Week 5 PART 2

Total Page:16

File Type:pdf, Size:1020Kb

Week 5 PART 2 Geology 2112 – Principles and Applications of Geophysical Methods WEEK 5 Lecture Notes – Week 5 PART 2 SHAPE OF THE EARTH: GRAVITY The Geoid Reading: Fowler Chapter 5.4, 5.6.2 Objectives: Discuss the concept of the ‘Geoid’ and how we use it to describe the shape of the earth. The Reference Ellipsoid (or Oblate Spheroid): • So far we’ve seen the evolution of our understanding o f the shape of the earth from flat, to round (spherical) to the ‘oblate spheroid’ or ellipsoid • A ‘perfect’ ellipsoid can be characterized (relative to a sphere) by a ‘flattening parameter: Where f is flattening, RE is the equatorial (longest) radius, and RP is the polar (shortest) radius • Flattening of the earth spheroid is approximately 1/298 [ Note that Fowler introduces latitude corrections here, but we’ve already seen the concept with Richer’s clock, and we’ll return to the actual correction later] BUT, the earth is not a perfect ellipsoid either – think of mountains, valleys, subduction zones, even small hills – these are all departures from the perfect ellipsoid And we also still need a ‘reference surface’ or zero elevation to use as a starting point – traditionally we’ve used the mean or average sea‐level, which should be a perfect equipotential surface because it the water surface can flow and adjust to gravity Equipotential Surfaces: • We can simplify the shape of the earth down to perfect or reference ellipsoid • On the surface of that ellipsoid – or any imaginary concentric ellipsoid we choose – the force of gravity should be equal everywhere, and should be directed straight down (perpendicular to the surface) everywhere • That makes the surface of a perfect ellipsoid an ‘equipotential surface’ because gravity (gravitational potential) is the same everywhere 1 Geology 2112 – Principles and Applications of Geophysical Methods WEEK 5 • The term ‘equipotential’ refers to the potential energy associated with distance from the centre of mass – e.g. lift a book off of a table, you’ve done work against gravity and increased the gravtitational potential of the book • So an equipotential surface is one upon which gravitational potential is everywhere equal o Therefore, no work against gravity is done when moving along the surface o Gravity is directed perpendicular to the surface o The ‘vertical’ direction is parallel to gravity, perpendicular to the surface o The ‘horizontal’ direction in tangent to the curved surface • Note that for a sphere or ellipsoid, concentric smaller spheres or ellipsoids would all be equipotential surfaces, just with different values of the potential between them On the oceans (far from land, no tides, winds, etc), the sea‐level is an equipotential surface. In geodetic surveying, we assume that the ellipsoid defined by sea‐level continues beneath the land, and we describe elevations of the land with reference to that assumed surface. BUT, we still have a problem: it turns out that sea‐level is not parallel to a perfect ellipsoidal surface, although it is an equipotential surface (almost). The sea surface is also ‘lumpy’ just like the land surface, because the mass distribution within the earth is not uniform. • The Geoid is that lumpy equipotential sea surface, extended through land. It’s an equipotential surface of the earth, and it’s not a perfect ellipsoid. The GEOID: The geoid is defined spatially by its departure height (N in figure above) from the reference ellipsoid. Can be positive or negative. A mass outside the ellipsoid, or an excess of mass below the ellipsoid leads to a positive geoid height. Less mass, lower geoid and negative height. 2 Geology 2112 – Principles and Applications of Geophysical Methods WEEK 5 3 Geology 2112 – Principles and Applications of Geophysical Methods WEEK 5 Isostasy: • 1737‐1740 Pierre Bouger noticed that his plumb‐bob vertical wasn’t deflected as much as expected by the mass of some big mountains in the Andes • 1806‐1843 George Everest compared triangulated distances with those determined astronomically (comparing plumb‐bob vertical with astronomical vertical, as Bouger did) and noticed the same effect as Bouger • Vertical (local gravity or the geoid surface) was only deflected about 1/3 of what was expected by all the extra mass above the ground • G.B. Airy in 1855 and J.H. Pratt in 1859 tried to explain the observations • The basically said that yes, there was a mass excess above the surface (above sea‐level or the reference ellipsoid), but there was also a mass defecit below somewhere • This led to the idea of deep mountain roots, and requires that the lithosphere is somehow ‘floating’ on a flowing mantle (asthenosphere) • The floating means that the lithosphere is less dense than the mantle, and that if we add a bunch of mass above the ‘surface’ (by thrusting or glaciations) the whole area must sink to compensate, and so less dense material is pushed into the mantle • Alternatively, if we remove a bunch of mass from a given location (e.g. melt the glaciers), the less dense material below floats up to a new equilibrium • Parts of the lithosphere that are out of equilibrium (being forced down or pushed up) will have gravity anomalies that don’t quite match the surface expression, and a positive or negative geoid anomaly results 4 .
