Assessment of the Risk to Norwegian Biodiversity and Aquaculture from Pink Salmon

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of the Risk to Norwegian Biodiversity and Aquaculture from Pink Salmon VKM Report 2020: 01 Assessment of the risk to Norwegian biodiversity and aquaculture from pink salmon (Oncorhynchus gorbuscha) Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2020: 01 Assessment of the risk to Norwegian biodiversity and aquaculture from pink salmon (Oncorhynchus gorbuscha). Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food and Environment. 15.01.2020 ISBN: 978-82-8259-334-2 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 222 Skøyen N – 0213 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Colourbox Suggested citation: VKM, Kjetil Hindar, Lars Robert Hole, Kyrre Kausrud, Martin Malmstrøm, Espen Rimstad, Lucy Robertson, Odd Terje Sandlund, Eva B. Thorstad, Knut Wiik Vollset, Hugo de Boer, Katrine Eldegard, Johanna Järnegren, Lawrence Kirkendall, Inger Måren, Anders Nielsen, Erlend B. Nilsen, Eli Rueness and Gaute Velle (2020). Assessment of the risk to Norwegian biodiversity and aquaculture from pink salmon (Oncorhynchus gorbuscha). Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species (CITES). VKM report 2020:01, ISBN: 978-82-8259-334-2, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. VKM Report 2020: 01 Assessment of the risk to Norwegian biodiversity and aquaculture from pink salmon (Oncorhynchus gorbuscha) Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to ansver the mandate. The project group consisted of four VKM members, four external experts and a project leader from the VKM secretariat. Two external referees commented on and reviewed the opinion. The VKM Panel on Alien Organisms and Trade in Endangered Species (CITES) evaluated and approved the final opinion. Authors of the opinion Members of the project group that contributed to the drafting of the opinion In alphabetical order after chair of the project group: Kjetil Hindar – Chair of the project group and member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian Institute for Nature Research (NINA), Trondheim. Lars Robert Hole – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) The Norwegian Meteorological Institute, Bergen. Kyrre Kausrud – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) The Norwegian Veterinary Institute (NVI), Oslo. Martin Malmstrøm – Member of the project group and project leader in the VKM secretariat. Affiliation: VKM. Espen Rimstad – Member of the project group and member of the Panel on Animal Health and Welfare in VKM. Affiliation: 1) VKM; 2) Norwegian University of Life Sciences (NMBU), Oslo. Lucy J. Robertson - Member of the project group and member of the Panel on Biological Hazards in VKM. Affiliation: 1) VKM; 2) Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo. Odd Terje Sandlund – Member of the project group. Affiliation: Norwegian Institute for Nature Research (NINA), Trondheim. Eva B. Thorstad – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian Institute for Nature Research (NINA), Trondheim. VKM Report 2020: 01 Gaute Velle – Member of the project group and chair of the panel on Alien Organisms and trade in Endangered Species (CITES) and member of the Scientific Steering Committee in VKM. Affiliation: 1) VKM; 2) NORCE Norwegian Research Centre, Bergen; 3) University of Bergen, Bergen. Knut Wiik Vollset – Member of the project group. Affiliation: 1) NORCE Norwegian Research Centre, Bergen Members of the Panel on Alien Organisms and Trade in Endangered Species (CITES) that contributed to the assessment and approval of the opinion In addition to Kjetil Hindar, Lars Robert Hole, Kyrre Kaursrud, Eva B. Thorstad and Gaute Velle these were (in alphabetical order before chair/vice-chair of the Panel): Hugo de Boer – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Natural History Museum, Oslo. Katrine Eldegard – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian University of Life Sciences (NMBU), Ås. Johanna Järnegren – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian Institute for Nature Research (NINA), Trondheim. Lawrence Kirkendall – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Department of Biological Sciences, University of Bergen. Inger Måren – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Department of Biological Sciences, University of Bergen. Erlend B. Nilsen – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian Institute for Nature Research (NINA), Trondheim. Eli Rueness – Member of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo. Anders Nielsen – Vice chair of the Panel on Alien Organisms and Trade in Endangered Species (CITES) in VKM. Affiliation: 1) VKM; 2) Norwegian Institute of Bioeconomy Research (NIBIO); 3) Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo. VKM Report 2020: 01 Acknowledgment VKM thanks the referees Professor Jaakko Erkinaro (National Resources Institute Finland (Luke)) and Professor Colin Bean (Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow) for reviewing and commenting on the manuscript. VKM emphasises that the referees are not responsible for the content of the final opinion. In accordance with VKM’s routines for approval of a risk assessment, VKM received the referees' comments before evaluation and approval by the Panel and prior to publication. VKM would also like to thank Dr. Rune Muladal (Naturtjenester i Nord) and Professor Katherine Dunlop (Institute of Marine Research, Bergen) for comments and discussions on potential measurements and ecological impact, respectively. Competence of VKM experts Persons working for VKM, either as appointed members of the Committee or as external experts, do this by virtue of their scientific expertise, not as representatives for their employers or third-party interests. The Civil Services Act instructions on legal competence apply for all work prepared by VKM. VKM Report 2020: 01 Table of Contents Summary .............................................................................................................. 10 Sammendrag på norsk ......................................................................................... 16 Glossary ................................................................................................................ 21 Background as provided by the Norwegian Environment Agency and Norwegian Food Safety Authority .................................................................................. 22 Terms of reference as provided by the Norwegian Environment Agency and Norwegian Food Safety Authority ................................................................ 24 1 Introduction ................................................................................................. 26 1.1 Invasive fish species ............................................................................................ 26 Problems related to invasive non-native fish ................................................ 26 Invasive fish in Norway .............................................................................. 26 1.2 Biology and ecology of pink salmon ....................................................................... 27 Taxonomy ................................................................................................ 27 Morphology and coloration ......................................................................... 27 Life cycle .................................................................................................. 29 Freshwater ecology ................................................................................... 32 Marine ecology .......................................................................................... 33 Vector for nutrients ................................................................................... 33 Native distribution ..................................................................................... 33 Introduction to Northwest Russia ................................................................ 34 Pink salmon in Norway............................................................................... 36 Influence of climate ................................................................................. 39 Previous risk assessments of pink salmon .................................................. 41 2 Methodology and data.................................................................................
