Liquid Rocket Propulsion for Atmospheric Flight in the Proposed ARES Mars Scout Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supportability for Beyond Low Earth Orbit Missions
Supportability for Beyond Low Earth Orbit Missions William Cirillo1 and Kandyce Goodliff2 NASA Langley Research Center, Hampton, VA, 23681 Gordon Aaseng3 NASA Ames Research Center, Moffett Field, CA, 94035 Chel Stromgren4 Binera, Inc., Silver Springs, MD, 20910 and Andrew Maxwell5 Georgia Institute of Technology, Hampton, VA 23666 Exploration beyond Low Earth Orbit (LEO) presents many unique challenges that will require changes from current Supportability approaches. Currently, the International Space Station (ISS) is supported and maintained through a series of preplanned resupply flights, on which spare parts, including some large, heavy Orbital Replacement Units (ORUs), are delivered to the ISS. The Space Shuttle system provided for a robust capability to return failed components to Earth for detailed examination and potential repair. Additionally, as components fail and spares are not already on-orbit, there is flexibility in the transportation system to deliver those required replacement parts to ISS on a near term basis. A similar concept of operation will not be feasible for beyond LEO exploration. The mass and volume constraints of the transportation system and long envisioned mission durations could make it difficult to manifest necessary spares. The supply of on-demand spare parts for missions beyond LEO will be very limited or even non-existent. In addition, the remote nature of the mission, the design of the spacecraft, and the limitations on crew capabilities will all make it more difficult to maintain the spacecraft. Alternate concepts of operation must be explored in which required spare parts, materials, and tools are made available to make repairs; the locations of the failures are accessible; and the information needed to conduct repairs is available to the crew. -
Science in Nasa's Vision for Space Exploration
SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION SCIENCE IN NASA’S VISION FOR SPACE EXPLORATION Committee on the Scientific Context for Space Exploration Space Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by Contract NASW 01001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. International Standard Book Number 0-309-09593-X (Book) International Standard Book Number 0-309-54880-2 (PDF) Copies of this report are available free of charge from Space Studies Board National Research Council The Keck Center of the National Academies 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2005 by the National Academy of Sciences. -
Repair Station Capabilities List
Approved by: Astronautics Corporation of America J. Simet, Repair Station Supervisor Approved by: TITLE: Astronautics Corp. of America Repair Station Capabilities List QAP 2003/2 REV. H J. Williams, Repair Station Accountable Manager CODE IDENT NO 10138 Page 1 of 35 Astronautics’ Capabilities List QAP 2003/2 Revision H QAP 2003/2 Astronautics Corporation of America REV SYM DESCRIPTION OF CHANGE DATE APPROVED A Initial Release. 3/25/2003 PFM B Updated to reflect FAA comments regarding when revisions will 1/16/2004 JT, DY, JGW be submitted. C Updated to change the preliminary XQAR449-P-L Repair 6/25/2004 JT, EF, JGW Station Number to XQAR449L. Added the 197800-1 & -3 DU, the 198200-1 & -3 EU, the 198000-( ) EFI and its 198040-( ) Control Panel, and the 260500-( ) EFI. App Added the PMA’d 197800-1 and -3 Display Unit, the 198200-1 6/25/2004 JGW A and -3 Electronics Unit, and the TSOA’d 198000-( ) EFI and its 198040-( ) Control Panel, and the 260500-( ) EFI. The self- evaluation for these items was performed under paragraph 5.5 (d) of this document. These FAA approvals were the basis for the additions. D Updated to separate Appendix A from the text (removed the date 11/30/2004 JT, EF, JGW on the cover sheet for the Appendix). The FAA will be sent a copy of the Appendix within ten days of the date on the Appendix whenever items are added or removed. The appendix will be controlled by date. A copy of the QAP cover sheet and text are controlled by revision letter, and a copy of that will be submitted to the FAA within ten days of the date that the new revision letter version of the text is released. -
Sg423finalreport.Pdf
Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites -
AAS Explorer
