Riken Research Highlights Vol

Total Page:16

File Type:pdf, Size:1020Kb

Riken Research Highlights Vol OCTOBER 2007 Volume 2 Number 10 Qubits switch on and off HIGHLIGHT OF THE MONTH Tuning into quantum computers RESEARCH HIGHLIGHTS Superconducting cement Molecules switching position Laser light switches molecular bonds Halting the infl ammation overload A better way to make a muscle? Observing single cells on the move New scaff old supporting our molecular understanding of psychiatric disorders Wrapping up a cell biology riddle Enzymes lead the way Surviving separation FRONTLINE Towards the creation of Astro Boy’s brain ROUNDUP RIKEN leads project to build world’s fastest supercomputer HISTORY OF RIKEN Opening to the outside world www.rikenresearch.riken.jp © 2007 RIKEN cover1.indd 3 07.10.2 5:00:33 PM HIGHLIGHT OF THE MONTH VOL. 2 | NUMBER 10 | OCTOBER 2007 Tuning into quantum computers Improved device design enables the tunable interaction between the elements of a quantum computer a qubit 1 qubit 3 qubit 2 b Science For fast and efficient operation of quantum computers, control of the interaction between their components, the quantum bits (qubits), is necessary. Now, researchers from RIKEN’s Frontier Research System, Wako, the Japan Science and Technology Institute, NEC Corporation and the US Massachusetts Institute of Technology have developed an architecture that 132 allows tunable control over the qubits of a superconducting quantum computer. 1μm Their study represents a large step towards the realization of large-scale quantum computers with controllable Figure 1: Tunable superconducting qubits. a) Schematic depiction of the system where the qubits are formed by superconducting loops interrupted by tunnel junctions (red stripes). Qubits 1 and 2 are controlled by microwave qubit interactions. pulses (blue arrows). The tunable interaction mediated via a passive coupler (qubit 3) is switched on only when the coupler is irradiated with microwaves at a particular frequency (green arrow). Tunable qubits play an important role Quantum computers are different in applications such as the simulation of quantum-mechanical systems. b) Photograph of the fabricated device. Compared with conventional computers, quantum computers hold great promise as a much faster alternative for solving this, the atoms are suspended in vacuum magnetic fields within these rings then certain mathematical problems, such as and lined up by complex electromagnetic are able to generate electrical currents the simulation of quantum-mechanical fields. Although larger systems of qubits across these Josephson junctions. systems. Another example is the composed of atoms have been successfully When exposed to the right magnetic factorization of integer numbers into demonstrated, such schemes remain fields, a stable situation is reached that the products of prime numbers—an relatively cumbersome. On the other balances the current flowing clockwise operation that would require a huge effort hand, solid-state based systems offer and anti-clockwise through the rings. by conventional computers and would desirable ease of fabrication—echoing This renders the rings insensitive to take considerably longer to complete. the success of conventional silicon-based small variations in the magnetic field The interaction between the qubits computing—and are therefore intensively and optimizes their use as qubits. Of gives quantum computers their unique pursued worldwide. importance to the performance of attributes, and it would take a significantly A representative type of qubit for solid- quantum-computing tasks is the quantum- larger number of bits from conventional state based quantum computers is formed mechanical coupling of neighboring rings. computers to even simulate the operation by loops of superconducting rings made of a quantum computer. from aluminum (Fig. 1). At certain points Controlling coupling between qubits There are a number of possible designs the rings are made insulating through While the interaction between the qubits for quantum computers. One example uses oxidation of the aluminum, which creates of a quantum computer is important, good atoms cooled to very low temperatures. For so-called Josephson junctions. Tiny control over this coupling is essential. 