Characterization and Synthesis of Selected Secondary Metabolites Produced by Xenorhabdus and Photorhabdus Spp

Total Page:16

File Type:pdf, Size:1020Kb

Characterization and Synthesis of Selected Secondary Metabolites Produced by Xenorhabdus and Photorhabdus Spp Characterization and Synthesis of Selected Secondary Metabolites produced by Xenorhabdus and Photorhabdus spp Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt dem Fachbereich der Biowissenschaften (15) der Johann Wolfgang von Goethe Universität, Frankfurt a. M. von Friederike Inga Nollmann geboren am 30. 11. 1985 in Stade D30 vom Fachbereich für Biowissenschaften (15) der Johann-Wolfgan-von-Goethe-Universität als Dissertation angenommen. Dekanin: Prof. Dr. Meike Piepenbring Gutachter: Prof. Dr. Helge B. Bode Jun. Prof. Dr. Martin Grininger Datum der Disputation: 3 4 There is no answer as big as the question, there is no victory as big as the lesson, you go on and you see where your detours will take you to, there is no power like understanding. Tina Dico To my friends and my family who were neglected now and then in the process of this work but nevertheless helped to make it happen. 5 6 Acknowledgement Anybody who has been seriously engaged in scientific work of any kind realizes that over the entrance to the gates of the temple of science are written the words: “Ye must have faith.” Max Planck With these words I would like to thank all the people who were involved in this work and had to restore my faith in sciences from time to time, namely Prof. Dr. Helge B. Bode, my mentor, who gave me the opportunity to work on a quite diverse topic which never stopped being challenging. I also appreciate it that he always had the confidence in me to make it click. Jun. Prof. Dr. Martin Grininger, my second reviewer, who was willing to survey this work without hesitation. Thanks a lot for your time! Christina Dauth, my tutor, who showed me that organic chemistry can be fun and never grew tired of supplying me with new ideas or solutions. Thanks for everything, animation coach! Max Kronenwerth, my optimist, who talked me into this thesis and hopefully never regretted it. Daniela Reimer, my mom in the bio-lab, who always shared her pipettes, media, antibiotics, working space and knowledge with me without a second thought. Carsten Kegler, my constant supplier of critical remarks and the daily weather forecast, who had to put up with me in the office and nevertheless, always was happy to help and educate me. Samina Atri, my sun shine, who brought colors into my every day and never lost her high spirtis. 7 Arne Kittler, my voice of reason, who picked me up when I shattered into pieces and turned out to be solid as a rock. Peter Grün, Olivia Schimming, Yvonne Engel and Hélène Adihou, my amazon crew, who put up with me and the occasionally HPLC break down. Katharina Scholz, Lena Kalinowsky, Jens Frindert, Sylvester Größl and Aljoscha Joppe, my students, we learned and grew together – thanks for the fun with you, guys! Vivien Schulz, Carsten Kegler, Martina Blum, Gesine Hübner and Barbara Fleischer, my proofreading crew, who merciless eliminated every mistake they could find. And last but not least, the whole Bode lab, who always guaranteed a constant supply of cakes and sweets as well as the badly needed cup of coffee. 8 Table of Contents Abstract .......................................................................................................................... 13 Zusammenfassung ............................................................................................................ 15 List of Selected Publications ............................................................................................ 21 List of Selected Contribution to Conferences ................................................................. 22 1 Introduction ........................................................................................................ 27 1.1 Xenorhabdus and Photorhabdus spp. .................................................................. 28 1.2 Secondary metabolites ......................................................................................... 29 1.2.1 Nonribosomal peptide synthetase-derived secondary metabolites ........................ 32 1.3 Organic Peptide Synthesis and its Limitations ...................................................... 34 1.3.1 Solution Phase Synthesis ..................................................................................... 35 1.3.2 Solid Phase Synthesis .......................................................................................... 35 1.3.3 Limitations and how to Circumvent them .............................................................. 36 2 Objectives ........................................................................................................... 47 3 Small Molecules ................................................................................................. 49 3.1 A Photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase ............................................................................................................. 51 4 Cyclic Peptides ................................................................................................... 53 4.1 Synthesis of the Xenotetrapeptide produced by Xenorhabdus nematophila ......... 57 4.2 Insect-specific production of novel GameXPeptides, widespread natural products in entomopathogenic Photorhabdus and Xenorhabdus bacteria .............................. 63 4.3 Synthesis of Ambactin, a cyclic peptide from Xenorhabdus miraniensis ............... 67 5 Cyclic Depsipeptides ......................................................................................... 71 5.1 Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum ...................................... 73 5.2 Synthesis of Selected Xentrivalpeptides ............................................................... 77 6 Methylated peptides ........................................................................................... 85 6.1 Synthesis of short partly methylated sequences in solution .................................. 