Zea Mays L.) a Thesis Presented to the Faculty of Graduate

Total Page:16

File Type:pdf, Size:1020Kb

Zea Mays L.) a Thesis Presented to the Faculty of Graduate PREEMERGENCE AND POSTEMERGENCE INTERACTIONS OF SAFLUFENACIL IN CORN {Zea mays L.) A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by MEGHAN ELIZABETH MORAN In partial fulfillment of requirements for the degree of Master of Science April, 2010 © Meghan E. Moran, 2010 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada Your file Voire reference ISBN: 978-0-494-64667-0 Our file Notre reference ISBN: 978-0-494-64667-0 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduce, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lntemet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada ABSTRACT PREEMERGENCE AND POSTEMERGENCE INTERACTIONS OF SAFLUFENACIL IN CORN (Zea mays L.) Meghan Moran Advisors: University of Guelph, 2010 Clarence J. Swanton Peter H. Sikkema Studies were conducted under field and growth room conditions to explore the tolerance of corn to postemergence treatments of saflufenacil and BAS 781 (saflufenacil plus dimethenamid-p), and to determine the safening effect of sodium compounds on saflufenacil applied postemergence. Saflufenacil and BAS 781 applied at the 3-to-4 leaf corn stage caused up to 28 and 65% injury, respectively, resulting in yield loss. The addition of Na-bentazon and baking soda to saflufenacil reduced this injury by decreasing foliar herbicide uptake. Field studies were conducted with BAS 781 applied preemergence to evaluate overall and species specific weed control, as well as the dose required for weed control when followed with glyphosate. The GR95 across locations ranged from 126 to 675 g/ha. Common ragweed was the most difficult weed to control; the GR95 was 933 g/ha. When followed by glyphosate, 46 to 1470 g/ha of BAS 781 resulted in optimum yields. ACKNOWLEDGEMENTS Funding for this project came from BASF Canada, as well as the Ontario Ministry of Agriculture, Food, and Rural Affairs. Thank you for your financial contributions in support of this research. There are a number of people to thank for their guidance, support, and assistance with this research project. I would like to thank my advisors, Clarence J. Swanton and Peter H. Sikkema, for their ideas and suggestions, and assistance during the writing process. Thank you to Nader Soltani and J. Christopher Hall of the University of Guelph, and Trevor Kraus of BASF Canada, for serving on my advisory committee and contributing in various ways to the research project. You have all been very kind and supportive, and have made this a great experience in which I have learned more than I expected to. I would also like to thank those that helped manage my field experiments; Kevin Chandler, Todd Cowan, and Christy Shropshire. All of your help and advice was greatly appreciated. Additionally, I would like to thank all of the members of the Weeds Lab for their friendship and advice, and for lending a hand in the field. You have been an important source of support and entertainment over the past two years, and I will miss spending time working with you. I would also like to thank my family, specifically my mother and grandfather, for taking good care of me and encouraging me along the way. I wouldn't have made it this far without you, and attribute much of my success to you. Thank you to my friends and partner, Chris, for encouraging me when I was overwhelmed, and for keeping me humble. 1 TABLE OF CONTENTS Acknowledgements i Table of Contents ii List of Tables iv List of Figures vi 1.0 Literature Review: Protoporphyrinogen Oxidase Inhibiting Herbicides, and the Use of Herbicide Safeners 1.1 Introduction 1.2 Protoporphyrinogen Oxidase (PPO) and PPO Inhibiting Herbicides 1.3 A New PPO Inhibitor: Saflufenacil 1.4 Herbicide Safeners 1.5 Bentazon as an Herbicide Safener 1.6 The Role of Sodium Ions in the Safening Effect 2.0 Na-Bentazon Safens Saflufenacil Applied Postemergence to Corn 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Tolerance of Corn to Saflufenacil and BAS 781 2.3.2 Growth Room 2.3.3 Dose Response of Saflufenacil 