Recommended publications
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Comment on G Marty Dcoument
    Critique of the Document “Information Regarding Concerns about Farmed Salmon - Wild Salmon Interactions” Presented to the Provincial Government of British Columbia by Gary Marty, D.V.M., Ph.D., Diplomate, A.C.V.P. of the British Columbia Ministry of Agriculture, Animal Health Centre, Abbotsford. Authors of this critique: Lawrence M. Dill1, Martin Krkosek2, Brendan Connors3, Stephanie J. Peacock4, Andrew W. Bateman5, Richard Routledge6, Mark A. Lewis7, and John Reynolds8 1 Professor Emeritus, Department of Biological Sciences, Simon Fraser University 2 Assistant Professor, Department of Ecology and Evolutionary Biology, University of Toronto 3 Senior Systems Ecologist, ESSA Technologies, and Adjunct Professor, Department of Biological Sciences, Simon Fraser University 4 PhD Candidate, Department of Biological Sciences, University of Alberta 5 Postdoctoral Fellow, Department of Biological Sciences, University of Alberta and Department of Ecology and Evolutionary Biology, University of Toronto 6 Professor, Department of Statistics and Actuarial Science, Simon Fraser University 7 Professor and Senior Canada Research Chair, Departments of Biological Sciences and Mathematical and Statistical Sciences, University of Alberta 8 Professor and Tom Buell BC Leadership Chair in Aquatic Conservation, Department of Biological Sciences, Simon Fraser University Background The document, “Information Regarding Concerns about Farmed Salmon - Wild Salmon Interactions,” dated March 16, 2015, was presented to Ministers Thompson and Letnik of the Government of British Columbia (BC) with the intention of providing scientific information upon which to base management and policy decisions regarding wild and farmed salmon in British Columbia. Collectively, we are a group of scientists, mostly academic, whose research expertise includes salmon and infectious diseases (here we refer to infectious diseases in the broadest sense as those that may arise from parasitic, viral or bacterial pathogens).
    [Show full text]
  • Cumulative Factors Potentially Impacting Wild Salmon Declines Kristina M
    Evolutionary Applications Evolutionary Applications ISSN 1752-4571 REVIEWS AND SYNTHESIS Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines Kristina M. Miller,1,2 Amy Teffer,3 Strahan Tucker,1 Shaorong Li,1 Angela D. Schulze,1 Marc Trudel,1,3 Francis Juanes,3 Amy Tabata,1 Karia H. Kaukinen,1 Norma G. Ginther,1 Tobi J. Ming,1 Steven J. Cooke,6 J. Mark Hipfner,5 David A. Patterson4 and Scott G. Hinch2 1 Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada 2 Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada 3 Biology Department, University of Victoria, Victoria, BC, Canada 4 Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science Branch, Burnaby, BC, Canada 5 Environment Canada, Wildlife Research Division, Delta, BC, Canada 6 Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton Univerisy, Ottawa, ON, Canada Keywords Abstract climate, coevolution, cumulative impacts, ecological impacts, infectious disease, Emerging diseases are impacting animals under high-density culture, yet few microparasite, predation, wild salmon studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infec- Correspondence tivity in wild populations, as once the host dies, there are limited opportunities Kristina M. Miller, Pacific Biological Station,
    [Show full text]
  • Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries
    AN ABSTRACT OF THE THESIS OF Sean Robert Roon for the degree of Master of Science in Microbiology presented on December 9, 2014. Title: Distribution and Coinfection of Microparasites and Macroparasites in Juvenile Salmonids in Three Upper Willamette River Tributaries. Abstract approved: ______________________________________________________ Jerri L. Bartholomew Wild fish populations are typically infected with a variety of micro- and macroparasites that may affect fitness and survival, however, there is little published information on parasite distribution in wild juvenile salmonids in three upper tributaries of the Willamette River, OR. The objectives of this survey were to document (1) the distribution of select microparasites in wild salmonids and (2) the prevalence, geographical distribution, and community composition of metazoan