86 6.2 Synthesis of partly methylated sequences on resin .............................................. 91 6.3 Synthesis of permethylated sequences ................................................................ 92 6.4 Synthesis of highly methylated sequences ........................................................... 95 6.5 Fragment condensation approach ........................................................................ 96 7 Target Identification ......................................................................................... 103 9 Table of Contents 7.1 Biotinylated GameXPeptides .............................................................................. 103 7.2 Intrinsically labelled Xenephematides ................................................................. 106 8 Discussion ........................................................................................................ 115 8.1 Small Molecules ................................................................................................. 115 8.1.1 Phurealipids ..................................................................................................... 115 8.2 Cyclic Peptides ................................................................................................... 116 8.2.1 Xenotetrapeptide ................................................................................................ 116 8.2.2 GameXPeptides ................................................................................................. 117 8.2.3 Ambactin ..................................................................................................... 118 8.3 Cyclic Depsipeptides .......................................................................................... 119 8.3.1 Szentiamide ..................................................................................................... 119 8.3.2 Xentrivalpeptides ................................................................................................ 120 8.3.3 Xenephematide .................................................................................................. 120 8.4 Methylated Peptides ........................................................................................... 121 APPENDIX ........................................................................................................................ 129 General Procedures ......................................................................................................... 131 I HPLC Coupled to ESI-MS .................................................................................. 131 II NMR ............................................................................................................ 131 III Solid Phase Synthesis ..................................................................................... 131 III.I Immobilization of the First Amino Acid on the Solid Support ....................... 131 III.I.I Wang resin ......................................................................................................... 131 III.I.II 2-Chloro Trityl Chloride resin .............................................................................. 132 III.I.III Rink Acid Resin .................................................................................................. 132 III.II Deprotection ..................................................................................................... 132 III.II.I Orthogonal Deprotection of Fmoc-protected Amines .........................................
Recommended publications
  • Identification of Photorhabdus Symbionts by MALDI-TOF Mass Spectrometry
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.10.901900; this version posted January 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identification of Photorhabdus symbionts by MALDI-TOF mass spectrometry Virginia Hill1,2, Peter Kuhnert2, Matthias Erb1, Ricardo A. R. Machado1* 1 Institute of Plant Sciences, University of Bern, Switzerland 2Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland. *Correspondence: [email protected] Abstract Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 55 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer and protein fingerprint of single colonies.
    [Show full text]
  • The Louse Fly-Arsenophonus Arthropodicus Association
    THE LOUSE FLY-ARSENOPHONUS ARTHROPODICUS ASSOCIATION: DEVELOPMENT OF A NEW MODEL SYSTEM FOR THE STUDY OF INSECT-BACTERIAL ENDOSYMBIOSES by Kari Lyn Smith A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology The University of Utah August 2012 Copyright © Kari Lyn Smith 2012 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Kari Lyn Smith has been approved by the following supervisory committee members: Colin Dale Chair June 18, 2012 Date Approved Dale Clayton Member June 18, 2012 Date Approved Maria-Denise Dearing Member June 18, 2012 Date Approved Jon Seger Member June 18, 2012 Date Approved Robert Weiss Member June 18, 2012 Date Approved and by Neil Vickers Chair of the Department of __________________________Biology and by Charles A. Wight, Dean of The Graduate School. ABSTRACT There are many bacteria that associate with insects in a mutualistic manner and offer their hosts distinct fitness advantages, and thus have likely played an important role in shaping the ecology and evolution of insects. Therefore, there is much interest in understanding how these relationships are initiated and maintained and the molecular mechanisms involved in this process, as well as interest in developing symbionts as platforms for paratransgenesis to combat disease transmission by insect hosts. However, this research has been hampered by having only a limited number of systems to work with, due to the difficulties in isolating and modifying bacterial symbionts in the lab. In this dissertation, I present my work in developing a recently described insect-bacterial symbiosis, that of the louse fly, Pseudolynchia canariensis, and its bacterial symbiont, Candidatus Arsenophonus arthropodicus, into a new model system with which to investigate the mechanisms and evolution of symbiosis.