lookingback: Life in space | 20 AMERICAN ASTRONAUTICAL SOCIETY EXPLORER Newsletter of the AAS History Committee Editor: Tim Chamberlin | [email protected] What you’ll find FROM THE CHAIRMAN’S DESK INSIDE What to say about Sputnik? elcome to this third in our May 2007 | Issue 3 series of occasional newsletters! Just when it seems that we Report from old W don’t have a critical mass of material to NASA site No. 19 . 2 justify an entire newsletter, ideas well Google on the Moon. 3 up from a variety of sources and we Pesky Moon dust, end up with a surplus of excellent Apollo 1 topics of radio material. This issue was no exception. programs . 4 One challenge I’ve struggled with Space history symposia is what I might say about the anniver- help create important sary of Sputnik … or rather, what to say database . 5 that hasn’t already been said. In noting Michael L. Ciancone Call for papers . 6 the NASM/NASA symposium CHAIR, AAS HISTORY COMMITTEE News briefs. 7 “Remembering the Space Age” sched- to benefit from the acuity of hindsight, Book review: uled for October 21-22, I recalled a simi- as well as the fact that the political, New release offers lar event 10 years ago. Sure enough, social and technical reverberations of glimpse of Italian there on my bookshelf was the launch were not immediately scientist’s life. 8 Reconsidering Sputnik – Forty Years discernible — or even anticipated. In Upcoming meetings Since the Soviet Satellite (2000), edited the years since, the view of the event and events . -
The Outer Space Also Needs Architects
Paper ID #31322 The Outer Space Also Needs Architects Dr. Sudarshan Krishnan, University of Illinois at Urbana - Champaign Sudarshan Krishnan specializes in the area of lightweight structures. His current research focuses on the structural design and stability behavior of cable-strut systems and transformable structures. He teaches courses on the planning, analysis and design of structural systems. As an architect and structural designer, he has worked on a range of projects that included houses, hospitals, recreation centers, institutional buildings, and conservation of historic buildings/monuments. Professor Sudarshan is an active member of Working Group-6: Tensile and Membrane Structures, and Working Group-15: Structural Morphology, of the International Association of Shell and Spatial Struc- tures (IASS). He serves on the Aerospace Division’s Space Engineering and Construction Technical Com- mittee of the American Society of Civil Engineers (ASCE), and the ASCE/ACI-421 Reinforced Concrete Slabs Committee. He is the past Program Chair of the Architectural Engineering Division of the Ameri- can Society for Engineering Education (ASEE). He is also a member of the Structural Stability Research Council (SSRC). From 2004-2007, Professor Sudarshan served on the faculty of the School of Architecture and ENSAV- Versailles Study Abroad Program (2004-06) in France. He was a recipient of the School of Architec- ture’s ”Excellence in Teaching Award,” the College of Fine and Applied Arts’ ”Faculty Award for Ex- cellence in Teaching,” and has been -
From Biomimetic Chemistry to Bio‐Inspired Materials
www.advmat.de www.MaterialsViews.com REVIEW Progressive Macromolecular Self-Assembly: From Biomimetic Chemistry to Bio-Inspired Materials Yu Zhao , Fuji Sakai , Lu Su , Yijiang Liu , Kongchang Wei , Guosong Chen ,* and Ming Jiang * Dedicated to the 20th Anniversary of the Department of Macromolecular Science of Fudan University was highlighted, with the purpose of Macromolecular self-assembly (MSA) has been an active and fruitful research expanding the scope of chemistry.[ 1b ] At fi eld since the 1980s, especially in this new century, which is promoted by its early stage, biomimetic chemistry was the remarkable developments in controlled radical polymerization in polymer regarded as a branch of organic chemistry and the work concentrated on the level chemistry, etc. and driven by the demands in bio-related investigations and of molecules, formation and cleavage of applications. In this review, we try to summarize the trends and recent pro- covalent bonds following the way learning gress in MSA in relation to biomimetic chemistry and bio-inspired materials. from the living body. Artifi cial enzymes Our paper covers representative achievements in the fabrication of artifi cial aiming at fast and high selectivity have building blocks for life, cell-inspired biomimetic materials, and macro- been the key research subject in biomi- metic chemistry with emphasis on the molecular assemblies mimicking the functions of natural materials and their idea of molecular recognition, which is applications. It is true that the current status of the deliberately designed and also the center of supramolecular chem- obtained nano-objects based on MSA including a variety of micelles, multi- istry. Later, the principle and methodology compartment vesicles, and some hybrid and complex nano-objects is at their of biomimetic chemistry have gradually very fi rst stage to mimic nature, but signifi cant and encouraging progress expanded and penetrated to other sub-dis- has been made in achieving a certain similarity in morphologies or properties ciplines with great successes. -
