Itll Lawrence Berkeley Laboratory Iii:~ UNIVERSITY of CALIFORNIA APPLIED SCIENCE
Total Page:16
File Type:pdf, Size:1020Kb
LBL-24543 C'_~ ITll Lawrence Berkeley Laboratory iii:~ UNIVERSITY OF CALIFORNIA APPLIED SCIENCE -. ~ ., .. I DIVISION. •-, l:: '-' 1:: v L _ LAWRENCE EJr.:ov~L''"V_, .nc: c' LABORATORY APR 1 9 1988 LIBRARY AND The Use of Basic Polymer Sorbents DOCUMENTS SECTION for the Recovery of Acetic Acid from Dilute Aqueous Solution A.A. Garcia and C.J. King January 1988 '· . J I • .I APPLIED SCIENCE DIVISION Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of Califomia. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBL-24543 The Use of Basic Polymer Sorbents For The Recovery of Acetic Acid From Dilute Aqueous Solution Antonio Agustin Garcia and C. Judson King January 1988 Applied Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Energy Systems Research, Energy Conversion and Utilization Technologies Division of the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. The Use of Basic Polymer Sorbents For The Recovery of Acetic Acid From Dilute Aqueous Solution ~·· Antonio Agustin Garcia and C. Judson King Abstract Measurements were made of preferential uptakes of acetic acid from aqueous solution onto basic polymer sorbents. Individual uptakes of water and acetic acid were measured as well. The sorption equilibria were interpreted through a chemical complexation model yielding sorption affinities and capacities for acetic acid. Basicity scales, such as pKa and Gutmann Donor Number (ON) based upon the monomeric functional group chemistry, were shown to explain the trends in sorption affmities. The use of different solvents to leach sorbed acetic acid from basic polymer sorbents was investigated as a means of regenerating the sorbents. It was found that regeneration can be improved by using solvents of high donicity. Aqueous ammonia proved to be effective for regenerat ing moderately strong base sorbents. 1 Table of Contents Abstract Table of Contents ...................................•............................................................. 1 List of Figures ........ ................ .............................. .. ...... .. .......... ............ .. ........ .. .. .. 4 List of Tables ....................................................................................................... 8 Chapter 1: Introduction 9 Chapter 2: Quantitative Determination of Basicity and Linear Free Energy Relations 2.1 Guttnann Donor-Acceptor Theory ................................................................ 14 2.2 Drago E&C Equation .... .. ....................................................................•......... 15 2.3 Solvatochromic Comparison Method ........................................................... 16 2.4 Comparison and Correlation of Different Scales .......................................... 17 Chapter 3: Sorption of Acetic Acid 3.1 Experimental Equipment and Procedures ..................................................... 30 3.1.1 Resin Preparation and Chemicals ................. ~........................................... 30 ·~· 3.1.2 Detennination of Basicity and Capacity Using Elemental Analysis and Titration . .. .. .. .. .. ...... ... .•. .. .... .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. 30 3.1.3 Sorption of Acetic Acid From Aqueous Solution ...................................... 31 3.2 Resin Functional Group Chemistry and Physico-Chemical Properties .............. .. .... .. ........ .. .. ...................... .. ...................... ........ ...... .... .. 32 2 3.3 Individual and Composite Isotherms for Acetic Acid·.................................. 41 3.4 The Ideal Exchange Model ........................................................................... 56 3.4.1 Comparison of Model Parameters With Resin Capacity and .Functional Group Basicity ..........•......................................................... 59 3.5 Sorbent Selectivity: Swelling and Pore Filling as Mechanisms for the Imbibition of Bulk Liquid ............... ~............................................... 77 3.5.1 Effect of Increasing Acetic Acid Concentration on Swelling ............ .... ...... ........................................ ............ ...... .......... .... .... 