John Ellipsoid 5.1 John Ellipsoid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 11. Three Dimensional Analytic Geometry and Vectors
Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1. -
Radar Back-Scattering from Non-Spherical Scatterers
REPORT OF INVESTIGATION NO. 28 STATE OF ILLINOIS WILLIAM G. STRATION, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugam A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA. ILLINOIS (Printed by authority of State of Illinois} REPORT OF INVESTIGATION NO. 28 1955 STATE OF ILLINOIS WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director RADAR BACK-SCATTERING FROM NON-SPHERICAL SCATTERERS PART 1 CROSS-SECTIONS OF CONDUCTING PROLATES AND SPHEROIDAL FUNCTIONS PART 11 CROSS-SECTIONS FROM NON-SPHERICAL RAINDROPS BY Prem N. Mathur and Eugene A. Mueller STATE WATER SURVEY DIVISION A. M. BUSWELL, Chief URBANA, ILLINOIS (Printed by authority of State of Illinois) Definitions of Terms Part I semi minor axis of spheroid semi major axis of spheroid wavelength of incident field = a measure of size of particle prolate spheroidal coordinates = eccentricity of ellipse = angular spheroidal functions = Legendse polynomials = expansion coefficients = radial spheroidal functions = spherical Bessel functions = electric field vector = magnetic field vector = back scattering cross section = geometric back scattering cross section Part II = semi minor axis of spheroid = semi major axis of spheroid = Poynting vector = measure of size of spheroid = wavelength of the radiation = back scattering -
John Ellipsoids
Proceedings of the Edinburgh Mathematical Society (2007) 50, 737–753 c DOI:10.1017/S0013091506000332 Printed in the United Kingdom DUAL Lp JOHN ELLIPSOIDS WUYANG YU∗, GANGSONG LENG AND DONGHUA WU Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China (yu [email protected]; gleng@staff.shu.edu.cn; dhwu@staff.shu.edu.cn) (Received 8 March 2006) Abstract In this paper, the dual Lp John ellipsoids, which include the classical L¨owner ellipsoid and the Legendre ellipsoid, are studied. The dual Lp versions of John’s inclusion and Ball’s volume-ratio inequality are shown. This insight allows for a unified view of some basic results in convex geometry and reveals further the amazing duality between Brunn–Minkowski theory and dual Brunn–Minkowski theory. Keywords: L¨owner ellipsoid; Legendre ellipsoid; Lp John ellipsoid; dual Lp John ellipsoids 2000 Mathematics subject classification: Primary 52A39; 52A40 1. Introduction The excellent paper by Lutwak et al.[28] shows that the classical John ellipsoid JK, the Petty ellipsoid [10,30] and a recently discovered ‘dual’ of the Legendre ellipsoid [24] are all special cases (p = ∞, 1, 2) of a family of Lp ellipsoids, EpK, which can be associated with a fixed convex body K. This insight allows for a unified view of, alternate approaches to and extensions of some basic results in convex geometry. Motivated by their research, we have studied the dual Lp John ellipsoids and show that the classical L¨owner ellipsoid and the Legendre ellipsoid are special cases (p = ∞, 2) of this family of ellipsoids. Bastero and Romance [3] had shown this in a different way. -
Introduction to Aberrations OPTI 518 Lecture 13
Introduction to aberrations OPTI 518 Lecture 13 Prof. Jose Sasian OPTI 518 Topics • Aspheric surfaces • Stop shifting • Field curve concept Prof. Jose Sasian OPTI 518 Aspheric Surfaces • Meaning not spherical • Conic surfaces: Sphere, prolate ellipsoid, hyperboloid, paraboloid, oblate ellipsoid or spheroid • Cartesian Ovals • Polynomial surfaces • Infinite possibilities for an aspheric surface • Ray tracing for quadric surfaces uses closed formulas; for other surfaces iterative algorithms are used Prof. Jose Sasian OPTI 518 Aspheric surfaces The concept of the sag of a surface 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S Sxy222 K 2 K is the conic constant K=0, sphere K=-1, parabola C is 1/r where r is the radius of curvature; K is the K<-1, hyperola conic constant (the eccentricity squared); -1<K<0, prolate ellipsoid A’s are aspheric coefficients K>0, oblate ellipsoid Prof. Jose Sasian OPTI 518 Conic surfaces focal properties • Focal points for Ellipsoid case mirrors Hyperboloid case Oblate ellipsoid • Focal points of lenses K n2 Hecht-Zajac Optics Prof. Jose Sasian OPTI 518 Refraction at a spherical surface Aspheric surface description 2 cS 4 6 8 10 ZS ASASASAS4 6 8 10 ... 1 1 K ( c2 1 ) 2 S 1122 2222 22 y x Aicrasphe y 1 x 4 K y Zx 28rr Prof. Jose Sasian OTI 518P Cartesian Ovals ln l'n' Cte . Prof. Jose Sasian OPTI 518 Aspheric cap Aspheric surface The aspheric surface can be thought of as comprising a base sphere and an aspheric cap Cap Spherical base surface Prof. -
Orlicz–John Ellipsoids
Advances in Mathematics 265 (2014) 132–168 Contents lists available at ScienceDirect Advances in Mathematics www.elsevier.com/locate/aim ✩ Orlicz–John ellipsoids Du Zou, Ge Xiong ∗ Department of Mathematics, Shanghai University, Shanghai, 200444, PR China a r t i c l e i n f o a b s t r a c t Article history: The Orlicz–John ellipsoids, which are in the framework of the Received 3 July 2013 booming Orlicz Brunn–Minkowski theory, are introduced for Accepted 13 July 2014 the first time. It turns out that they are generalizations of the Available online 15 August 2014 classical John ellipsoid and the evolved Lp John ellipsoids. Communicated by Erwin Lutwak The analog of Ball’s volume-ratio inequality is established for MSC: the new Orlicz–John ellipsoids. The connection between the 52A40 isotropy of measures and the characterization of Orlicz–John ellipsoids is demonstrated. Keywords: © 2014 Elsevier Inc. All rights reserved. Orlicz Brunn–Minkowski theory Lp John ellipsoids Isotropy 1. Introduction A fundamental tool in convex geometry and Banach space geometry is the well-known John ellipsoid, which was originally introduced by Fritz John [26]. For each convex body (compact convex subset with nonempty interior) K in the Euclidean n-space Rn, its John ellipsoid JK is the unique ellipsoid of maximal volume contained in K. For more information about the John ellipsoid, one can refer to [3,19,21,27] and the references within. ✩ Research of the authors was supported by NSFC No. 11001163 and Innovation Program of Shanghai Municipal Education Commission No. 11YZ11. * Corresponding author. -