Thermal Analysis of a Monopropellant Micropropulsion System for a Cubesat
THERMAL ANALYSIS OF A MONOPROPELLANT MICROPROPULSION SYSTEM FOR A CUBESAT A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science Degree in Aerospace Engineering by Erin C. Stearns August 2013 © 2013 Erin C. Stearns ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Thermal Analysis of a Monopropellant Micropropulsion System for a CubeSat AUTHOR: Erin C. Stearns DATE SUBMITTED: August 2013 COMMITTEE CHAIR: Dr. Kira Abercromby, Assistant Professor Cal Poly Aerospace Engineering Department COMMITTEE MEMBER: Dr. Jordi Puig-Suari, Professor Cal Poly Aerospace Engineering Department COMMITTEE MEMBER: Dr. Kim Shollenberger, Professor Cal Poly Mechanical Engineering Department COMMITTEE MEMBER: Chris Biddy, Vice President of Engineering Stellar Exploration, Inc. iii ABSTRACT Thermal Analysis of a Monopropellant Micropropulsion System for a CubeSat Erin C. Stearns Propulsive capabilities on a CubeSat are the next step in advancement in the Aerospace Industry. This is no longer a quest that is being sought by just university programs, but a challenge that is being taken on by all of the industry due to the low-cost missions that can be accomplished. At this time, all of the proposed micro-thruster systems still require some form of development or testing before being flight- ready. Stellar Exploration, Inc. is developing a monopropellant micropropulsion system designed specifically for CubeSat application. The addition of a thruster to a CubeSat would expand the possibilities of what CubeSat missions are capable of achieving. The development of these miniature systems comes with many challenges. One of the largest challenges that a hot thruster faces is the ability to complete burns for the specified mission without transferring excessive heat into the propulsion tank. -
Into the Unknown Together the DOD, NASA, and Early Spaceflight
Frontmatter 11/23/05 10:12 AM Page i Into the Unknown Together The DOD, NASA, and Early Spaceflight MARK ERICKSON Lieutenant Colonel, USAF Air University Press Maxwell Air Force Base, Alabama September 2005 Frontmatter 11/23/05 10:12 AM Page ii Air University Library Cataloging Data Erickson, Mark, 1962- Into the unknown together : the DOD, NASA and early spaceflight / Mark Erick- son. p. ; cm. Includes bibliographical references and index. ISBN 1-58566-140-6 1. Manned space flight—Government policy—United States—History. 2. National Aeronautics and Space Administration—History. 3. Astronautics, Military—Govern- ment policy—United States. 4. United States. Air Force—History. 5. United States. Dept. of Defense—History. I. Title. 629.45'009'73––dc22 Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the editor and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public re- lease: distribution unlimited. Air University Press 131 West Shumacher Avenue Maxwell AFB AL 36112-6615 http://aupress.maxwell.af.mil ii Frontmatter 11/23/05 10:12 AM Page iii To Becky, Anna, and Jessica You make it all worthwhile. THIS PAGE INTENTIONALLY LEFT BLANK Frontmatter 11/23/05 10:12 AM Page v Contents Chapter Page DISCLAIMER . ii DEDICATION . iii ABOUT THE AUTHOR . ix 1 NECESSARY PRECONDITIONS . 1 Ambling toward Sputnik . 3 NASA’s Predecessor Organization and the DOD . 18 Notes . 24 2 EISENHOWER ACT I: REACTION TO SPUTNIK AND THE BIRTH OF NASA . 31 Eisenhower Attempts to Calm the Nation . -
Robert Hutchings Goddard