77 3.5.2 Effect of Position of Methyl Substituent on Swelling Properties of Polyvinylpyridine Resins in Acetic Acid Solution .....................•........................................................................... 85 3.6 Summary and Conclusions ........................................................................... 86 Chapter 4: Recovery of Sorbed Acetic Acid 4.1 Experimental Procedure ....•..•...•.............•.....•.....•....•..................................... 91 4.2 Solvent Leaching of Sorbed Acetic Acid ..................................................... 91 4.2.1 Effect of Functional Group Basicity ......................................................... 92 4.2.2 Solvents With Different Basicities ........................................................... 102 4.3 Aqueous Ammonia Regeneration of Sorbed Acetic Acid ............................ 104 4.3.1 Chemical Modeling of Leaching With Aqueous Ammonia ..................... 105 4.4 Summary and Conclusions ........................................................................... 107 I 3 Appendices A. Compilation of Gutmann DN and AN, Drago E&C Parameters, and Solvatochromic Parameters for Various Solvents ........................................ Ill . B. HCl Titration of Various Basic Sorbents ....................................................... 125 C. Solvent Leaching Composite Isotherms for Various Basic Polymer Sorbents .......................................................................................... 133 4 List of Figures Figure Page 2-1 Comparison of DN With pKa for Various Solvents ............................... 18 2-2 Comparison of AN With pKa for. Various Solvents ............................... 19 2-3 Comparison of DN With Solvatochromic 13 Parameter .......................... 20 2-4 Comparison of Drago Enthalpy With Solvatochromic 13 Parameter. Reference Acid is SbCI, ....... .. .. ...... .. .... .. .... .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 22 2-5 Drago Enthalpy Using~ as Reference Acid Vs.l3 Parameter ................ 22 2-6 Drago E8 V s.. 13 Parameter ...................................................................... ; 23 2-7 Drago Ca V s. 13 Parameter ........... ........................................ ............ .... .. .. 23 2-8 Comparison of Drago Enthalpy With DN ............................................... 24 2-9 ·comparison of Drago Ca With DN ..... \................................................... 25 2-10 Comparison of Drago Ea With D N ..... ........................ .............. .......... .. ... 25 2-11 Comparison of AN With Solvatochromic a Parameter .......................... 26 3-1 Chemical Structure of Epoxy-Polyamine Resin ..................................... 33 3-2 Chemical Structure of Phenol-Formaldehyde-Amine Resin .................. 37 3-3 Chemical Structure of Amberlite IR-4B ................................................. 38 3-4 Monomer Chemical Structure of Aurorez .............................................. 40 3-5 Sorption Isotherms for Bio-Rad Bio Gel P-4 .......................................... 43 3-6 Sorption Isotherms For Reilly Tar & Chern. Co. Poly-4-methyl-5-vinyl-pyridine ........................................................•..... 44 3-7 Sorption Isotherms For Rohm & Haas Amberlite XE-309 ..................... 45 3-8 Sorption Isotherms For Rohm & Haas Amberlite XE-378 ..................... 46 3-9 Sorption Isotherms For Rohm & Haas Amberlite XE-379 ..... ~............... 47 3-10 Sorption Isotherms For Rohm & Haas Amberlite XAD-12 ................... 48 5 Figure Page 3-11 Sorption Isotherms For Celanese Aurorez .............................................. 49 3-12 Sorption Isotherms For Dow Chern. Co. Dowex MWA-1 ..................... 50 3-13 Sorption Isotherms For Rohm & Haas Duolite ES-561 .......................... 51 3-14 Sorption Isotherms For Rohm & Haas Amberlite IR-4B ....................... 52 . 3-15 Sorption Isotherms For Dow Chern. Co. Dowex WGR .......................... 53 3-16 Sorption Isotherms For Rohm & Haas Duolite A -340 ........................... 54 3-17 Sorption Isotherms For Bio-Rad AG-2X8 .............................................. 55 3-18 Comparison Between "Apparent" pKa and Monomeric