    [Show full text]
  • Recent Advances and Perspectives in Nasonia Wasps
    Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dittmer, Jessica, Edward J. van Opstal, J. Dylan Shropshire, Seth R. Bordenstein, Gregory D. D. Hurst, and Robert M. Brucker. 2016. “Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps.” Frontiers in Microbiology 7 (1): 1478. doi:10.3389/ fmicb.2016.01478. http://dx.doi.org/10.3389/fmicb.2016.01478. Published Version doi:10.3389/fmicb.2016.01478 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408381 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA fmicb-07-01478 September 21, 2016 Time: 14:13 # 1 REVIEW published: 23 September 2016 doi: 10.3389/fmicb.2016.01478 Disentangling a Holobiont – Recent Advances and Perspectives in Nasonia Wasps Jessica Dittmer1, Edward J. van Opstal2, J. Dylan Shropshire2, Seth R. Bordenstein2,3, Gregory D. D. Hurst4 and Robert M. Brucker1* 1 Rowland Institute at Harvard, Harvard University, Cambridge, MA, USA, 2 Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA, 3 Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, USA, 4 Institute of Integrative Biology, University of Liverpool, Liverpool, UK The parasitoid wasp genus Nasonia (Hymenoptera: Chalcidoidea) is a well-established model organism for insect development, evolutionary genetics, speciation, and symbiosis.
    [Show full text]
  • Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis Indica Against Galleria Mellonella and Some Pest Insects
    insects Article Assessing the Pathogenicity of Two Bacteria Isolated from the Entomopathogenic Nematode Heterorhabditis indica against Galleria mellonella and Some Pest Insects Rosalba Salgado-Morales 1,2 , Fernando Martínez-Ocampo 2 , Verónica Obregón-Barboza 2, Kathia Vilchis-Martínez 3, Alfredo Jiménez-Pérez 3 and Edgar Dantán-González 2,* 1 Doctorado en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico; [email protected] 2 Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, 62209 Cuernavaca, Morelos, Mexico; [email protected] (F.M.-O.); [email protected] (V.O.-B.) 3 Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, San Isidro, Yautepec, 62739 Morelos, Mexico; [email protected] (K.V.-M.); [email protected] (A.J.-P.) * Correspondence: [email protected]; Tel.: +52-777-329-7000 Received: 20 December 2018; Accepted: 15 March 2019; Published: 26 March 2019 Abstract: The entomopathogenic nematodes Heterorhabditis are parasites of insects and are associated with mutualist symbiosis enterobacteria of the genus Photorhabdus; these bacteria are lethal to their host insects. Heterorhabditis indica MOR03 was isolated from sugarcane soil in Morelos state, Mexico. The molecular identification of the nematode was confirmed using sequences of the ITS1-5.8S-ITS2 region and the D2/D3 expansion segment of the 28S rRNA gene. In addition, two bacteria HIM3 and NA04 strains were isolated from the entomopathogenic nematode. The genomes of both bacteria were sequenced and assembled de novo.
    [Show full text]
  • Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus Nasoniae
    Studies of the Spread and Diversity of the Insect Symbiont Arsenophonus nasoniae Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Steven R. Parratt September 2013 Abstract: Heritable bacterial endosymbionts are a diverse group of microbes, widespread across insect taxa. They have evolved numerous phenotypes that promote their own persistence through host generations, ranging from beneficial mutualisms to manipulations of their host’s reproduction. These phenotypes are often highly diverse within closely related groups of symbionts and can have profound effects upon their host’s biology. However, the impact of their phenotype on host populations is dependent upon their prevalence, a trait that is highly variable between symbiont strains and the causative factors of which remain enigmatic. In this thesis I address the factors affecting spread and persistence of the male-Killing endosymbiont Arsenophonus nasoniae in populations of its host Nasonia vitripennis. I present a model of A. nasoniae dynamics in which I incorporate the capacity to infectiously transmit as well as direct costs of infection – factors often ignored in treaties on symbiont dynamics. I show that infectious transmission may play a vital role in the epidemiology of otherwise heritable microbes and allows costly symbionts to invade host populations. I then support these conclusions empirically by showing that: a) A. nasoniae exerts a tangible cost to female N. vitripennis it infects, b) it only invades, spreads and persists in populations that allow for both infectious and heritable transmission. I also show that, when allowed to reach high prevalence, male-Killers can have terminal effects upon their host population.
