Undulatory Locomotion in Freshwater Stingray Potamotrygon Orbignyi: Kinematics, Pectoral Fin Morphology, and Ground Effects on Rajiform Swimming

Total Page:16

File Type:pdf, Size:1020Kb

Undulatory Locomotion in Freshwater Stingray Potamotrygon Orbignyi: Kinematics, Pectoral Fin Morphology, and Ground Effects on Rajiform Swimming Undulatory Locomotion in Freshwater Stingray Potamotrygon Orbignyi: Kinematics, Pectoral Fin Morphology, and Ground Effects on Rajiform Swimming The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Blevins, Erin Leigh. 2012. Undulatory Locomotion in Freshwater Stingray Potamotrygon Orbignyi: Kinematics, Pectoral Fin Morphology, and Ground Effects on Rajiform Swimming. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9849992 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ©2012 Erin Blevins All rights reserved. Professor George V. Lauder Erin Leigh Blevins Undulatory locomotion in freshwater stingray Potamotrygon orbignyi: kinematics, pectoral fin morphology, and ground effects on rajiform swimming Abstract Fishes are the most speciose group of living vertebrates, making up more than half of extant vertebrate diversity. They have evolved a wide array of swimming modes and body forms, including the batoid elasmobranchs, the dorsoventrally flattened skates and rays, which swim via oscillations or undulations of a broad pectoral fin disc. In this work I offer insights into locomotion by an undulatory batoid, freshwater stingray Potamotrygon orbignyi (Castelnau, 1855), combining studies of live animals, physical models, and preserved specimens. In Chapter 1, I quantify the three-dimensional kinematics of the P. orbignyi pectoral fin during undulatory locomotion, analyzing high-speed video to reconstruct three-dimensional pectoral fin motions. A relatively small portion (~25%) of the pectoral fin undulates with significant amplitude during swimming. To swim faster, stingrays increase the frequency, not the amplitude of propulsive motions, similar to the majority of studied fish species. Intermittently during swimming, a sharp, concave-down lateral curvature occurred at the fin margin; as the fin was cupped against the pressure of fluid flow this curvature is likely to be actively controlled. Chapter 2 employs a simple physical model of an undulating fin to examine the ground effects that stingrays may experience when swimming near a substrate. Previous research considering static air- and hydrofoils indicated that near-substrate locomotion offers a benefit to propulsion. Depending on small variations in swimming kinematics, undulating fins can swim iii faster near a solid boundary, but can also experience significant increases (~25%) in cost-of- transport. In Chapter 3, I determine how pectoral and pelvic fin locomotion are combined in P. orbignyi during augmented punting, a hybrid of pectoral and pelvic fin locomotion sometimes employed as stingrays move across a substrate. The timing of pectoral and pelvic fin motions is linked, indicating coordination of thrust production. Chapter 4 discusses pectoral fin structure and morphological variations within the fin, correlating morphology with the swimming kinematics observed in Chapter 1. Passive and active mechanisms may stiffen the anterior fin to create the stable leading edge seen during swimming; stingrays have converged on several structural features (fin ray segmentation and branching) shared by actinopterygian fishes. iv Table of Contents Introduction………………………………………………………………………………………..1 Chapter 1: Rajiform locomotion: three-dimensional kinematics of the pectoral fin surface during swimming by freshwater stingray Potamotrygon orbignyi…………………………………….....5 Chapter 2: Synchronized swimming: coordination of pelvic and pectoral fins during augmented punting by freshwater stingray Potamotrygon orbignyi….……………………………………...47 Chapter 3: Swimming near the substrate: a simple robotic model of stingray locomotion……...72 Chapter 4: Pectoral fin morphology of freshwater stingray Potamotrygon orbignyi……….….105 Appendix: Supplemental data from Chapter 1………………………………………………….151 v For my teachers. vi Acknowledgements I am extraordinarily lucky to have been advised by Dr. George V. Lauder. Thanks to the advice of Dr. Alison Sweeney, I attended the 2005 meeting of the Society for Integrative and Comparative Biology, walked into a few presentations about fish swimming, and the rest was history. Drs. Andrew Biewener, Stacey Combes, Farish Jenkins, Jr., and Karel Liem (in body and spirit) have offered great advice on my research and career as members of my thesis committee, as have past and present members of the Lauder Lab. In particular, my experience as a graduate student and teacher would not have been the same without my labmate Jeanette Lim. I am grateful to my students for everything I learned while standing at the front of a classroom, and through work with the Derek Bok Center for Teaching and Learning; to poets Joanna Klink and Liza Flum; and to Katie Humphry and the incomparable Nora Lally-Graves, my friends. Because it doesn’t go without saying, I am deeply thankful for the love and support of my partner, Anton Dorokhin, and my parents, Shelley and David Blevins, who have been with me all the way. My interest in biology is grounded in respect for and curiosity about animal life, and so in addition to the people mentioned above I honor the contributions of the stingrays and other fish involved in this work. vii Introduction Fishes move through the water by using their bodies and fins to push on the fluid that surrounds them, accelerating flows backward and creating thrust opposite to their direction of travel. Swimming fishes are able to create