<<

CH4. and Bases

1

Bronsted-Lowry

Bronsted-Lowry definitions:

Acid = donor; = proton acceptor

+ - HF (aq) + H2O H3O (aq) + F (aq) BL BL base

Fluoride is the conjugate base of HF

Hydronium ion is the of H2O

2

1 Amphiprotic species

Amphiprotic – species that can act as BL acid or base

+  NH3 (aq) + H2O  NH4 (aqu) + OH (aqu) BL base BL acid

+  Kb = base = [NH4 ] [OH ] / [NH3]

H2O is amphiprotic - it‟s a base with HF, but an acid with NH3

3

BL acid/base strength

Ka, the acidity constant, measures as:

+ - Ka = [H3O ] [A ] / [HA]

pKa = - log Ka

For strong acids - When pH = pKa, then [HA] = [A ]

pKa < 0

pKa(HCl) ≈ -7

4

2 BL acid/base strengths

5

Kw

Kw = water autodissociation (autoionization) constant

+ - 2 H2O  H3O (aqu) + OH (aqu)

+ - -14 Kw = [H3O ] [OH ] = 1 x 10 (at 25°C)

Using the above, you should prove that for any conjugate acid-base pair:

pKa + pKb = pKw = 14

6

3 Polyprotic acids

Since pKa values are generally well- separated, only 1 or 2 species will be present at significant concentration at any pH

- + H3PO4 + H2O  H2PO4 + H3O pKa1 = 2.1

- 2- + H2PO4 + H2O  HPO4 + H3O pKa1 = 7.4

2- 3- + HPO4 + H2O  PO4 + H3O pKa1 = 12.7

7

Solvent leveling

+ The strongest acid possible in aqueous solution is H3O + - Ex: HCl + H2O  H3O (aq) + Cl (aq) there is no appreciable equilibrium, this reaction goes quantitatively; the acid form of HCl does not exist in aqueous solution

+ - Ex: KNH2 + H2O  K (aq) + OH (aq) + NH3 (aq) this is leveling, the stable acid and base species are the BL acid-base pair of the solvent

- NH2 = imide anion - NR2 , some substituted imide are less basic and can exist in aq soln 8

4 Solvent leveling

Only species with 0 < pKa < 14 can exist in aqueous solutions. + The acid/base range for water stability pKw, i.e. 14 orders of mag in [H ]. Other have different windows and different leveling effects.

9

Solvent leveling

+  20 2EtOH  EtOH2 (solv) + EtO (solv) K ~ 10

in the range of -3 < pKa < 17

+  NH3  NH4 (solv) + NH2 (solv) ammonium imide

chemistry in the range of 10 < pKa < 38

O2  OH NH3(l) +  Na (m)  Na (solv) + NH2 (solv) + ½ H2 (g) slow very strong base

Na+ (solv) + e (solv) 10

5 Acid/base chemistry of complexes

Aqueous chemistry:

H2O 3+  Fe(NO3)3  [Fe(OH2)6] (aq) + 3 NO3 (aq)

3+ 5+ + 2 [Fe(OH2)6] (aq)  [Fe2(OH2)10OH] (aq) + H3O (aq) dimer Hexaaquairon(III), pKa ~ 3

11

Aqua, hydroxo, oxoacids

n+ 2+ aqua acid M(OH2)x ex: [Cu(OH2)6] hexaaquacopper(II) cation

hydroxoacid M(OH)x ex: B(OH)3 , Si(OH)4  pKa ~ 10

oxoacid MOp(OH)q p and q designate oxo and hydroxo ligands

 + ex: H2CO3 (aq) + H2O  HCO3 (aq) + H3O (aq) carbonic acid

pKa ~ 3.6 CO2 (g) + H2O

12

6 Trends in acidity

For aqueous ions: 2 pKa vs z / (r++ d) 1. Higher charge is more acidic

3+ pKa of [Fe(OH2)] ~ 3 2+ pKa of [Fe(OH2)]6 ~ 9 2. Smaller radius is more acidic Mn2+ Cu2+ early TM late TM lower Z* higher Z* => larger radius => smaller radius less acidic more acidic

+ + Na (aqu) = [Na(OH2)6] has pKa > 14 so it‟s a spectator ion in aqu soln 13

Anhydrides

Ex: H2O + SO3  H2SO4 anhydride acid form Acidic

SO3 / H2SO4

“P2O5” / H3PO4

CO2/H2CO3

Basic

Na2O / NaOH

Amphoteric

Al2O3 / Al(OH)3 14

7 Trends in acidity

15

Common acids

 HNO3 NO3 (D3h) Nitric acid Nitrate

HNO NO  (C ) 2 2 2v You should know these! Nitrous acid Nitrite

3 H3PO4 PO4 (Td) Phosphoric acid Phosphate

2 H3PO3 HPO3 (C3v) Phosphorous acid Phosphite

16

8 Common acids

2 H2SO4 SO4 (Td) Sulfate You should know these!

2 H2SO3 SO3 (C3v) Sulfurous acid Sulfite

17

Common acids

 HClO4 ClO4 (Td) Perchlorate

 HClO3 ClO3 (C3v) Chloric acid You should know these!