1 | RESEARCH www.rikenresearch.riken.jp © 2007 RIKEN VOL. 2 | NUMBER 10 | OCTOBER 2007 HIGHLIGHT OF THE MONTH Science Large-scale quantum computation These experiments are an important quantum measurement demonstration of the principle, yet further improvements are needed. For example, longer lifetimes of the quantum states would allow for better and more complex quantum operations. These longer lifetimes can be achieved by improving the stability Signal (arb. unit) Signal (arb. of the quantum states towards, for example, fluctuations in the external magnetic field. This example of microelectronics technology by the team shows that large- classical measurement scale integration requires precise control of each individual element. Indeed, 0 2π 4π 6π Nakamura points out that the team “hopes to demonstrate that we can precisely control and Operation angle characterize the quantum state of a large-scale Figure 2: Example of the detection of a computer hacker. The modifications made by the hacker to the state of qubits artificial quantum system.” Eventually, such cannot be detected classically but lead to an altered output in quantum circuits. improvements could lead to the first large- scale quantum computer. “Tunable coupling, in particular coupling the large energy difference. Therefore, the 1. Niskanen, A. O., Harrabi, K., Yoshihara, F., which can be switched off completely, is ‘coupler qubit’ merely mediates the coupling Nakamura, Y., Lloyd, S. & Tsai, J. S. Quantum highly desirable for implementing large- between the ‘active’ qubits. The microwave coherent tunable coupling of superconducting scale quantum computing,” comments radiation is fed to the qubits via an on-chip qubits. Science 316, 723–726 (2007). Yasunobu Nakamura from the RIKEN transmission line, which is readily scalable to About the researcher team. Turning off the coupling prevents a higher number of qubits. undesirable interaction between the qubits. Yasunobu Nakamura was born in Osaka, Otherwise, as Nakamura points out, “the Detecting hackers Japan, in 1968. He graduated from the qubits would interact with each other all the To experimentally apply the new design Faculty of Engineering, University of Tokyo, time and even a simple decomposition of concept, the researchers implemented a in 1990, and obtained an MSc in 1992 from the signal would be difficult.” Cumbersome simple quantum computing protocol to the Superconductivity Research Course of the same university. Immediately after that, architectures would be required to determine whether the system could detect he joined NEC corporation, in Tsukuba, Japan, compensate for such undesired side effects. a computer hacker attempting to modify where he started his career in mesoscopic Therefore, the team’s demonstration of the system. With a classical computer, such physics. Since the late 1990s he has been tunable coupling between the qubits of such infiltrations are impossible to detect. working on superconducting devices for a superconducting quantum computer, as If the hacker altered the quantum state of quantum information processing. Nakamura reported in the journal Science1, represents the coupled qubits by using the same tunable also spent one year as a guest researcher an important step towards the realization of interaction described above, it would lead to at TU Delft in Delft, the Netherlands, from complex quantum computers. a periodic modulation of the quantum state 2001 to 2002. Now he is a research fellow at In this approach, tunable coupling is based with a periodicity of 4π inherent to such the Nano Electronics Research Laboratories on two qubits that are linked via a third and quantum-mechanical manipulation. However, of NEC Corporation as well as a researcher at passive qubit that mediates the interaction classical measurements cannot detect the the RIKEN Frontier Research System. between the active qubits (Fig. 1a). subtle change and results in observation of a Importantly, the internal energy scale of 2π periodicity. each of the three qubits is different. While The test measurements performed by the two active qubits have only marginally the researchers are shown in Figure 2. In an different energy spectra, the mediating experiment simulating a classical computer, passive qubit has a larger energy scale. the 2π periodicity is seen (blue curve) and Microwave radiation at selected energies they could not distinguish whether the hacker then provides deliberate and controllable had modified the state or not. However, the coupling between the energy states of the quantum measurement (red curve) clearly active qubits, whereas the energetic states of reflects the doubled 4π period, which clearly the passive qubit remain unaffected due to indicates the presence of the hacker. www.rikenresearch.riken.jp RESEARCH | 2 © 2007 RIKEN RESEARCH HIGHLIGHTS VOL. 2 | NUMBER 10 | OCTOBER 2007 Superconducting cement Researchers find superconductivity in a material typically used as cement The metal oxide known as 12CaO∙7Al2O3 (C12A7) is often used to make aluminous Letters Nano cements. Researchers from RIKEN’s Discovery Research Institute in Wako Al and the Tokyo Institute of Technology have now found superconductivity in the metallic version of C12A7. The crystal structure of C12A7 consists of a number of cages formed by calcium, aluminum and oxygen atoms (Fig. 1). O Typically,