such thrust due to the density and viscosity of water, as they push off of a medium roughly eight hundred times more dense than air, and over an order of magnitude more viscous—but the same properties that allow fish to generate thrust lead to the creation of drag forces that resist motion (Vogel, 2003). Fishes have evolved myriad ways to accomplish locomotion, generating thrust and overcoming drag to move through the water and accomplish other necessary behaviors such as prey detection, predator avoidance, and breeding. Fish body forms are as diverse as their swimming modes. More than half of extant vertebrate species are fish, and within this diversity fish species span orders of magnitude in size and body flexibility, from microscopic larvae to giant whale sharks, and from the nearly- boneless hagfish that ties itself into knots, to the stiff-bodied boxfish with its unbending carapaces (Helfman, 2009). Classical descriptions of swimming modes grouped fishes by the predominant fins used to power propulsion, and the degree to which body undulation was involved in swimming (Breder, 1926). Subsequent research has expanded and revised these descriptions for many species, as new techniques such as high-speed videography, particle image velocimetry, robotic and computer modeling have allowed researchers to examine in greater detail the kinematics with which fish move, and the hydrodynamics that result from their interactions with the surrounding fluid. As three-dimensional analyses have become possible, the importance of considering 3-D interactions between fish and fluid has become increasingly apparent (Tytell et al., 2008; Flammang et al., 2011). At the same time, robotic models offer the 1 opportunity to simplify biological systems into physical models, studying the effects of particular parameters (e.g. shapes, movement patterns) in isolation (Lauder et al, 2011). Among Breder’s original classifications of fish swimming was the eponymous rajiform locomotion, which included swimming by skates (Rajidae) and other batoid elasmobranchs that swim via undulations or oscillations of expanded pectoral fins (Breder, 1926). Undulation and oscillation were initially considered as discrete modes, termed rajiform (after the skates) and mobuliform (after Mobulidae, the manta and devil rays) respectively (Webb, 1994). More recently, they have been recognized as two poles of a continuum defined by the number of waves present on a batoid’s pectoral fin during swimming (wavelength/pectoral disc length; Rosenberger, 2001). Batoids also exhibit a range of pectoral fin shapes, from the triangular fins of mobulids and other oscillators, with a high ratio of fin span to chord, to the rounder shapes of undulators, with a low ratio of fin span to chord (Webb, 1994; Rosenberger, 2001). The combination of diversity in pectoral disc shape and swimming kinematics results in a large parameter space for batoid locomotion. Even within a single undulatory species, the broad, flexible pectoral surface undulates in three dimensions, with the potential for waveforms to vary along fin chord and span. The ability to vary pectoral fin locomotor patterns is important for batoids. In many fishes, separate fin and body surfaces control separate aspects of locomotion: some may control torques while others produce thrust, and others are involved in maneuvering. In sharks, the body provides lift while the caudal fin drives propulsion, and the pectoral fins add additional lift during ascents (Wilga and Lauder, 2002). In batoids, the body and pectoral fins are essentially fused into one surface (Compagno, 1999). All locomotor functions and some besides, from steady swimming to maneuvering and even prey capture (Wilga et al., 2012) must be achieved by modulating the 2 shape of the pectoral waveform. However, there is one notable exception –despite
Recommended publications
  • BONY FISHES 602 Bony Fishes
    click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves.
    [Show full text]
  • Fish Locomotion: Recent Advances and New Directions
    MA07CH22-Lauder ARI 6 November 2014 13:40 Fish Locomotion: Recent Advances and New Directions George V. Lauder Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] Annu. Rev. Mar. Sci. 2015. 7:521–45 Keywords First published online as a Review in Advance on swimming, kinematics, hydrodynamics, robotics September 19, 2014 The Annual Review of Marine Science is online at Abstract marine.annualreviews.org Access provided by Harvard University on 01/07/15. For personal use only. Research on fish locomotion has expanded greatly in recent years as new This article’s doi: approaches have been brought to bear on a classical field of study. Detailed Annu. Rev. Marine. Sci. 2015.7:521-545. Downloaded from www.annualreviews.org 10.1146/annurev-marine-010814-015614 analyses of patterns of body and fin motion and the effects of these move- Copyright c 2015 by Annual Reviews. ments on water flow patterns have helped scientists understand the causes All rights reserved and effects of hydrodynamic patterns produced by swimming fish. Recent developments include the study of the center-of-mass motion of swimming fish and the use of volumetric imaging systems that allow three-dimensional instantaneous snapshots of wake flow patterns. The large numbers of swim- ming fish in the oceans and the vorticity present in fin and body wakes sup- port the hypothesis that fish contribute significantly to the mixing of ocean waters. New developments in fish robotics have enhanced understanding of the physical principles underlying aquatic propulsion and allowed intriguing biological features, such as the structure of shark skin, to be studied in detail.
