterocycles 2 Daniel Palleros
Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted. -
Combined Experimental and Theoretical Study of Poly(Aniline-Co-Pyrrole) Oligomer
ORE Open Research Exeter TITLE Combined experimental and theoretical study of poly(aniline-co-pyrrole) oligomer AUTHORS Kamran, Muhammad; Ullah, Habib; Shah, Anwar-ul-Haq A.; et al. JOURNAL Polymer DEPOSITED IN ORE 15 March 2016 This version available at http://hdl.handle.net/10871/20729 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Combined Experimental and Theoretical Study of Poly(Aniline-co-Pyrrole) Oligomer Habib Ullah*,a,b, Muhammad Kamranb, Salma Bibic, Anwar-ul-Haq A. Shah*,b, Asif A. Tahira, Khurshid Ayub*,d aEnvironment and Sustainability Institute (ESI), University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK bInstitute of Chemical Sciences, University of Peshawar, 25120 Peshawar, Pakistan cNational Centre of Excellence in Physical Chemistry, University of Peshawar, 25120 Peshawar, Pakistan. dDepartment of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan * To whom corresponding should be addressed Email: [email protected] Abstract Quantum mechanical calculations are performed to establish the structure of an oligomer of aniline and pyrrole [Poly(Ani-co-Py)], through comparison of experimental and theoretically calculated properties, including conductivity. The copolymer was synthesized through chemical oxidative polymerization and then confirmed from the experimental IR, UV-vis, mass spectra, elemental, XRD, TGA, and SEM analysis. Quantum mechanical calculations are performed at Density Functional Theory (DFT) and Time dependent DFT (TD-DFT) methods for the electronic and spectroscopic properties of the oligomer. -
Reactions of Pyrrole, Imidazole, and Pyrazole with Ozone
Environmental Science Water Research & Technology View Article Online PAPER View Journal | View Issue Reactions of pyrrole, imidazole, and pyrazole with † Cite this: Environ. Sci.: Water Res. ozone: kinetics and mechanisms Technol., 2020, 6,976 Agnes Tekle-Röttering,‡a Sungeun Lim, ‡bc Erika Reisz,d Holger V. Lutze,efgj Mohammad Sajjad Abdighahroudi, e Sarah Willach,e Winfried Schmidt,af Peter R. Tentscher,h Daniel Rentsch, i Christa S. McArdell, b Torsten C. Schmidt *efg and Urs von Gunten*bc Five-membered nitrogen-containing heterocyclic compounds (azoles) belong to potential moieties in com- plex structures where transformations during ozonation can occur. This study focused on the azole–ozone chemistry of pyrrole, imidazole, and pyrazole as model compounds. Reaction kinetics and ozonation products were determined by kinetic and analytical methods including NMR, LC-HRMS/MS, HPLC-UV, and IC-MS. 1 Analyses of reactive oxygen species ( O2, ˙OH, H2O2), quantum chemical computations (Gibbs energies), and kinetic simulations were used to further support the proposed reaction mechanisms. The species-specific 6 −1 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. second-order rate constants for the reactions of ozone with pyrrole and imidazole were (1.4 ± 1.1) × 10 M −1 5 −1 −1 s and (2.3 ± 0.1) × 10 M s , respectively. Pyrazole reacted more slowly with ozone at pH 7 (kapp =(5.6± 0.9) × 101 M−1 s−1). Maleimide was an identified product of pyrrole with a 34% yield. Together with other prod- ucts,formate,formamide,andglyoxal,CandNmassbalancesof∼50% were achieved. Imidazole reacted with ozone to cyanate, formamide, and formate (∼100% yields per transformed imidazole, respectively) with a closed mass balance. -
Heterocyclic Chemistrychemistry
HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics -
N-Methylprotoporphyrin IX: Chemical Synthesis and Identification