Recommended publications
  • CANON INC. (Exact Name of the Registrant As Specified in Its Charter)
    UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM SD SPECIALIZED DISCLOSURE REPORT CANON INC. (Exact name of the registrant as specified in its charter) JAPAN 001-15122 (State or other jurisdiction of (Commission (IRS Employer incorporation or organization) File Number) Identification No.) 30-2, Shimomaruko 3-chome , Ohta-ku, Tokyo 146-8501, Japan (Address of principle executive offices) (Zip code) Eiji Shimizu, +81-3-3758-2111, 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan (Name and telephone number, including area code, of the person to contact in connection with this report.) Check the appropriate box to indicate the rule pursuant to which this form is being filed and provide the period to which the information in this form applies: Rule 13p-1 under the Securities Exchange Act (17 CFR 240.13p-1) for the reporting period from January 1, 2017 to December 31, 2017. Section 1 - Conflict Minerals Disclosure Established in 1937, Canon Inc. is a Japanese corporation with its headquarters in Tokyo, Japan. Canon Inc. is one of the world’s leading manufacturers of office multifunction devices (“MFDs”), plain paper copying machines, laser printers, inkjet printers, cameras, diagnostic equipment and lithography equipment. Canon Inc. earns revenues primarily from the manufacture and sale of these products domestically and internationally. Canon Inc. and its consolidated companies fully have been aware of conflict minerals issue and have been working together with business partners and industry entities to address the issue of conflict minerals. In response to Rule 13p-1, Canon Inc. conducted Reasonable Country of Origin Inquiry and due diligence based on the “OECD Due Diligence Guidance for Responsible Supply Chains of Minerals from Conflict-Affected and High-Risk Areas,” for its various products.
    [Show full text]
  • J-PARC MLF MUSE Muon Beams
    For Project X muSR forum at Fermilab Oct 17th-19th,2012 J-PARC MLF MUSE muon beams J-PARC MLF Muon Section/KEK IMSS Yasuhiro Miyake N D-Line In operation N U-Line Commissioning started! N S-Line Partially constructed! N H-Line Partially constructed! Proton Beam Transport from 3GeV RCS to MLF� On the way, towards neutron source� Graphite Muon Target! G-2, DeeMe Mu-Hf Super Highexperiments Resolution Powder etc. H-LineDiffractometer (SHRPD) – KEK are planned 100 m LineBL8� NOBORU - IBARAKI Biological S-Line JAEA BL4� Crystal Diffractometer Nuclear Data - Hokkaido Univ. High Resolution Chopper 4d Space Access Neutron Spectrometer Spectrometer(4SEASONS) Muon Target Grant - in - Aid for Specially Promoted Research, MEXT, Neutron Target U-Line HI - SANS Versatile High Intensity (JAEA) Total Diffractometer(KEK /NEDO) D-Line&9&$3/-&3&1 (KEK) Cold Neutron Double Chopper Spectrometer IBARAKI Materials Design (CNDCS) - JAEA Diffractometer 30 m Muon Engineering Materials and Life Science Facility (MLF) for Muon & NeutronDiffractometer - JAEA Edge-cooling Rotating Graphite Graphite Fixed Target Target From January 2014! At Present! Will be changed in Summer 2013! Inves�gated during shut-­‐down! Fixed Target Rota�ng Target S-Line H-Line Surface µ+(30 MeV/c) Surface µ+ For HF, g-2 exp. For material sciences e- up to 120 MeV/c For DeeMe µ- up to 120 MeV/c For µCF Muon Target U-Line D-Line Ultra Slow µ+(0.05-30keV) Surface µ+(30 MeV/c) For multi-layered thin Decay µ+/µ-(up to 120 MeV/c) foils, nano-materials, catalysis, etc Users’ RUN, in Operation MUSE D-Line, since Sep., 2008 [The world-most intense pulsed muon beam achieved at J-PARC MUSE] ZZZAt the J-PARC Muon Facility (MUSE), the intensity of the pulsed surface muon beam was recorded to be 1.8 x 106/s on November 2009, which was produced by a primary proton beam at a corresponding power of 120 kW delivered from the Rapid Cycle Synchrotron (RCS).