    [Show full text]
  • Microbial Kinetics of Photorhabdus Luminescens in Glucose Batch Cultures
    Microbial Kinetics of Photorhabdus luminescens in Glucose Batch Cultures Matt Bowen University of North Carolina at Pembroke with Danica Co, William Peace University Faculty Mentors: Len Holmes with Floyd Inman University of North Carolina at Pembroke ABSTRACT Photorhabdus luminescens, an entomopathogenic bacterial symbiont of Heterorhabditis bacteriophora, was studied in batch cultures to determine the specific growth rates of the bacterium in various glucose concentrations. P. luminescens was cultured in a defined liquid medium containing various concentrations of glucose. Culture parameters were monitored and controlled utilizing a Sartorius stedim Biostat® A plus fermentation system. Agitation and air flow remained constant; however, the pH of the media was chemically buffered and monitored over the course of bacterial growth. Measurements of culture turbidity were obtained utilizing an optical cell density probe. Specific growth rates of P. luminescens were determined graphically and mathematically. The substrate saturation constant of glucose for P. luminescens was also determined along with the bacterium’s maximum specific growth rate. that kill and bioconvert the insect host into 1. INTRODUCTION nutritional components for both organisms (Boemare, Laumond, and Mauleon, Photorhabdus luminescens is a Gram-negative, 1996). Furthermore, P. luminescens secretes bioluminescent,entomopathogenic bacterium pigments and antimicrobials to ward that is found to be a bacterial symbiont of the off other contaminating microbes and nematode Heterorhabditis bacteriophora (Inman, as a result, ideal conditions are created Singh and Holmes, 2012). These symbiotic for nematode growth and development partners serve as a bacto-helminthic complex (Waterfield, Ciche and Clark, 2009). that is considered to be a safe alternative to The symbiotic relationship between H.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Phenotypic and Genomic Comparison of Photorhabdus Luminescens Subsp
    Zamora-Lagos et al. BMC Genomics (2018) 19:854 https://doi.org/10.1186/s12864-018-5121-z RESEARCH ARTICLE Open Access Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain Maria-Antonia Zamora-Lagos1†, Simone Eckstein2†, Angela Langer2, Athanasios Gazanis2, Friedhelm Pfeiffer1 , Bianca Habermann1,3* and Ralf Heermann2* Abstract Background: Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR. Results: Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology.
    [Show full text]
  • Opportunities and Challenges of Entomopathogenic Nematodes As Biocontrol Agents in Their Tripartite Interactions Tarique H
    Askary and Abd-Elgawad Egyptian Journal of Biological Pest Control (2021) 31:42 Egyptian Journal of https://doi.org/10.1186/s41938-021-00391-9 Biological Pest Control REVIEW ARTICLE Open Access Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions Tarique H. Askary1 and Mahfouz M. M. Abd-Elgawad2* Abstract Background: The complex including entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis and their mutualistic partner, i.e., Xenorhabdus and Photorhabdus bacteria, respectively possesses many attributes of ideal biological control agents against numerous insect pests as a third partner. Despite authenic opportunities for their practical use as biocontrol agents globally, they are challenged by major impediments especially their cost and reliability. Main body: This review article presents major attributes of EPNs to familiarize growers and stakeholders with their careful application. As relatively high EPN costs and frequently low efficacy are still hindering them from reaching broader biopesticide markets, this is to review the latest findings on EPN strain/species enhancement, improvement of production, formulation and application technology, and achieving biological control of insects from the standpoint of facing these challenges. The conditions and practices that affected the use of EPNs for integrated pest management (IPM) are identified. Besides, efforts have been made to address such practices in various ways that grasp their effective approaches, identify research priority areas, and allow refined techniques. Additionally, sampling factors responsible for obtaining more EPN isolates with differential pathogenicity and better adaptation to control specific pest(s) are discussed. Conclusion: Specific improvements of EPN production, formulation, and application technology are reviewed which may help in their broader use.