Proc. Nati. Acad. Sci. USA Vol. 78, No. 3, pp. 1490-1494, March 1981 Biochemistry N-Methylprotoporphyrin IX: Chemical synthesis and identification as the green pigment produced by 3,5-diethoxycarbonyl-1,4- dihydrocollidine treatment (N-alkyl porphyrins/porphyrin synthesis/ferrochelatase inhibitor/NMR) PAUL R. ORTIZ DE MONTELLANO, HAL S. BEILAN, AND KENT L. KUNZE Department of Pharmaceutical Chemistry, School of Pharmacy, and Liver Center, University of California, San Francisco, California 94143 Communicated by Rudi Schmid, November 24, 1980 ABSTRACT The hepatic pigment accumulated in 3,5-di- mitochondrial ferrochelatase (13, 14). The differential physio- ethoxycarbonyl-1,4-dihydrocollidine-treated rats, which has been logical effects of AIA and DDC are thus related, at least in part, reported to inhibit ferrochelatase, has been isolated and purified. to differences in the structures of the accompanying The pigment has been resolved into one major, one minor, and hepatic two trace components, all of which appear to be isomeric por- pigments. In concert with our efforts to define the structure of phyrins. The major fraction has been unambiguously identified the abnormal porphyrins due to AIA and other unsaturated byspectroscopic methods as the isomer of N-methyprotopor- agents (9, 10, 15, 16), we have undertaken a structural inves- phyrin IX (isolated as the dimethyl ester) in which vinyl-substituted tigation of the DDC-induced pigment. We report here un- pyrrole ring A is methylated. The minor product appears to be an ambiguous spectroscopic identification of the DDC pigment isomer of the same porphyrin with the N-methyl group on pro- as N-methylprotoporphyrin IX (dimethyl ester), confirmation pionic acid-substituted ring C, and the trace components have the same high-pressure liquid chromatography retention times as the of this structural assignment by chemical synthesis of the four other two possible isomers of the porphyrin. -
Strecker Degradation Products of Aspartic and Glutamic Acids and Their Amides
Czech J. Food Sci. Vol. 19, No. 2: 41–45 Strecker Degradation Products of Aspartic and Glutamic Acids and their Amides JAN RÖSSNER, JAN VELÍEK, FRANTIEK PUDIL and JIØÍ DAVÍDEK Institute of Chemical Technology Department of Food Chemistry and Analysis, Prague, Czech Republic Abstract RÖSSNER J., VELÍEK J., PUDIL F., DAVÍDEK J. (2001): Strecker degradation products of aspartic and glutamic acids and their amides. Czech J. Food Sci., 19: 4145. Aspartic and glutamic acids, asparagine and glutamine were oxidised with either potassium peroxodisulphate or glyoxal. Non- volatile products were derivatised and analysed by GC/FID and GC/MS. Volatile reaction products were isolated and analysed by the same methods. It was found that the degradation reactions of amino acids are complex. Amino acids are principally degraded via the corresponding α-keto acids to Strecker aldehydes (aspartic acid to oxalacetic and 3-oxopropionic acids and glutamic acid to α-ketoglutaric and 4-oxobutyric acids), which are unstable and decomposed by decarboxylation to the corresponding alde- hydes. Aspartic acid also eliminates ammonia and yields fumaric acid whereas glutamic acid gives rise to an imine, pyroglutamic acid. A recombination of free radicals leads to dicarboxylic acids (succinic acid from aspartic acid, succinic, glutaric and adipic acids from glutamic acid). The major volatile products (besides the aldehydes) are lower carboxylic acids (acetic acid from aspartic acid and propionic acid acid from glutamic acid) that can at least partly arise by radical reactions. In both quality and quantity terms, a higher amount of degradation products arises by oxidation of amino acids by peroxodisulphate. Keywords: Strecker degradation; Strecker aldehydes; amino acids; glyoxal; sodium peroxodisulphate; aspartic acid; glutamic acid; asparagine; glutamine; radicals The reaction of an α-amino acid with an oxidation re- asparagine (Asn) and glutamine (Gln). -
The Inductive Effect in Organic Chemistry Comments Upon Models: C
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications -- Chemistry Department Published Research - Department of Chemistry 2019 The nducI tive Effect in Organic Chemistry Charles A. Kingsbury University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/chemfacpub Part of the Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, and the Other Chemistry Commons Kingsbury, Charles A., "The nductI ive Effect in Organic Chemistry" (2019). Faculty Publications -- Chemistry Department. 