    [Show full text]
  • FROM KEK-PS to J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan
    FROM KEK-PS TO J-PARC Yoshishige Yamazaki, J-PARC, KEK & JAEA, Japan Abstract target are located in series. Every 3 s or so, depending The user experiments at J-PARC have just started. upon the usage of the main ring (MR), the beam is JPARC, which stands for Japan Proton Accelerator extracted from the RCS to be injected to the MR. Here, it Research Complex, comprises a 400-MeV linac (at is ramped up to 30 GeV at present and slowly extracted to present: 180 MeV, being upgraded), a 3-GeV rapid- Hadron Experimental Hall, where the kaon-production cycling synchrotron (RCS), and a 50-GeV main ring target is located. The experiments using the kaons are (MR) synchrotron, which is now in operation at 30 GeV. conducted there. Sometimes, it is fast extracted to The RCS will provide the muon-production target and the produce the neutrinos, which are sent to the Super spallation-neutron-production target with a beam power Kamiokande detector, which is located 295-km west of of 1 MW (at present: 120 kW) at a repetition rate of 25 the J-PARC site. In the future, we are conceiving the Hz. The muons and neutrons thus generated will be used possibility of constructing a test facility for an in materials science, life science, and others, including accelerator-driven nuclear waste transmutation system, industrial applications. The beams that are fast extracted which was shifted to Phase II. We are trying every effort from the MR generate neutrinos to be sent to the Super to get funding for this facility.
    [Show full text]
  • EARLY SCHIZOPHRENIA DETECTION Biomarker Found in Hair
    SPRING 2020 SHOWCASING THE BEST OF JAPAN’S PREMIER RESEARCH ORGANIZATION • www.riken.jp/en EARLY SCHIZOPHRENIA DETECTION Biomarker found in hair WHAT'S THE MATTER? LIVING UNTIL 110 READING THE MIND OF AI Possible link between Abundance of immune Cancer prognosis two cosmic mysteries cell linked to longevity method revealed ▲ Web of dark matter A supercomputer simulation showing the distribution of dark matter in the local universe. RIKEN astrophysicists have performed the first laboratory experiments to see whether the interaction between dark matter and antimatter differs from that between dark matter and normal matter. If such a difference exists, it could explain two cosmological mysteries: why there is so little antimatter in the Universe and what is the true nature of dark matter (see page 18). ADVISORY BOARD RIKEN, Japan’s flagship publication is a selection For further information on the BIOLOGY ARTIFICIAL INTELLIGENCE research institute, conducts of the articles published research in this publication or • Kuniya Abe (BRC) • Hiroshi Nakagawa (AIP) basic and applied research in by RIKEN at: https://www. to arrange an interview with a • Makoto Hayashi (CSRS) • Satoshi Sekine (AIP) a wide range of fields riken.jp/en/news_pubs/ researcher, please contact: • Shigeo Hayashi (BDR) including physics, chemistry, research_news/ RIKEN International • Joshua Johansen (CBS) PHYSICS medical science, biology Please visit the website for Affairs Division • Atsuo Ogura (BRC) • Akira Furusaki (CEMS) and engineering. recent updates and related 2-1, Hirosawa, Wako, • Yasushi Okada (BDR) • Hiroaki Minamide (RAP) articles. Articles showcase Saitama, 351-0198, Japan • Hitoshi Okamoto (CBS) • Yasuo Nabekawa (RAP) Initially established RIKEN’s groundbreaking Tel: +81 48 462 1225 • Kensaku Sakamoto (BDR) • Shigehiro Nagataki (CPR) as a private research results and are written for a Fax: +81 48 463 3687 • Kazuhiro Sakurada (MIH) • Masaki Oura (RSC) foundation in Tokyo in 1917, non-specialist audience.