Daniel Guggenheim Medal MEDALIST FOR 1964(Posthumous) For pioneering in rocket development and astronautics, including the first liquid- propelled rocket flight, and contributions toward aerodynamically applicable reaction engines. ROBERT HUTCHINGS GODDARD A quiet, unassuming physicist and engineer, Dr. Robert H. Goddard deserves to be called the father of America’s space program. In 1912, this native of Worcester, Massachusetts began a three-year study of using rocket power to reach high altitudes—a period in which he proved experimentally that a rocket could produce thrust in a vacuum and actually received the first U.S. patent on a system of multi-stage rockets. Goddard was a tireless, painstaking man with the insatiable curiosity of the true scientist. In many respects, he was years ahead of his time—in World War I, for example, he developed the basis for a weapon that helped win World War II: the rocket gun known as the bazooka. In the early twenties, he published the first basic mathematical theory applicable to rocket propulsion and flight, and between 1920 and 1926 he developed and launched the first liquid-fueled rockets. Under Guggenheim grants, Goddard spent several years in rocket research at a proving ground in New Mexico prior to World War II—a period in which he developed a number of large, successful rockets including one that broke the sound barrier and others which included such advancements as gyroscopic control, steering by means of vanes in the engine’s jetstream, gimbal steering and power-driven propellant pumps. These features later appeared on Germany’s V-2 rockets, offering further evidence of Goddard’s genius. -
Laboratory Instruction in Undergraduate Astronautics
Session 2302 Laboratory Instruction in Undergraduate Astronautics Christopher D. Hall Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University Introduction One significant distinction between the “standard” educational programs in aeronautical and astro- nautical engineering is the extent to which experimental methods are incorporated into the curricu- lum. The use of wind tunnels and their many variations is firmly established in the aeronautical engineering curricula throughout the United States. In astronautical engineering, however, there do not appear to be any standard experimental facilities in wide use. This is understandable, given the unique environment in which spacecraft operate; however, there are several facilities which could fill this role, some of which are already in place at universities with a strong space emphasis. The purpose of this paper is to describe some of these facilities and their uses in teaching undergraduate astronautics. We begin by describing the topics in astronautics that are distinct from other topics in aerospace engineering. We then describe a variety of field exercises and laboratories that can be used to enrich the teaching of astronautics. These exercises focus on satellite “observation,” both visually and using amateur radio receivers. Additional laboratories described include a Spacecraft Attitude Dynamics and Control Simulator, and a “design, build, and fly” project to be launched in late 2001. Topics in Astronautics Some topics in aerospace engineering, such as structures, are common to both aeronautics and astronautics, so that related laboratories benefit both parts of the curriculum. There are however some space-specific topics that typically have no laboratory component, primarily related to the motion of spacecraft. -
IGNITION! an Informal History of Liquid Rocket Propellants by John D
IGNITION! U.S. Navy photo This is what a test firing should look like. Note the mach diamonds in the ex haust stream. U.S. Navy photo And this is what it may look like if something goes wrong. The same test cell, or its remains, is shown. IGNITION! An Informal History of Liquid Rocket Propellants by John D. Clark Those who cannot remember the past are condemned to repeat it. George Santayana RUTGERS UNIVERSITY PRESS IS New Brunswick, New Jersey Copyright © 1972 by Rutgers University, the State University of New Jersey Library of Congress Catalog Card Number: 72-185390 ISBN: 0-8135-0725-1 Manufactured in the United Suites of America by Quinn & Boden Company, Inc., Rithway, New Jersey This book is dedicated to my wife Inga, who heckled me into writing it with such wifely re marks as, "You talk a hell of a fine history. Now set yourself down in front of the typewriter — and write the damned thing!" In Re John D. Clark by Isaac Asimov I first met John in 1942 when I came to Philadelphia to live. Oh, I had known of him before. Back in 1937, he had published a pair of science fiction shorts, "Minus Planet" and "Space Blister," which had hit me right between the eyes. The first one, in particular, was the earliest science fiction story I know of which dealt with "anti-matter" in realistic fashion. Apparently, John was satisfied with that pair and didn't write any more s.f., kindly leaving room for lesser lights like myself.