    [Show full text]
  • Amblyopsidae, Amblyopsis)
    A peer-reviewed open-access journal ZooKeys 412:The 41–57 Hoosier(2014) cavefish, a new and endangered species( Amblyopsidae, Amblyopsis)... 41 doi: 10.3897/zookeys.412.7245 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana Prosanta Chakrabarty1,†, Jacques A. Prejean1,‡, Matthew L. Niemiller1,2,§ 1 Museum of Natural Science, Ichthyology Section, 119 Foster Hall, Department of Biological Sciences, Loui- siana State University, Baton Rouge, Louisiana 70803, USA 2 University of Kentucky, Department of Biology, 200 Thomas Hunt Morgan Building, Lexington, KY 40506, USA † http://zoobank.org/0983DBAB-2F7E-477E-9138-63CED74455D3 ‡ http://zoobank.org/C71C7313-142D-4A34-AA9F-16F6757F15D1 § http://zoobank.org/8A0C3B1F-7D0A-4801-8299-D03B6C22AD34 Corresponding author: Prosanta Chakrabarty ([email protected]) Academic editor: C. Baldwin | Received 12 February 2014 | Accepted 13 May 2014 | Published 29 May 2014 http://zoobank.org/C618D622-395E-4FB7-B2DE-16C65053762F Citation: Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412: 41–57. doi: 10.3897/zookeys.412.7245 Abstract We describe a new species of amblyopsid cavefish (Percopsiformes: Amblyopsidae) in the genus Amblyopsis from subterranean habitats of southern Indiana, USA. The Hoosier Cavefish, Amblyopsis hoosieri sp. n., is distinguished from A. spelaea, its only congener, based on genetic, geographic, and morphological evi- dence. Several morphological features distinguish the new species, including a much plumper, Bibendum- like wrinkled body with rounded fins, and the absence of a premature stop codon in the gene rhodopsin.
    [Show full text]
  • Batoid Locomotion: Effects of Speed on Pectoral Fin Deformation in the Little Skate, Leucoraja Erinacea Valentina Di Santo1,*, Erin L
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 705-712 doi:10.1242/jeb.148767 RESEARCH ARTICLE Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, Leucoraja erinacea Valentina Di Santo1,*, Erin L. Blevins1,2 and George V. Lauder1 ABSTRACT more efficient at higher speeds and for long-distance translocations Most batoids have a unique swimming mode in which thrust is (Di Santo and Kenaley, 2016). Although many batoid species are generated by either oscillating or undulating expanded pectoral fins accurately described by these two extreme modes, several species that form a disc. Only one previous study of the freshwater stingray has fall into a continuum between 0.5 and 1.0 wave, and are defined as quantified three-dimensional motions of the wing, and no comparable ‘semi-oscillators’ (Schaefer and Summers, 2005). data are available for marine batoid species that may differ The mechanics of propulsion in cartilaginous fishes have been considerably in their mode of locomotion. Here, we investigate three- investigated over the years through studies of morphology, dimensional kinematics of the pectoral wing of the little skate, kinematics, hydrodynamics, muscle activity and energetics Leucoraja erinacea, swimming steadily at two speeds [1 and (Daniel, 1988; Di Santo and Kenaley, 2016; Donley and 2 body lengths (BL) s−1]. We measured the motion of nine points in Shadwick, 2003; Fontanella et al., 2013; Lauder, 2015; Lauder three dimensions during wing oscillation and determined that there are and Di Santo, 2015; Porter et al., 2011; Rosenberger and Westneat, significant differences in movement amplitude among wing locations, 1999; Rosenblum et al., 2011).