    [Show full text]
  • Riken Research Volume % Number &
    APRIL !"#$ RIKEN RESEARCH VOLUME % NUMBER & Melting point 900 MHz NMR facility in Yokohama © 2013 RIKEN TABLE OF CONTENTS Table of contents HIGHLIGHT OF THE MONTH 4 A vertebrate family reunion RESEARCH HIGHLIGHTS 6 Melting back and forth 7 Silicon’s double magic # 8 Watching bioactive molecules at work 9 Cancer drugs taking shape 10 Stopping the rot 11 Understanding metabolism through computer predictions 12 Cellular networks up close 13 Stem cell therapy for Parkinson’s disease $ FRONTLINE 14 Generating cancer blueprints for future therapies RIKEN PEOPLE 18 Masayo Takahashi, Laboratory for Retinal Regeneration !# !" RIKEN RESEARCH RIKEN, Japan’s flagship research institute, makers interested in science and aims to raise conducts basic and applied experimental global awareness of RIKEN and its research. research in a wide range of science and Sendai technology fields including physics, For further information on the research chemistry, medical science, biology and presented in this publication or to arrange an Wako engineering. Initially established as a private interview with a researcher, please contact: Nagoya research foundation in Tokyo in !"!#, RIKEN Tsukuba became an independent administrative RIKEN Global Relations Office Tokyo Yokohama institution in $%%&. $'!, Hirosawa, Wako, Saitama, &(!'%!"), Japan Osaka TEL: +)! *) *+$ !$$( Kobe RIKEN RESEARCH is a website and print FAX: +)! *) *+& &+)# Harima publication intended to highlight the best E'Mail: [email protected] research being published by RIKEN. It is written URL: www.riken
    [Show full text]
  • Table of Contents
    AMMRA Annual Report 2012 Table of Contents AMMRA, the Past and Future ............................................................... 1 Welcome Address ................................................................................ 4 AMMRA Members ............................................................................... 6 AMMRA Charter .................................................................................. 7 AMMRA Organizations ........................................................................11 Briefing from Member Institutions ......................................................13 Biological Resource Centre, A-STAR, Singapore ...................................15 Center for Animal Resources and Development, Kumamoto ...............17 Laboratory Animal Resource Center, KRIBB, Ochang ...........................23 National Applied Research Laboratories, Taipei ..................................29 National Center for Mutant Mice of China, Nanjing ............................35 RIKEN BioResource Center (BRC), Tsukuba ..........................................43 AMMRA Annual meetings… ............................................................. ..51 Contact List .........................................................................................53 AMMRA, the Past and Future President – Dr. Xiang Gao AMMRA services as a strong bondage for us all. Personally, I wish to express my appreciation to Dr. Ken-ichi Yamamura for his vision and tremendous efforts over last 6 years. Of course I am also in debt to all members
    [Show full text]
  • Integrative Medical Sciences Stratified Medicine for a Healthy Long-Lived Society
    RIKEN Center for Integrative Medical Sciences Stratified medicine for a healthy long-lived society. Creation of a research platform for new biomedical science. Japan is facing urgent health issues, such as lifestyle-related diseases, various cancers and brain-function disorders, in an increasingly aging society. It has become apparent that the human immune system not only relates to autoimmune diseases, infectious diseases and allergies, but also to many other age-related disorders. It is now thought that disease onset is caused by highly complex combinations of environmental stresses and body reactions, in addition to genomic variations, in each individual. At the RIKEN Center for Integrative Medical Sciences (IMS), we aim to clarify the pathogenic mechanisms underlying human diseases and to translate this knowledge into novel therapies for the benefit of society. IMS will tackle various research questions Director to expound the functions of the human genome and immune system. IMS research is Kazuhiko Yamamoto based on the concept of disease as a dynamic body system interacting with environmental stresses. We will create a research platform to clarify the processes that maintain or disrupt body homeostasis and then transfer that knowledge into the creation of new therapies and medicines. In particular, IMS will strengthen its genome and immunology research platforms through new inputs from functional genomics research, with special emphasis on gene expression networks such as the FANTOM project. Based on this new research platform, IMS will integrate the knowledge of both human genome function and immune system, and lead cutting edge science to solve the problems of various diseases. IMS will promote comprehensive multi-layered analysis of the genome, epigenome, proteins, lipids, cells, organs and individuals.