155. http://digitalcommons.unl.edu/chemfacpub/155 This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications -- Chemistry Department by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Inductive Effect in Organic Chemistry Comments upon Models: C. A. Kingsbury Department of Chemistry University of Nebraska Lincoln, NE 68588-0304 Email: [email protected] Abstract: The subtle difference between the successive polarization model and the flow of electrons through sigma bonds is explored, as well as the alternating charge model of Pople and the pervasive field model. The present paper is concerned with the ability of alkyl groups to serve as sigma inductive electron donors. The “inductive effect” remains an icon of chemical education and chemical thought. It is appreciated by students as a concept easily grasped, and it is a concept that is well liked by instructors as easy and rapid to present. However, the history of the “inductive effect,” in its various incarnations is hardly as smooth as these complacent attitudes might suggest. -
Carboxylic Acids
CARBOXYLIC ACIDS 1 Carboxylic Acids Introduction Carboxylic acids are organic compounds containing the carboxyl group (-COOH), wherein the hydroxyl group (-OH) is directly attached to the carbonyl (C=O) group. Carboxylic acids constitute one of the most frequently encountered classes of organic compounds in nature. 2 Natural Carboxylic Acids A great many carboxylic acids are encountered in nature, mostly, in fruits. Indeed carboxylic acids were among the first class of organic compounds to ever be isolated from nature. Edible carboxylic acids found in citrous fruits and fermented milk generally have sharp flavours. 3 Nomenclature of Carboxylic Acids The common names of some basic carboxylic acids are derived from Latin names that indicate the first original natural source of the carboxylic acid. Structure of Acid Natural Source Common Name O H C OH Ants (Formica) Formic acid O CH3 C OH Vinegar (Acetum) Acetic acid O CH3CH2 C OH Basic Fat (Propio) Propionic acid O CH3CH2CH2 C OH Rancid butter (Butyrum) Butyric acid Present in aValerian herb Valeric acid O 4 CH3CH2CH2CH2CH2 C OH Goat (Caper) Caproic acid Common Names of Carboxylic Acids The common name of a carboxylic acid (R-COOH) is derived by adding the suffix –ic acid to a prefix representing the chain length of the carboxylic acid. # of Carbons Prefix Common Name of Acid 1 Form- Formic acid 2 Acet- Acetic acid 3 Propion- Propionic acid 4 Butyr- Butyric acid 5 Valer- Valeric acid 6 Capro- Caproic acid Aromatic acid Benzo- Benzoic acid 5 IUPAC Nomenclature of Aliphatic Carboxylic Acids IUPAC names of straight chain aliphatic carboxylic acids are derived by adding the suffix –oic acid to the systematic name of the parent hydrocarbon. -
Principles of Drug Action 1, Spring 2005, Resonance and Induction
Principles Of Drug Action 1, Spring 2005, Resonance and Induction RESONANCE AND INDUCTION TUTORIAL Jack DeRuiter The terms "resonance" and "induction" refer to the electronic effects that atoms or functional groups may have within a compound. These effects are defined below and are dependent on the valence, bonding order and electronegativity of atoms, as well as the molecular geometry. Thus it is important that you understand these concepts prior to reviewing this tutorial. I. INDUCTION Induction or the inductive effect of an atom or functional group is a function of that groups 1). electronegativity, 2). bonding order and charge and 3). position within a structure. Inductive effects refer to those electronic effects of an atom or functional group can contribute through single bonds such as saturated (sp3) carbon atoms! This is very different from resonance effects discussed later in this section. The contribution of electronegativity, bonding order and position toward induction is as follows: Electronegativity: Atoms or functional groups that are electronegative relative to hydrogen such as the halogens, oxygen, nitrogen, etc. may have a negative inductive effect (-I), depending on their bonding order (see the Table below). Thus these atoms withdraw electron density through the single bond structure of a compound and can assist in the stabilization of negative charge that may form in reactions. One such reaction where -I groups can have a stabilizing (enhancing) effect is the ionization of acids. Consider the case of acetic acid, chloroacetic acid and trichloroacetic acid shown below. All three of these compounds can ionize (loss of proton from the carboxyl OH).