Recommended publications
  • Apparent Size of Celestial Objects
    NATURE [April 7, 1870 daher wie schon fri.jher die Vor!esungen Uber die Warme, so of rectifying, we assume. :J'o me the Moon at an altit11de of auch jetzt die vorliegenden Vortrage Uber d~n Sc:hall unter 1~rer 45° is about (> i!lches in diameter ; when near the horizon, she is besonderen Aufsicht iibersetzen lasse~, und die :On1ckbogen e1µer about a foot. If I look through a telescope of small ruag11ifyjng genauen Durchsicht unterzogen, dam1t auch die deutsche J3ear­ power (say IO or 12 diameters), sQ as to leave a fair margin in beitung den englischen Werken ihres Freundes Tyndall nach the field, the Moon is still 6 inches in diameter, though her Form und Inhalt moglichst entsprache.-H. :fIEL!>iHOLTZ, G. visible area has really increased a hundred:fold. WIEDEMANN." . Can we go further than to say, as has often been said, that aH Prof. Tyndall's work, his account of Helmhqltz's Theory of magnitudi; is relative, and that nothing is great or small except Dissonance included, having passed through the hands of Helm­ by comparison? · · W. R. GROVE, holtz himself, not only without protest or correction, bnt with u5, Harley Street, April 4 the foregoing expression of opinion, it does not seem lihly that any serious dimag'e has been done.] · An After Pirm~. Jl;xperim1mt SUPPOSE in the experiment of an ellipsoid or spheroid, referred Apparent Size of Celestial Qpjecti:; to in my last letter, rolling between two parallel liorizontal ABOUT fifteen years ago I was looking at Venus through a planes, we were to scratch on the rolling body the two equal 40-inch telescope, Venus then being very near the Moon and similar and opposite closed curves (the polhods so-called), traced of a crescent form, the line across the middle or widest part upon it by the successive axes of instantaneou~ solutioll ; and of the crescent being about one-tenth of the planet's diameter.
    [Show full text]
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • Radar Back-Scattering from Non-Spherical Scatterers
    REPORT OF INVESTIGATION NO. 28 STATE OF ILLINOIS WILLIAM G. STRATION, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugam A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA. ILLINOIS (Printed by authority of State of Illinois} REPORT OF INVESTIGATION NO. 28 1955 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugene A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA, ILLINOIS (Printed by authority of State of Illinois) Definitions of Terms Part I semi minor axis of spheroid semi major axis of spheroid wavelength of incident field = a measure of size of particle prolate spheroidal coordinates = eccentricity of ellipse = angular spheroidal functions = Legendse polynomials = expansion coefficients = radial spheroidal functions = spherical Bessel functions = electric field vector = magnetic field vector = back scattering cross section = geometric back scattering cross section Part II = semi minor axis of spheroid = semi major axis of spheroid = Poynting vector = measure of size of spheroid = wavelength of the radiation = back scattering
    [Show full text]
  • John Ellipsoid 5.1 John Ellipsoid
    CSE 599: Interplay between Convex Optimization and Geometry Winter 2018 Lecture 5: John Ellipsoid Lecturer: Yin Tat Lee Disclaimer: Please tell me any mistake you noticed. The algorithm at the end is unpublished. Feel free to contact me for collaboration. 5.1 John Ellipsoid In the last lecture, we discussed that any convex set is very close to anp ellipsoid in probabilistic sense. More precisely, after renormalization by covariance matrix, we have kxk2 = n ± Θ(1) with high probability. In this lecture, we will talk about how convex set is close to an ellipsoid in a strict sense. If the convex set is isotropic, it is close to a sphere as follows: Theorem 5.1.1. Let K be a convex body in Rn in isotropic position. Then, rn + 1 B ⊆ K ⊆ pn(n + 1)B : n n n Roughly speaking, this says that any convex set can be approximated by an ellipsoid by a n factor. This result has a lot of applications. Although the bound is tight, making a body isotropic is pretty time- consuming. In fact, making a body isotropic is the current bottleneck for obtaining faster algorithm for sampling in convex sets. Currently, it can only be done in O∗(n4) membership oracle plus O∗(n5) total time. Problem 5.1.2. Find a faster algorithm to approximate the covariance matrix of a convex set. In this lecture, we consider another popular position of a convex set called John position and its correspond- ing ellipsoid is called John ellipsoid. Definition 5.1.3. Given a convex set K.