 HClO2 ClO2 (C2v) Chlorite

HOCl OCl Hypochlorite

18

9 Pauling‟s rules for pKa„s of oxoacids

1. Write formula as MOp(OH)q

2. pKa  8 – 5p

3. Each succeeding deprotonation increases the pKa by 5

Ex: rewrite HNO3 as NO2(OH)

p = 2; pKa  8 – 5(2)  2 (exptl value is 1.4)

Ex: rewrite H3PO4 as PO(OH)3

p = 1; pKa1  8 – 5(1)  3 (exptl value is 2.1)

pKa2  8 (exptl value is 7.4)

pKa3  13 (exptl value is 12.7)

19

pKa values

p Pauling pKa calcn exptl Cl(OH) 0 8 7.5 ClO(OH) 1 3 2.0

ClO2(OH) 2 2 1.2

ClO3(OH) 3 7 ≈ 10

HlO4 + 2H2O  H5IO6

20

10 Amphoteric oxides

3+  [Al(OH2)6]  Al2O3 / Al(OH)3  [Al(OH)4] +  Oh H3O OH Td

3+ 5+ + 2 [Al(OH2)6] (aq)  [Al2(OH2)10(OH)] (aq) + H3O (aq)

pKa ~ 2 dimer

21

polyoxocations

7+ linear trimer is [Al3(OH2)14(OH)2]

Keggin ion

7+ [AlO4(Al(OH)2)12] pH ≈ 4 charge/volume ratios

3+ Al(OH2)6 > dimer > trimer --- > Al(OH)3 3+ / Oh 5+ / 2 Oh 7+ / 3 Oh neutral

22

11 Polyoxoanions

+ H3O 3 VO4 (aq)  V2O5(s) orthovanadate (Td)

3 4  2 VO4 (aq) + H2O  V2O7 (aq) + 2OH (aq)

+ H3O

3 5 V3O9 V3O10

+ H3O oxo bridge 4 23 V4O12

Lewis acids and bases

A + B:  A:B LA LB complex

LA = pair acceptor; LB = electron pair donor Lewis definition is more general than BL definition, does not require aqueous or protic solvent  Ex: W + 6 :CO  [W(CO)6]

BCl3 + :OEt2  BCl3:OEt2

D3h

3+ 3+ Fe (g) + 6 :OH2 → [Fe(OH2)6] 24

12 LA/LB strengths

LA strength is based on reaction Kf LA/LB strengths depend on specific acid base combination

Ex: BCl3 + :NR3  Cl3B:NR3

Kf: NH3 < MeNH2 < Me2NH < Me3N inductive effect

BMe3 + :NR3  Me3B:NR3

Kf: NH3 < MeNH2 < Me2NH > Me3N inductive + steric

Hrxn 58 74 81 74 kJ/mol

25

log K and ligand type

26

13 Drago-Wayland equation

A (g) + :B (g)  A:B (g) Gas phase reactions (omits effects)

-Hrxn = EA EB + CA CB look up E, C values for reactants (Table 4.4)

27

Donor/Acceptor numbers

Commonly used to choose appropriate solvents (Table 4.5)

Donor Number (DN) is derived from Hrxn (SbCl5 + :B  Cl5Sb:B) higher DN corresponds to stronger LB

Acceptor Number (AN) is derived from stability of Et3P=O:A complex higher AN corresponds to stronger LA

Ex: THF () C4H8O DN AN ε  dielectric constant THF 20 8 7

H2O 18 55 82

+ Some Li salts and BF3 have similar solubilities in THF, H2O

NH3 is much more soluble in H2O

Most salts are much more soluble in H2O 28

14 Descriptive chemistry - Group 13

Expect inductive effect BF3 > BCl3 > BBr3 but the opposite is true

ex: BF3 is stable in H2O, R2O (ethers)

BCl3 rapidly hydrolyzes due to nucleophilic attack of :OH2

the lower acidity of BF3 is due to unusually favorable B–X bonding in the planar conformation due to  interaction

“AlCl3“ is a dimer (Al2Cl6) General trend  larger central , tends to have higher CN

Al2Me6 is isostructural with Al2Cl6

C6H6 C6H5C(O)R Friedel-Crafts

 RC(O)-X: + “AlCl3”  RC(O) + AlCl3X

29

Descriptive chemistry - Group 14

CX4 is not a Lewis Acid

Acidity SiF4 > SiCl4 > SiBr4 > SiI4 (inductive effect)

ex: 2KF(s) + SiF4(g)  K2SiF6(s) 2 LB LA SiF6 Oh

SnF4 and PbF4 have Oh not Td coordination (heavier congener, higher CN) each M has 2 unique axial F and 4 shared F

30

15 Descriptive chemistry - Group 15

MF5 does not exist for M=N; trigonal bipyramidal for M = P, As

SbF5: Sb has Oh coordination (oligomerizes to Sb4F20 or Sb6F30)

LB LA transient

 K2MnF6 (s) + 2 SbF5 (l)  “MnF4” + 2KSbF6 (s) F transfer

KF, H2O2 aqu HF 

KMnO4 Sb2O3 MnF3 + ½ F2 (g)

Dove (1980‟s), chemical synthesis of F2 gas

31

Descriptive chemistry - Group 16

Inductive effect stabilizes conjugate base (anionic form)

sulfuric acid fluorosulfonic HSO3F / SbF5

pKa ~ 2 pKa ~ 5 pKa ~ 26 (superacid)

HSO F / SbF 3 5 +  C6H6  C6H7 SbF6

32

16