    [Show full text]
  • 2020 Appendix I Smelter List
    APPENDIX I Smelter List Metal Smelter Name Smelter Location Country Gold 8853 S.p.A. ITALY Gold Abington Reldan Metals, LLC UNITED STATES OF AMERICA Gold Advanced Chemical Company UNITED STATES OF AMERICA Gold Aida Chemical Industries Co., Ltd. JAPAN Gold Al Etihad Gold Refinery DMCC UNITED ARAB EMIRATES Gold Allgemeine Gold-und Silberscheideanstalt A.G. GERMANY Almalyk Mining and Metallurgical Complex Gold (AMMC) UZBEKISTAN Gold AngloGold Ashanti Corrego do Sitio Mineracao BRAZIL Gold Argor-Heraeus S.A. SWITZERLAND Gold Asahi Pretec Corp. JAPAN Gold Asahi Refining Canada Ltd. CANADA Gold Asahi Refining USA Inc. UNITED STATES OF AMERICA Gold Asaka Riken Co., Ltd. JAPAN Gold Atasay Kuyumculuk Sanayi Ve Ticaret A.S. TURKEY Gold AU Traders and Refiners SOUTH AFRICA Gold Aurubis AG GERMANY Gold Bangalore Refinery INDIA Bangko Sentral ng Pilipinas (Central Bank of the Gold Philippines) PHILIPPINES Gold Boliden AB SWEDEN Gold C. Hafner GmbH + Co. KG GERMANY Gold C.I Metales Procesados Industriales SAS COLOMBIA Gold Caridad MEXICO Gold CCR Refinery - Glencore Canada Corporation CANADA Gold Cendres + Metaux S.A. SWITZERLAND Gold CGR Metalloys Pvt Ltd. INDIA Gold Chimet S.p.A. ITALY Gold Chugai Mining JAPAN Gold Daye Non-Ferrous Metals Mining Ltd. CHINA Gold Degussa Sonne / Mond Goldhandel GmbH GERMANY Gold DODUCO Contacts and Refining GmbH GERMANY Gold Dowa JAPAN Gold DSC (Do Sung Corporation) KOREA, REPUBLIC OF Gold Eco-System Recycling Co., Ltd. East Plant JAPAN Gold Eco-System Recycling Co., Ltd. North Plant JAPAN Gold Eco-System Recycling Co., Ltd. West Plant JAPAN Gold Emirates Gold DMCC UNITED ARAB EMIRATES Gold GCC Gujrat Gold Centre Pvt.
    [Show full text]
  • RIKEN Bioresource Center Brochure
    RIKEN TSUKUBA BRANCH RIKEN BioResource Research Center July, 2020 Contents ●Greetings…………………………………… 3 ●Overview of the RIKEN BRC……………… 5 For Trust, Sustainability and Leadership ! ●Mouse……………………………………… 7 ●Arabidopsis & Brachypodium……………… 8 ●Cell…………………………………………… 9 ●Gene…………………………………………10 ●Microbe……………………………………… 11 ●Laboratories………………………………12 ●History, Budget, Personnel, Facilities ……15 ●Organization…………………………………16 ●Activities of RIKEN BRC……………………17 ●NBRP (National Bioresource Project) ……18 not only to researchers in academia but also to those in the private sector, with large-scale facilities and equipment such as supercomputers Hiroshi Matsumoto, Ph.D and the SPring-8 synchrotron facility, as well Toshihiko Shiroishi, Ph.D President as bioresources. In this regard, the RIKEN Director RIKEN BioResource Research Center (BRC) has long RIKEN BioResource Rresearch Center served as one of RIKEN’s core infrastructure At present, numerous new bioresources are centers. being developed in a wide range of fields of the RIKEN celebrated its centennial on March 20, Finally, precisely because RIKEN is not Bioresources are essential experimental life science, with the advances in genome science 2017. The current year of 2018 marks another limited to any specific one research field, our third materials for researches in life science and and the emergence of innovative genome editing milestone, the 60th anniversary of RIKEN’s strategy is to pioneer new research fields. One innovation based on the life science. In January technologies. These are experimental
    [Show full text]
  • Centre for Intellectual Property Strategies (CIPS) – Japan
    Centre for Intellectual Property Strategies (CIPS), Japan Centre for Intellectual Property Strategies (CIPS), Japan 1 (by Jonas Scholze, OECD)2 Description of the approach The Centre for Intellectual Property Strategies (CIPS) is an institution within RIKEN, Japan’s largest research centre. It consists of a multitude of research institutes with different headquarters distributed across Japan. Additionally there are some international branches in South East Asia and Europe. RIKEN was founded in 1917 by a range of private companies as a cooperative centre for joint research. In 1958 the centre changed to a public research institute. Since 2003 it has been administered as an independent administrative institution within the Japanese Ministry of Education, Culture, Sports, Science and Technology. Today it is one of the world leading research centres for basic and applied research in the field of physics, chemistry, medical science, biology and engineering. CIPS was established in April 2005, is located in Saitamo near Tokyo and acts as mediator between the research centre and the private industry. It aims to coordinate tasks connected to the protection of intellectual property and to capitalise on research achievements of the RIKEN institutes. However, its task is not confined to patenting and licensing of inventions and research achievements and associated legal processes. It is also used as a contact point for academic-industry linkages. Such programs enable and fund joint research activities between private companies and RIKEN research institutes. Thus CIPS continues to function as the increasingly popular approach of a ‘one-stop shop’ – a single internal contact point for a range of functions and services.