    [Show full text]
  • Introduction to Astronomy from Darkness to Blazing Glory
    Introduction to Astronomy From Darkness to Blazing Glory Published by JAS Educational Publications Copyright Pending 2010 JAS Educational Publications All rights reserved. Including the right of reproduction in whole or in part in any form. Second Edition Author: Jeffrey Wright Scott Photographs and Diagrams: Credit NASA, Jet Propulsion Laboratory, USGS, NOAA, Aames Research Center JAS Educational Publications 2601 Oakdale Road, H2 P.O. Box 197 Modesto California 95355 1-888-586-6252 Website: http://.Introastro.com Printing by Minuteman Press, Berkley, California ISBN 978-0-9827200-0-4 1 Introduction to Astronomy From Darkness to Blazing Glory The moon Titan is in the forefront with the moon Tethys behind it. These are two of many of Saturn’s moons Credit: Cassini Imaging Team, ISS, JPL, ESA, NASA 2 Introduction to Astronomy Contents in Brief Chapter 1: Astronomy Basics: Pages 1 – 6 Workbook Pages 1 - 2 Chapter 2: Time: Pages 7 - 10 Workbook Pages 3 - 4 Chapter 3: Solar System Overview: Pages 11 - 14 Workbook Pages 5 - 8 Chapter 4: Our Sun: Pages 15 - 20 Workbook Pages 9 - 16 Chapter 5: The Terrestrial Planets: Page 21 - 39 Workbook Pages 17 - 36 Mercury: Pages 22 - 23 Venus: Pages 24 - 25 Earth: Pages 25 - 34 Mars: Pages 34 - 39 Chapter 6: Outer, Dwarf and Exoplanets Pages: 41-54 Workbook Pages 37 - 48 Jupiter: Pages 41 - 42 Saturn: Pages 42 - 44 Uranus: Pages 44 - 45 Neptune: Pages 45 - 46 Dwarf Planets, Plutoids and Exoplanets: Pages 47 -54 3 Chapter 7: The Moons: Pages: 55 - 66 Workbook Pages 49 - 56 Chapter 8: Rocks and Ice:
    [Show full text]
  • Geodesy Methods Over Time
    Geodesy methods over time GISC3325 - Lecture 4 Astronomic Latitude/Longitude • Given knowledge of the positions of an astronomic body e.g. Sun or Polaris and our time we can determine our location in terms of astronomic latitude and longitude. US Meridian Triangulation This map shows the first project undertaken by the founding Superintendent of the Survey of the Coast Ferdinand Hassler. Triangulation • Method of indirect measurement. • Angles measured at all nodes. • Scaled provided by one or more precisely measured base lines. • First attributed to Gemma Frisius in the 16th century in the Netherlands. Early surveying instruments Left is a Quadrant for angle measurements, below is how baseline lengths were measured. A non-spherical Earth • Willebrod Snell van Royen (Snellius) did the first triangulation project for the purpose of determining the radius of the earth from measurement of a meridian arc. • Snellius was also credited with the law of refraction and incidence in optics. • He also devised the solution of the resection problem. At point P observations are made to known points A, B and C. We solve for P. Jean Picard’s Meridian Arc • Measured meridian arc through Paris between Malvoisine and Amiens using triangulation network. • First to use a telescope with cross hairs as part of the quadrant. • Value obtained used by Newton to verify his law of gravitation. Ellipsoid Earth Model • On an expedition J.D. Cassini discovered that a one-second pendulum regulated at Paris needed to be shortened to regain a one-second oscillation. • Pendulum measurements are effected by gravity! Newton • Newton used measurements of Picard and Halley and the laws of gravitation to postulate a rotational ellipsoid as the equilibrium figure for a homogeneous, fluid, rotating Earth.