    [Show full text]
  • Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus Luminescens Cell Populations
    Regulation of phenotypic switching and heterogeneity in Photorhabdus luminescens cell populations Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Biologie der Ludwig-Maximilians-Universität München vorgelegt von Angela Katharina Langer geb. Glaeser am 17.11.2016 1. Gutachter: PD Dr. Ralf Heermann, LMU München 2. Gutachter: Prof. Dr. Marc Bramkamp, LMU München Datum der Abgabe: 17.11.2016 Datum der mündlichen Prüfung: 12.12.2016 II Eidesstattliche Erklärung Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbstständig und ohne unerlaubte Hilfe angefertigt wurde. Des Weiteren erkläre ich, dass ich nicht anderweitig ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich der Doktorprüfung zu unterziehen. Die folgende Dissertation liegt weder ganz, noch in wesentlichen Teilen einer anderen Prüfungskommission vor. München, den 17.11.2016 Angela Langer Statutory Declaration I declare that I have authored this thesis independently, that I have not used other than the declared sources/references. As well I declare that I have not submitted a dissertation without success and not passed the oral exam. The present dissertation (neither the entire dissertation nor parts) has not been presented to another examination board. Munich, 17.11.2016 Angela Langer III Contents Eidesstattliche Erklärung ...................................................................................................................... III Statutory Declaration...........................................................................................................................
    [Show full text]
  • Characterization of the Entomopathogenic Bacterium Photorhadus Luminescens Sonorensis, and Bioactivity of Its Secondary Metabolites
    Characterization of the Entomopathogenic Bacterium Photorhadus Luminescens Sonorensis, and Bioactivity of its Secondary Metabolites Item Type text; Electronic Thesis Authors Orozco, Rousel Antonio Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 03:57:11 Link to Item http://hdl.handle.net/10150/228614 1 CHARACTERIZATION OF THE ENTOMOPATHOGENIC BACTERIUM PHOTORHADUS LUMINESCENS SONORENSIS, AND BIOACTIVITY OF ITS SECONDARY METABOLITES. Rousel Antonio Orozco Copyright © Rousel A Orozco 2012 ________________ A Thesis Submitted to the Faculty of the DEPARTMENT OF ENTOMOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: Rousel. A. Orozco. APPROVAL BY THESIS DIRECTOR _______________________________________ S. Patricia Stock, PhD. Professor of Entomology Date ____May 1st 2012_________________ 3 ACKNOWLEDGEMENTS I want to begin by expressing my infinity gratitude to my mentor, Dr.
    [Show full text]
  • A Comparative Genomic and Phylogenetic Study
    GBE A Phage Tail-Derived Element with Wide Distribution among Both Prokaryotic Domains: A Comparative Genomic and Phylogenetic Study Panagiotis F. Sarris1,4,*, Emmanuel D. Ladoukakis2, Nickolas J. Panopoulos2,3, and Effie V. Scoulica1,* 1Laboratory of Clinical Bacteriology and Molecular Microbiology, Faculty of Medicine, University of Crete, Heraklion, Greece 2Department of Biology, University of Crete, Heraklion, Greece 3Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside 4Present address: The Sainsbury Laboratory, John Innes Centre, Norwich Research Park, Norwich, United Kingdom. *Corresponding author: E-mail: [email protected]; [email protected]. Accepted: June 16, 2014 Abstract Prophage sequences became an integral part of bacterial genomes as a consequence of coevolution, encoding fitness or virulence factors. Such roles have been attributed to phage-derived elements identified in several Gram-negative species: The type VI secretion system (T6SS), the R- and F-type pyocins, and the newly discovered Serratia entomophila antifeeding prophage (Afp), and the Photorhabdus luminescens virulence cassette (PVC). In this study, we provide evidence that remarkably conserved gene clusters, homologous to Afp/PVC, are not restricted to Gram-negative bacteria but are widespread throughout all prokaryotes including the Archaea. Even though they are phylogenetically closer to pyocins, they share key characteristics in common with the T6SS, such as the use of a chaperon-type AAA+ ATPase and the lack of a host cell lysis mechanism. We thus suggest that Afp/PVC-like elements could be classified as phage-like-protein-translocation structures (PLTSs) rather than as pyocins.
    [Show full text]