Obstacle Collision Detection Using Best Ellipsoid Fit
Journal of Intelligent and Robotic Systems 18: 105–126, 1997. 105 c 1997 Kluwer Academic Publishers. Printed in the Netherlands. Obstacle Collision Detection Using Best Ellipsoid Fit ELON RIMON Dept. of Mechanical Engineering Technion, Israel Institute of Technology STEPHEN P. BOYD Dept. of Electrical Engineering Stanford University (Received: 11 September 1995; in final form: 27 August 1996) Abstract. This paper describes a method for estimating the distance between a robot and its surrounding environment using best ellipsoid fit. The method consists of the following two stages. First we approximate the detailed geometry of the robot and its environment by minimum-volume enclosing ellipsoids. The computation of these ellipsoids is a convex optimization problem, for which efficient algorithms are known. Then we compute a conservative distance estimate using an important but little known formula for the distance of a point from and n-dimensional ellipse. The computation of the distance estimate (and its gradient vector) is shown to be an eigenvalue problem, whose solution can be rapidly found using standard techniques. We also present an incremental version of the distance computation, which takes place along a continuous trajectory taken by the robot. We have implemented the proposed approach and present some preliminary results. Key words: ellipsoid fit, geometric approximation, collision detection. 1. Introduction Knowledge of the distance between the robot and its environment is central for planning collision-free paths. For example, Khatib [19], and Rimon and Koditschek [31], use distance functions as an artificial potential function, whose gradient vector field indicates a direction of repulsion from the obstacles. They combine repulsive distance functions with an attractive potential at the goal, to generate a navigation vector field suitable for a low-level reactive controller. -
Geodetic Position Computations
GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem. -
Models for Earth and Maps
Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis. -
World Geodetic System 1984
World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z). -
Ductile Deformation - Concepts of Finite Strain
327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body. -
A Generalization of the Löwner-John's Ellipsoid Theorem
A generalization of the Löwner-John’s ellipsoid theorem Jean-Bernard Lasserre To cite this version: Jean-Bernard Lasserre. A generalization of the Löwner-John’s ellipsoid theorem. 2013. hal- 00785158v2 HAL Id: hal-00785158 https://hal.archives-ouvertes.fr/hal-00785158v2 Submitted on 14 Apr 2014 (v2), last revised 22 Dec 2014 (v5) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A GENERALIZATION OF LOWNER-JOHN’S¨ ELLIPSOID THEOREM JEAN B. LASSERRE Abstract. We address the following generalization P of the L¨owner- John ellipsoid problem. Given a (non necessarily convex) compact set K ⊂ Rn and an even integer d ∈ N, find an homogeneous polynomial g of degree d such that K ⊂ G := {x : g(x) ≤ 1} and G has minimum volume among all such sets. We show that P is a convex optimization problem even if neither K nor G are convex! We next show that P has n+d−1 a unique optimal solution and a characterization with at most d contacts points in K∩G is also provided. This is the analogue for d > 2 of the L¨owner-John’s theorem in the quadratic case d = 2, but impor- tantly, we neither require the set K nor the sublevel set G to be convex. -
Topics in Statistics and Convex Geometry: Rounding, Sampling, and Interpolation
©Copyright 2018 Adam M. Gustafson Topics in Statistics and Convex Geometry: Rounding, Sampling, and Interpolation Adam M. Gustafson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2018 Reading Committee: Hariharan Narayanan, Chair Michael D. Perlman Sébastien Bubeck Program Authorized to Offer Degree: Department of Statistics University of Washington Abstract Topics in Statistics and Convex Geometry: Rounding, Sampling, and Interpolation Adam M. Gustafson Chair of the Supervisory Committee: Title of Chair Hariharan Narayanan Department of Statistics We consider a few aspects of the interplay between convex geometry and statistics. We consider three problems of interest: how to bring a convex body specified by a self-concordant barrier into a suitably “rounded” position using an affine-invariant random walk; how to design a rapidly-mixing affine-invariant random walk with maximal volume ellipsoids; and how to perform interpolation in multiple dimensions given noisy observations of the original function on a finite set. We begin with an overview of some background information on convex bodies which recur in this dissertation, discussing polytopes, the Dikin ellipsoid, and John’s ellipsoid in particular. We also discuss cutting plane methods and Vaidya’s algorithm, which we employ in subsequent analysis. We then review Markov chains on general state spaces to motivate designing rapidly mixing geometric random walks, and the means by which the mixing time may be analyzed. Using these results regarding convex bodies and general state space Markov chains, along with recently developed concentration inequalities on general state space Markov chains, we employ an affine-invariant random walk using Dikin ellipsoids to provably bring aconvex body specified by a self-concordant barrier into an approximately “rounded” position.