    [Show full text]
  • Introduction to Aberrations OPTI 518 Lecture 13
    Introduction to aberrations OPTI 518 Lecture 13 Prof. Jose Sasian OPTI 518 Topics • Aspheric surfaces • Stop shifting • Field curve concept Prof. Jose Sasian OPTI 518 Aspheric Surfaces • Meaning not spherical • Conic surfaces: Sphere, prolate ellipsoid, hyperboloid, paraboloid, oblate ellipsoid or spheroid • Cartesian Ovals • Polynomial surfaces • Infinite possibilities for an aspheric surface • Ray tracing for quadric surfaces uses closed formulas; for other surfaces iterative algorithms are used Prof. Jose Sasian OPTI 518 Aspheric surfaces The concept of the sag of a surface 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S Sxy222 K 2 K is the conic constant K=0, sphere K=-1, parabola C is 1/r where r is the radius of curvature; K is the K<-1, hyperola conic constant (the eccentricity squared); -1<K<0, prolate ellipsoid A’s are aspheric coefficients K>0, oblate ellipsoid Prof. Jose Sasian OPTI 518 Conic surfaces focal properties • Focal points for Ellipsoid case mirrors Hyperboloid case Oblate ellipsoid • Focal points of lenses K n2 Hecht-Zajac Optics Prof. Jose Sasian OPTI 518 Refraction at a spherical surface Aspheric surface description 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S 1122 2222 22 y x Aicrasphe y 1 x 4 K y Zx 28rr Prof. Jose Sasian OTI 518P Cartesian Ovals ln l'n' Cte . Prof. Jose Sasian OPTI 518 Aspheric cap Aspheric surface The aspheric surface can be thought of as comprising a base sphere and an aspheric cap Cap Spherical base surface Prof.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Models for Earth and Maps
    Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]
  • Ductile Deformation - Concepts of Finite Strain
    327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body.
    [Show full text]
  • Lecture 19 1 the Ellipsoid Method for LP
    ORIE 6300 Mathematical Programming I October 31, 2014 Lecture 19 Lecturer: David P. Williamson Scribe: Nozomi Hitomi 1 The Ellipsoid Method for LP Recall we discussed the ellipsoid method last time: Given some bounded polyhedron P = fx 2 n R : Cx ≤ Dg, either finds x 2 P or states that P = ;; that is, P is infeasible. How can we use this feasibility detector to solve an optimization problem such as min cT x : Ax ≤ b; x ≥ 0? We claim that we can do this by making three calls to the ellipsoid method. 1.1 Idea of Ellipsoid method Let's now give the basic idea of how the ellipsoid method will work. • Start with a sphere large enough to contain all feasible points. Call the sphere E0, center a0. • If ak 2 P , done (i.e. obeys constraints). Return ak. • If not, ak 2= P , since Cjak > dj for some j. • Divide ellipsoid Ek in half through center ak with a hyperplane parallel to the constraint Cjx = dj. • Compute new ellipsoid Ek+1, center ak+1, containing the "good" half of Ek that contains P . Repeat. 1.2 Showing progress using the Ellipsoid method Recall: L ≡ number of bits to represent C; d. For any vertex x; xj needs at most nU + n log(n) bits to represent n ≡ numbers of vars, U ≡ largest entry in C; d. nU+n log(n) • =) jxjj ≤ 2 • =) sphere of radius 2L contains all vertices and has volume 2O(nL). Note, our initial ellipsoid is a sphere centered at origin and we know for any vertex x; jxjj ≤ 2nU+n log n, so sphere of radius 2L, volume 2O(nL), will contain the feasible region.
    [Show full text]