2.3.4 Safening Effect of Na-bentazon Under Growth Room Conditions 2.3.5 Safening Effect of Na-bentazon Under Field Conditions 2.3.6 Uptake of 14C-Saflufenacil With and Without Na-bentazon 2.3.7 Safening Effect of Baking Soda Under Growth Room Conditions 2.3.8 Statistical Analysis 2.4 Results and Discussion 2.5 Conclusion 2.6 Sources of Material 3.0 The Role of BAS 781 for Weed Control in Corn 3.1 Abstract 3.2 Introduction n 3.3 Materials and Methods 3.4 Results and Discussion 3.5 Conclusion 3.6 Sources of Material 4.0 General Discussion 4.1 Contributions 4.2 Limitations 4.3 Future Research 5.0 Literature Cited 6.0 Appendix 1: Monthly Rainfall Averages for 2008 and 2009 at Each Field Location in List of Tables Table 2-1. Glyphosate tolerant corn hybrids used in each year at each location 50 Table 2-2. Soil characteristics for each location, including soil type, pH, percent composition of sand, silt and clay, and organic matter content 51 Table 2-3. Nozzle type, spray volume, operating pressure and plot size at each location 52 Table 2-4. Herbicide treatments and application timings for the study of corn tolerance to saflufenacil, dimethenamid-p and BAS 781 53 Table 2-5. Dates of seeding, corn seedling emergence, herbicide application relative to corn growth stage, and corn grain harvest in each year at each location 54 Table 2-6. Dates of seeding, corn seedling emergence, herbicide treatment, and corn grain harvest in 2009, at each location used in the study of the safening effect of bentazon on saflufenacil .55 Table 2-7. Herbicide treatments applied to 4 leaf corn in order to evaluate the safening effect of bentazon applied postemergence with saflufenacil under field conditions near Elora, Exeter, and Woodstock in 2009 56 Table 2-8. Average percent corn injury caused by saflufenacil, dimethenamid-p and BAS 781 (consistent with the order of your treatments) at 3, 7, 14, 21 28 and 56 days after application (DAT) at the preemergence, spike-to-2 leaf and 3-to-4 leaf stages of corn growth at Elora, Exeter, Woodstock and Ridgetown in 2008 and 2009 57 Table 2-9. Variance analysis of the dry weight of corn plants harvested 28 days after final herbicide treatment as a measure of crop injury at Elora, Exeter, Woodstock and Ridgetown in 2008 and 2009 59 Table 2-10. Variance analysis of the corn grain yield from experiments near Elora, Exeter, Woodstock and Ridgetown, ON in 2008 and 2009 60 Table 2-11. Mean corn yield from plots treated with saflufenacil, dimethenamid-p and BAS 781 at the preemergence, spike-to-2 leaf and 3-to-4 leaf stages of corn growth at the lx and 2x doses in Elora, Exeter, Woodstock and Ridgetown, ON in 2008 and 2009 61 Table 2-12. Variance analysis of percent corn collar height and dry weight reduction as compared to the untreated control 28 days after herbicide treatment and corn grain yield at Elora, Woodstock and Exeter, Ontario in 2009. All herbicides were applied at the 4th leaf stage of corn growth 62 IV Table 2-13. Distribution of C-safiufenacil in the leaf wash and parts of the treated leaf as a percent of the total amount recovered at 6 and 24 hours after treatment, with and without bentazon, in a controlled growth room experiment 63 Table 2-14. Variance analysis of plant dry weight following treatment with increasing doses of saflufenacil and baking soda in a controlled growth room, and the linear and quadratic regression coefficients at each dose of saflufenacil 64 Table 3-1. Glyphosate tolerant corn hybrids used in each year at each location 75 Table 3-2. Soil characteristics for each location, including soil type, pH, percent composition of sand, silt and clay, and organic matter content 76 Table 3-3. Nozzle type, spray volume, operating pressure and plot size at each location 77 Table 3-4. Dates of seeding, corn seedling emergence, herbicide application and corn grain harvest in each year at each location for the study of weed control with BAS 781 alone and as a part of a glyphosate program 78 Table 3-5.
Recommended publications
  • Common and Chemical Names of Herbicides Approved by the WSSA
    Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net).