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • AC29 Doc. 35 A4
    Extract from Eschmeyer, W. N., R. Fricke, and R. van der Laan (eds). CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. Electronic version accessed 12 May 2017. AC29 Doc. 35 Annex / Annexe / Anexo 1 (English only / Seulement en anglais / Únicamente en inglés) Taxonomic Checklist of Fish taxa included in the Appendices at the 17th meeting of the Conference of the Parties (Johannesburg, 2016) Species information extracted from Eschmeyer, W.N., R. Fricke, and R. van der Laan (eds.) CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. (http://researcharchive.calacademy.org/research/ichthyology/catal og/fishcatmain.asp). Online version of 28 April 2017 [This version was edited by Bill Eschmeyer.] accessed 12 May 2017 Copyright © W.N. Eschmeyer and California Academy of Sciences. All Rights reserved. Additional comments included by the Nomenclature Specialist of the CITES Animals Committee Reproduction for commercial purposes prohibited. Contents of this extract, prepared for AC29 by the Nomenclature Specialist for Fauna: Class Elasmobranchii Order Carcharhiniformes Family Carcharhinidae Genus Carcharias Species Carcharias falciformis (Bibron 1839) Page 3 Order Lamniformes Family Alopiidae Genus Alopias Rafinesque 1810 Page 6 Alopias pelagicus Nakamura 1935 Alopias superciliosus Lowe 1841 Alopias vulpinus (Bonnaterre 1788) Order Myliobatiformes Family Myliobatidae Genus Mobula Rafinesque 1810 Page 11 Mobula eregoodootenkee (Bleeker 1859) Mobula hypostoma (Bancroft 1831) AC29 Doc. 35; Annex / Annexe / Anexo 4 – p. 1 Extract from Eschmeyer, W. N., R. Fricke, and R. van der Laan (eds). CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. Electronic version accessed 12 May 2017. Mobula japanica (Müller & Henle 1841) Mobula kuhlii (Valenciennes, in Müller & Henle 1841) Mobula mobular (Bonnaterre 1788) Mobula munkiana Notarbartolo-di-Sciara 1987 Mobula rochebrunei (Vaillant 1879) Mobula tarapacana (Philippi 1892) Mobula thurstoni (Lloyd 1908) Family Potamotrygonidae Page 21 Genus Paratrygon Duméril 1865 Paratrygon aiereba (Müller & Henle 1841).
    [Show full text]
  • Cop17 Doc. 87
    Original language: English CoP17 Doc. 87 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September - 5 October 2016 Species specific matters Maintenance of the Appendices FRESHWATER STINGRAYS (POTAMOTRYGONIDAE SPP.) 1. This document has been submitted by the Animals Committee.* Background 2. At its 16th meeting (CoP16, Bangkok, 2013), the Conference of the Parties adopted the following interrelated decisions on freshwater stingrays: Directed to the Secretariat 16.130 The Secretariat shall issue a Notification requesting the range States of freshwater stingrays (Family Potamotrygonidae) to report on the conservation status and management of, and domestic and international trade in the species. Directed to the Animals Committee 16.131 The Animals Committee shall establish a working group comprising the range States of freshwater stingrays in order to evaluate and duly prioritize the species for inclusion in CITES Appendix II. 16.132 The Animals Committee shall consider all information submitted on freshwater stingrays in response to the request made under Decision 16.131 above, and shall: a) identify species of priority concern, including those species that meet the criteria for inclusion in Appendix II of the Convention; b) provide specific recommendations to the range States of freshwater stingrays; and c) submit a report at the 17th meeting of the Conference of the Parties on the progress made by the working group, and its recommendations and conclusions. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • Biology, Husbandry, and Reproduction of Freshwater Stingrays
    Biology, husbandry, and reproduction of freshwater stingrays. Ronald G. Oldfield University of Michigan, Department of Ecology and Evolutionary Biology Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109 U.S.A. E-mail: [email protected] A version of this article was published previously in two parts: Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays I. Tropical Fish Hobbyist. 53(12): 114-116. Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays II. Tropical Fish Hobbyist. 54(1): 110-112. Introduction In the freshwater aquarium, stingrays are among the most desired of unusual pets. Although a couple species have been commercially available for some time, they remain relatively uncommon in home aquariums. They are often avoided by aquarists due to their reputation for being fragile and difficult to maintain. As with many fishes that share this reputation, it is partly undeserved. A healthy ray is a robust animal, and problems are often due to lack of a proper understanding of care requirements. In the last few years many more species have been exported from South America on a regular basis. As a result, many are just recently being captive bred for the first time. These advances will be making additional species of freshwater stingray increasingly available in the near future. This article answers this newly expanded supply of wild-caught rays and an anticipated increased The underside is one of the most entertaining aspects of a availability of captive-bred specimens by discussing their stingray. In an aquarium it is possible to see the gill slits and general biology, husbandry, and reproduction in order watch it eat, as can be seen in this Potamotrygon motoro.