    [Show full text]
  • Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA
    DPRIETI Discussion Paper Series 14-E-021 Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA SUZUKI Jun National Graduate Institute for Policy Studies (GRIPS) TSUKADA Naotoshi RIETI GOTO Akira RIETI The Research Institute of Economy, Trade and Industry http://www.rieti.go.jp/en/ RIETI Discussion Paper Series 14-E-021 May 2014 Innovation and Public Research Institutes: Cases of AIST, RIKEN, and JAXA* SUZUKI Jun, TSUKADA Naotoshi, and GOTO Akira National Graduate Institute for Policy Studies (GRIPS) Research Institute of Economy, Trade and Industry (RIETI) Abstract In this paper, we focus on three large public research institutes (PRIs) in Japan—National Institute of Advanced Industrial Science and Technology (AIST), the Institute of Physical and Chemical Research (RIKEN), and the Japan Aerospace Exploration Agency (JAXA)—and investigate their roles in helping Japan’s industry by examining their patents. First, the background and history of the development of these institutions are described briefly. We employ four measures drawn from patent data (inventor forward citation, examiner forward citation, family size, and generality index) to describe the inventive activities of PRIs. Universities’ and firms’ patents are used as benchmarks. The impact of the PRIs’ research collaboration with the private sector is analyzed as well. We found that each of the three PRIs has been playing a unique role in Japan’s innovation system. In addition, we found out that universities’ patenting activity has been facing difficulties particularly in recent years. Finally, we discuss the factors that might affect the research outcome. Keywords: Public research institute, University, Patent, Research collaboration JEL classification: O34, O32 RIETI Discussion Papers Series aims at widely disseminating research results in the form of professional papers, thereby stimulating lively discussion.
    [Show full text]
  • Collaboration of the Two Giants—A*STAR and RIKEN
    www.asiabiotech.com General News Singapore Collaboration of the Two Giants— A*STAR and RIKEN *STAR and RIKEN have signed a memorandum of understanding (MOU) creating opportunities for collaboration between the two countries in the fields Aof biomedical science and biotechnology. RIKEN and A*STAR are planning to conduct research together mostly in the life sciences and biotechnology. The Singapore base for this research will be the Biopolis, Singapore. RIKEN will set up an office in the Biopolis by the end of 2005. Under the MoU, there will be exchange of researchers and staff; exchange of scientific and technological information, including delivering of lectures and holding joint seminars and symposia; exchange of scientific and technological research materials; joint research and development; and sharing of best practices in intellectual property management and technology transfer. Over the past few months, study teams from A*STAR have been visiting RIKEN to explore joint research areas and three key areas have been identified for possible collaboration: i) Cancer: Structural analysis and drug development related to cancer transcription factors. ii) Infectious diseases: Screening and rapid diagnosis for known and unknown environmental pathogens. iii) Neuroscience: Training of promising young neuroscientists from Singapore at RIKEN. “Singapore is a vital partner for Japan in tackling problems specific to Asia (the environment, diseases particular to the region, etc.). I believe that technologically and socially it has a variety of strong points in Asia. A*STAR has medical, chemical and engineering research institutes and the Biopolis plan. I believe that there are thus many areas of research on which RIKEN and A*STAR can collaborate.
    [Show full text]