    [Show full text]
  • Herbicide Mode of Action Table High Resistance Risk
    Herbicide Mode of Action Table High resistance risk Chemical family Active constituent (first registered trade name) GROUP 1 Inhibition of acetyl co-enzyme A carboxylase (ACC’ase inhibitors) clodinafop (Topik®), cyhalofop (Agixa®*, Barnstorm®), diclofop (Cheetah® Gold* Decision®*, Hoegrass®), Aryloxyphenoxy- fenoxaprop (Cheetah®, Gold*, Wildcat®), fluazifop propionates (FOPs) (Fusilade®), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) Cyclohexanediones (DIMs) butroxydim (Factor®*), clethodim (Select®), profoxydim (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) Phenylpyrazoles (DENs) pinoxaden (Axial®) GROUP 2 Inhibition of acetolactate synthase (ALS inhibitors), acetohydroxyacid synthase (AHAS) Imidazolinones (IMIs) imazamox (Intervix®*, Raptor®), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, Lightning®*, Midas®* OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) Pyrimidinyl–thio- bispyribac (Nominee®), pyrithiobac (Staple®) benzoates Sulfonylureas (SUs) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*, Trimac Plus®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron (Logran®, Logran® B-Power®*), tribenuron (Express®),
    [Show full text]
  • Nomenclature of Commonly Available Herbicides in India
    NOMENCLATURE OF COMMONLY AVAILABLE HERBICIDES IN INDIA Prior to the widespread use of chemical herbicides, mechanical control and cultural controls, such as altering soil pH, salinity, or fertility levels were used to control weeds. The first widely used herbicide was 2,4-dichlorophenoxyacetic acid, often abbreviated 2,4-D which kills many broadleaf plants while leaving grasses largely unaffected (high doses of 2,4-D at crucial growth periods can harm grass crops such as maize or cereals). The low cost of 2,4-D has led to continued usage today and it remains one of the most commonly used herbicides in the world. In 1950s triazine family of herbicides, which includes atrazine was introduced. Atrazine does not break down readily (within a few weeks) after being applied to soils of above neutral pH. Atrazine is said to have carryover, a generally undesirable property for herbicides. Glyphosate, frequently sold under the brand name Roundup, was introduced in 1974 for non- selective weed control. It is now a major herbicide in selective weed control in growing crop plants due to the development of crop plants that are resistant to it. Many modern chemical herbicides for agriculture are specifically formulated to decompose within a short period after application. This is desirable as it allows crops which may be affected by the herbicide to be grown on the land in future seasons. However, herbicides with low residual activity (i.e., that decompose quickly) often do not provide season-long weed control. List of herbicides with their common name
    [Show full text]
  • Ecological Risk Assessment for Saflufenacil
    TEXT SEARCHABLE DCOUMENT 2011 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CEMICAL SAFETY AND POLLUTION PREVENTION PC Code: 118203 DP Barcode: 380638 and 381293 Thursday, April 07, 2011 MEMORANDUM SUBJECT: Ecological Risk Assessment for Saflufenacil Section 3 New Chemical Uses as a harvest aid on dry edible beans, dry peas, soybean, oilseeds "sunflower subgroup 20B", oilseeds "cotton subgroup 20C", and oilseeds canola "subgroup 20A". TO: Kathryn Montague, M.S., Product Manager 23 Herbicide Branch Registration Division (RD) (7505P) FROM: ~ Mohammed Ruhman, Ph.D., Agronomist 2 :4- . ""=- ........ 04!tJt! (I neith Sappington, Senior Biologist/Science Adviso~.... Vd- Environmental Risk Branch V O'f/ .../ II Environmental Fate and Effects Division (7507P) THROUGH: Mah Shamim, Ph.D., Branch Chief Environmental Risk Branch VI Environmental Fate and Effects Division (7507P) This ecological risk assessment for saflufenacil new uses is relying on the attached previous assessment (Attachment 1). As shown in the usage summary (Table 1), the single and seasonal rate, for all the crops range from 0.045 to 0.089 lbs a.i/A are within the range application rates used in exposure modeling for the 2009 Section 3 New Chemical Environmental Fate and Ecological Risk Assessment (DP Barcode 349855). Therefore, risk findings determined for the 2009 assessment may be used in the assessment for this submittal. Specifically, the 2009 assessment found no chronic risks to avian and mammalian species at an agricultural use rate 0 0.134 lb a.i.lA. Acute risks were not determined for birds and mammals since saflufenacil was not acutely toxic at the highest doses tested.