    [Show full text]
  • AC29 Doc. 24 A4
    Biological Conservation 210 (2017) 293–298 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Decline or stability of obligate freshwater elasmobranchs following high fishing pressure MARK ⁎ Luis O. Luciforaa, , Leandro Balbonib, Pablo A. Scarabottic, Francisco A. Alonsoc, David E. Sabadind, Agustín Solaria,e, Facundo Vargasf, Santiago A. Barbinid, Ezequiel Mabragañad, Juan M. Díaz de Astarload a Instituto de Biología Subtropical - Iguazú, Universidad Nacional de Misiones, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de Correo 9, Puerto Iguazú, Misiones N3370AVQ, Argentina b Dirección de Pesca Continental, Dirección Nacional de Planificación Pesquera, Subsecretaría de Pesca y Acuicultura, Ministerio de Agroindustria, Alférez Pareja 125, Ciudad Autónoma de Buenos Aires C1107BJA, Argentina c Instituto Nacional de Limnología, Universidad Nacional del Litoral, CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3001XAI, Argentina d Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, Mar del Plata, Buenos Aires B7602YAL, Argentina e Centro de Investigaciones del Bosque Atlántico, Bertoni 85, Puerto Iguazú, Misiones N3370BFA, Argentina f Departamento Fauna y Pesca, Dirección de Fauna y Áreas Naturales Protegidas, Remedios de Escalada 46, Resistencia, Chaco H3500BPB, Argentina ARTICLE INFO ABSTRACT Keywords: Despite elasmobranchs are a predominantly marine taxon, several species
    [Show full text]
  • BREAK-OUT SESSIONS at a GLANCE THURSDAY, 24 JULY, Afternoon Sessions
    2008 Joint Meeting (JMIH), Montreal, Canada BREAK-OUT SESSIONS AT A GLANCE THURSDAY, 24 JULY, Afternoon Sessions ROOM Salon Drummond West & Center Salons A&B Salons 6&7 SESSION/ Fish Ecology I Herp Behavior Fish Morphology & Histology I SYMPOSIUM MODERATOR J Knouft M Whiting M Dean 1:30 PM M Whiting M Dean Can She-male Flat Lizards (Platysaurus broadleyi) use Micro-mechanics and material properties of the Multiple Signals to Deceive Male Rivals? tessellated skeleton of cartilaginous fishes 1:45 PM J Webb M Paulissen K Conway - GDM The interopercular-preopercular articulation: a novel Is prey detection mediated by the widened lateral line Variation In Spatial Learning Within And Between Two feature suggesting a close relationship between canal system in the Lake Malawi cichlid, Aulonocara Species Of North American Skinks Psilorhynchus and labeonin cyprinids (Ostariophysi: hansbaenchi? Cypriniformes) 2:00 PM I Dolinsek M Venesky D Adriaens Homing And Straying Following Experimental Effects of Batrachochytrium dendrobatidis infections on Biting for Blood: A Novel Jaw Mechanism in Translocation Of PIT Tagged Fishes larval foraging performance Haematophagous Candirú Catfish (Vandellia sp.) 2:15 PM Z Benzaken K Summers J Bagley - GDM Taxonomy, population genetics, and body shape The tale of the two shoals: How individual experience A Key Ecological Trait Drives the Evolution of Monogamy variation of Alabama spotted bass Micropterus influences shoal behaviour in a Peruvian Poison Frog punctulatus henshalli 2:30 PM M Pyron K Parris L Chapman
    [Show full text]
  • Three Gray Classics on the Biomechanics of Animal Movement
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Three Gray Classics on the Biomechanics of Animal Movement The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lauder, G. V., Eric Tytell. 2004. Three Gray Classics on the Biomechanics of Animal Movement. Journal of Experimental Biology 207, no. 10: 1597–1599. doi:10.1242/jeb.00921. Published Version doi:10.1242/jeb.00921 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30510313 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JEB Classics 1597 THREE GRAY CLASSICS locomotor kinematics, muscle dynamics, JEB Classics is an occasional ON THE BIOMECHANICS and computational fluid dynamic column, featuring historic analyses of animals moving through publications from The Journal of OF ANIMAL MOVEMENT water. Virtually every recent textbook in Experimental Biology. These the field either reproduces one of Gray’s articles, written by modern experts figures directly or includes illustrations in the field, discuss each classic that derive their inspiration from his paper’s impact on the field of figures (e.g. Alexander, 2003; Biewener, biology and their own work. A 2003). PDF of the original paper accompanies each article, and can be found on the journal’s In his 1933a paper, Gray aimed to website as supplemental data.
    [Show full text]