    [Show full text]
  • Efficacy of Imazapic/Imazapyr and Other Herbicides in Mixtures for The
    Efficacy of imazapic/imazapyr and other herbicides in mixtures for the control of Digitaria insularis prior to soybean sowing Efectividad de imazapic/imazapyr y otros herbicidas en mezclas para el control de Digitaria insularis en pre-siembra de soya Alfredo Junior Paiola Albrecht1, Leandro Paiola Albrecht1, André Felipe Moreira Silva²*, Romulo Augusto Ramos³, Everson Pedro Zeny³, Juliano Bortoluzzi Lorenzetti4, Maikon Tiago Yamada Danilussi4, and Arthur Arrobas Martins Barroso4 ABSTRACT RESUMEN Herbicide mixtures, use of multiple sites of action, and other Las mezclas entre herbicidas, el uso de múltiples sitios de acción weed management practices are necessary to avoid cases of y otras prácticas de manejo de malezas son necesarias para biotype resistance. The aim of this study was to evaluate the evitar otros casos de resistencia de biotipos. El objetivo de este efficiency of imazapic/imazapyr and other herbicides in mix- estudio fue evaluar la eficiencia de imazapic/imazapyr y otros tures to control Digitaria insularis at burndown before soybean herbicidas en mezclas para controlar Digitaria insularis en la sowing. This field research was conducted in Umuarama, State desecación antes de la siembra de soya. Esta investigación de of Parana (PR), Brazil, in the 2018/19 soybean season. The ex- campo se realizó en Umuarama, Estado de Paraná (PR), Brasil, periment was conducted in a randomized block experimental en la cosecha de soya de 2018/19. El experimento se realizó en design with four replicates and 11 treatments composed of the un diseño experimental de bloques al azar, con cuatro repe- application of glyphosate, clethodim, haloxyfop, imazapic/ ticiones y 11 tratamientos, compuestos por la aplicación de imazapyr, glufosinate, 2,4-dichlorophenoxyacetic acid (2,4-D), glifosato, cletodim, haloxifop, imazapic/imazapir, glufosinato, dicamba, triclopyr, and saflufenacil, in mixtures.
    [Show full text]
  • Post-Emergence Weed Control Options in Tree Nut Orchards
    Post-emergence Weed Control Options in Tree Nut Orchards Marcelo L. Moretti1, Rolando Mejorado1, Seth Watkins1, David Doll2, and Bradley D. Hanson1 1University of California, Davis, Dept. of Plant Sciences,2Cooperative Extension Merced County [email protected] Herbicides are the primary means of vegetation management in tree nut orchards in California. Among registered herbicides, post-emergence (POST) materials, like glyphosate, are the most widely used in tree crops because of low cost and broad weed control spectrum. However, herbicide resistance has compromised the efficacy of POST only herbicide programs in many parts of the state. Most cases of resistance in orchards are glyphosate-resistant hairy fleabane, horseweed, ryegrass, and junglerice. To manage resistant weed species, pre-emergence (PRE) herbicides can be applied during winter before weeds emerge; however, PRE herbicide use can be limited by cost and the need for rainfall to incorporate them. Even when PRE herbicides are used, most orchards will need a POST treatment to control weed escapes and to prepare the orchard for harvest operations. One approach to optimize control of late emerging or glyphosate-resistant weeds is to use alternate herbicides, mixtures, rates, or more appropriate application timing. The objective of this project was to evaluate POST control of hairy fleabane and yellow nutsedge with different herbicides combinations. Methods Field experiments were conducted in a three year-old almond orchard infested with hairy fleabane and yellow nutsedge. The orchard was located in a sandy soil area in Merced County, and irrigated with solid set sprinklers. The area is known to be infested with glyphosate-resistant hairy fleabane.
    [Show full text]
  • INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES
    US Environmental Protection Agency Office of Pesticide Programs INDEX to PESTICIDE TYPES and FAMILIES and PART 180 TOLERANCE INFORMATION of PESTICIDE CHEMICALS in FOOD and FEED COMMODITIES Note: Pesticide tolerance information is updated in the Code of Federal Regulations on a weekly basis. EPA plans to update these indexes biannually. These indexes are current as of the date indicated in the pdf file. For the latest information on pesticide tolerances, please check the electronic Code of Federal Regulations (eCFR) at http://www.access.gpo.gov/nara/cfr/waisidx_07/40cfrv23_07.html 1 40 CFR Type Family Common name CAS Number PC code 180.163 Acaricide bridged diphenyl Dicofol (1,1-Bis(chlorophenyl)-2,2,2-trichloroethanol) 115-32-2 10501 180.198 Acaricide phosphonate Trichlorfon 52-68-6 57901 180.259 Acaricide sulfite ester Propargite 2312-35-8 97601 180.446 Acaricide tetrazine Clofentezine 74115-24-5 125501 180.448 Acaricide thiazolidine Hexythiazox 78587-05-0 128849 180.517 Acaricide phenylpyrazole Fipronil 120068-37-3 129121 180.566 Acaricide pyrazole Fenpyroximate 134098-61-6 129131 180.572 Acaricide carbazate Bifenazate 149877-41-8 586 180.593 Acaricide unclassified Etoxazole 153233-91-1 107091 180.599 Acaricide unclassified Acequinocyl 57960-19-7 6329 180.341 Acaricide, fungicide dinitrophenol Dinocap (2, 4-Dinitro-6-octylphenyl crotonate and 2,6-dinitro-4- 39300-45-3 36001 octylphenyl crotonate} 180.111 Acaricide, insecticide organophosphorus Malathion 121-75-5 57701 180.182 Acaricide, insecticide cyclodiene Endosulfan 115-29-7 79401
    [Show full text]
  • Of in Partial Fulfillment of the Of
    CHEMICAL SEEDBED PREPARATION FOR ZERO-TILLAGE CROP PRODUCTION A Thesi s Submitted to the Facu ltY of Graduate Studi es The Uni versi tY of Manitoba by Larry hliI Iiam TaYlor In Partial Fulfillment of the Requi rements for the Degree of I4aster of Sc i ence Department of Pl ant Science t4ay L977 ''CHEMICAL SEEDBED PREPARATION FOR ZERO-TILLAGE CROP PRODUCTION'' by LARRY IdILLIAI4 TAYLOR A rlissertation submitted to the Facutty of Craduate Studics <¡f the University of Manitoba in partial fulfillment of the roquirements of tht' degree of MASTTR OF SCIENCE @ 1977 Pernlission hus becn gr:rntcrl to th'j LIB¡ìARY OF '¡'llU l''NlvUlì- slTY oF MANtTollr\ to lctr<l or selt copics <¡f this tlissertr¡liot¡' t() thc NATIONAL LIBR^RY OF (:ANAI)A to rtlicrofilm this dissertatir.¡n and to lend or soll copics of the l'ilnl, ¿¡nd UNtvtiRSlTY MICROFILMS to publish ru übstruct of this dissertation' The ¡utl¡or reserves other ¡rublicittion rights' and neithcr the dissertttion ttor extcnsive extr cts liom it rrlay be printcd or other- wise reproduccd without thc author's wt ittctl ¡rertttissiotl' 'll ABSTRACT Taylor, Larry hli1ìiam. M'Sc., The University of Manitoba' flay , 1977 . Chemi cal Seedbed Preparati on for Zero-ti I I age Crop Productìon. Major Professor; Elmer H. Stobbe' Field trials were conducted under zero-tillage conditions to study broadspectrum annual weed control with applications of paraquat and glyphosate. Broadleaf herbicides were mixed wìth the paraquat and glyohosate treatments to find their.impact on the effectiveness and cost for chemical seedbed preparation. Excellent broadleaf annual weed control resuited when 0'28 kglha of bromoxyni 1 was added to 0'42 kg/ha of paraquat.
    [Show full text]
  • 2,4-Dichlorophenol AMBIENT WATER QUALITY CRITERIA FOR
    United States Office of Water EPA 440 5-80-042 Environmental Protection Regulations and Standards October 1980 Agency Criteria and Standards Division Washington DC 20460 EPA Ambient Water Quality Criteria for 2,4-dichlorophenol AMBIENT WATER QUALITY CRITERIA FOR 2,4-DICHLOROPHENOL Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. ii FOREWORD Section 304 (a)(1) of the Clean Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare which may be expected from the presence of pollutants in any body of water, including ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a)(1) of the Clean Water Act were developed and a notice of their availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]
  • THE PESTICIDES and TOXIC CHEMICALS ACT, 2008 No. 12 Of
    ANTIGUA AND BARBUDA THE PESTICIDES AND TOXIC CHEMICALS ACT, 2008 No. 12 of 2008 [ Printed in the Official Gazette Vol. XXIX No. 10 dated 12th February , 2009. ] ________ Printed at the Government Printing Office, Antigua and Barbuda, by Eric T. Bennett, Government Printer — By Authority, 2009. 800—2.09 [ Price$11.70 ] The Pesticides and Toxic Chemicals Act, 2008. No. 12 of 2008 No. 12 of 2008 The Pesticides and Toxic Chemicals Act, 2008. THE PESTICIDES AND TOXIC CHEMICALS ACT, 2008 ARRANGEMENT Sections 1. Short title and commencement. 2. Interpretation. 3. Establishment and constitution of the Board. 4. Functions and duties of the Board. 5. Registrar of Pesticides and Toxic Chemicals. 6. Licence to exterminate. 7. Analysts, inspectors, medical examiners and others. 8. Controlled product. 9. Offences in regard to prohibited substance or product. 10. Regulation of prohibited substance or product. 11. Powers of inspectors. 12. Analysis. 13. Medical examiners. 14. Detention and forfeiture of articles seized. 15. Regulations. 16. Offences by corporations. 17. Evidence and sufficiency of proof. 18. Record keeping and reporting. 19. Confidentiality. 20. Notice of non-compliance. 21. Right of appeal. 22. Penalties. 23. Immunity. 24. Indemnity. 25. Application to the State. 26. Repeal. The Pesticides and Toxic Chemicals Act, 2008. No. 12 of 2008 Schedules Schedule 1 – Constitution of the Pesticides and Toxic Chemicals Control Board Schedule 2 – Controlled products Schedule 3 – Prohibited Products No. 12 of 2008 The Pesticides and Toxic Chemicals Act, 2008. [L.S.] I Assent, Louise Lake-Tack, Governor-General. 31st December, 2008 ANTIGUA AND BARBUDA THE PESTICIDES AND TOXIC CHEMICALS ACT, 2008 No.
    [Show full text]
  • Glyphosate Poisoning
    Toxicol Rev 2004; 23 (3): 159-167 REVIEW ARTICLE 1176-2551/04/0003-0159/$31.00/0 © 2004 Adis Data Information BV. All rights reserved. Glyphosate Poisoning Sally M. Bradberry, Alex T. Proudfoot and J. Allister Vale National Poisons Information Service (Birmingham Centre) and West Midlands Poisons Unit, City Hospital, Birmingham, UK Contents Abstract ...............................................................................................................159 1. Epidemiology .......................................................................................................160 2. Mode of Action .....................................................................................................161 3. Mechanisms of Toxicity ..............................................................................................161 3.1 Glyphosate ....................................................................................................161 3.1.1 Acute Toxicity ............................................................................................161 3.1.2 Chronic Toxicity ...........................................................................................161 3.2 Surfactants .....................................................................................................161 3.2.1 Polyoxyethyleneamine ....................................................................................162 3.2.2 Surfactants Derived from Plant Fats .........................................................................162 3.2.3 Other Surfactants
    [Show full text]
  • Weed Control Guide for Ohio, Indiana and Illinois
    Pub# WS16 / Bulletin 789 / IL15 OHIO STATE UNIVERSITY EXTENSION Tables Table 1. Weed Response to “Burndown” Herbicides .............................................................................................19 Table 2. Application Intervals for Early Preplant Herbicides ............................................................................... 20 Table 3. Weed Response to Preplant/Preemergence Herbicides in Corn—Grasses ....................................30 WEED Table 4. Weed Response to Preplant/Preemergence Herbicides in Corn—Broadleaf Weeds ....................31 Table 5. Weed Response to Postemergence Herbicides in Corn—Grasses ...................................................32 Table 6. Weed Response to Postemergence Herbicides in Corn—Broadleaf Weeds ..................................33 2015 CONTROL Table 7. Grazing and Forage (Silage, Hay, etc.) Intervals for Herbicide-Treated Corn ................................. 66 OHIO, INDIANA Table 8. Rainfast Intervals, Spray Additives, and Maximum Crop Size for Postemergence Corn Herbicides .........................................................................................................................................................68 AND ILLINOIS Table 9. Herbicides Labeled for Use on Field Corn, Seed Corn, Popcorn, and Sweet Corn ..................... 69 GUIDE Table 10. Herbicide and Soil Insecticide Use Precautions ......................................................................................71 Table 11. Weed Response to Herbicides in Popcorn and Sweet Corn—Grasses
    [Show full text]