parasites infecting these fish. From 2011-2013, I surveyed 279 Chinook salmon Oncorhynchus tshawytscha and 149 rainbow trout O. mykiss for one viral (IHNV) and four bacterial (Aeromonas salmonicida, Flavobacterium columnare, Flavobacterium psychrophilum, and Renibacterium salmoninarum) microparasites known to cause mortality of fish in Willamette River hatcheries. The only microparasite detected was Renibacterium salmoninarum, causative agent of bacterial kidney disease, which was detected at all three sites. I identified 23 metazoan parasite taxa in these fish. Nonmetric multidimensional scaling of metazoan parasite communities reflected a nested structure with trematode metacercariae being the basal parasite taxa at all three sites. The freshwater trematode Nanophyetus salmincola was the most common macroparasite observed at three sites. Metacercariae of N. salmincola have been shown to impair immune function and disease resistance in saltwater. To investigate if N. salmincola affects disease susceptibility in freshwater, I conducted a series of disease challenges to evaluate whether encysted N.
    [Show full text]
  • Synopsis of the Parasites of Fishes of Canada
    1 ci Bulletin of the Fisheries Research Board of Canada DFO - Library / MPO - Bibliothèque 12039476 Synopsis of the Parasites of Fishes of Canada BULLETIN 199 Ottawa 1979 '.^Y. Government of Canada Gouvernement du Canada * F sher es and Oceans Pëches et Océans Synopsis of thc Parasites orr Fishes of Canade Bulletins are designed to interpret current knowledge in scientific fields per- tinent to Canadian fisheries and aquatic environments. Recent numbers in this series are listed at the back of this Bulletin. The Journal of the Fisheries Research Board of Canada is published in annual volumes of monthly issues and Miscellaneous Special Publications are issued periodically. These series are available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que. K I A 0S9. Make cheques or money orders payable in Canadian funds to the Receiver General for Canada. Editor and Director J. C. STEVENSON, PH.D. of Scientific Information Deputy Editor J. WATSON, PH.D. D. G. Co«, PH.D. Assistant Editors LORRAINE C. SMITH, PH.D. J. CAMP G. J. NEVILLE Production-Documentation MONA SMITH MICKEY LEWIS Department of Fisheries and Oceans Scientific Information and Publications Branch Ottawa, Canada K1A 0E6 BULLETIN 199 Synopsis of the Parasites of Fishes of Canada L. Margolis • J. R. Arthur Department of Fisheries and Oceans Resource Services Branch Pacific Biological Station Nanaimo, B.C. V9R 5K6 DEPARTMENT OF FISHERIES AND OCEANS Ottawa 1979 0Minister of Supply and Services Canada 1979 Available from authorized bookstore agents, other bookstores, or you may send your prepaid order to the Canadian Government Publishing Centre, Supply and Services Canada, Hull, Que.
    [Show full text]
  • Rosten, Lyn, K. True, E. Wiseman, K
    National Wild Fish Health Survey California-Nevada Fish Health Center Annual Report for fiscal year 2005 National Wild Fish Health Survey Annual Progress Report FY 2005 Prepared by Lyn Rosten and Kimberly True California-Nevada Fish Health Center Center staff conducted the National Wild Fish Health Survey (NWFHS) in the 2004/2005 fiscal year by collecting fish tissue samples and performing laboratory tests for major fish pathogens in accordance with standardized procedures (NWFHS Laboratory Procedures Manual – 2005, ). This data is entered into a national database and is accessible to the public and resource managers, via the web, and can be viewed at: http://wildfishsurvey.fws.gov/ or http://www.esg.montana.edu/nfhdb/ Kimberly True, Assistant Project Leader Lyn Rosten, Biological Science Technician Eric Wiseman, Fishery Biologist Ken Nichols, Fishery Biologist Scott Foott, Project leader Ron Stone, Fishery Biologist Also assisted with field collections and lab work. 2 Abstract The National Wild Fish Survey (NWFHS), conducted by the U.S. Fish and Wildlife Service’s Fish Health Centers, assesses the prevalence and distribution of major fish pathogens in wild fish populations. In 2004-2005, the California-Nevada Fish Health Center (Ca-Nv FHC) focused on disease monitoring in the upper Klamath River basin. Pathogens associated with diseased fish in the Klamath River include bacteria (Flavobacterium columnare and motile aeromonad bacteria), digenetic trematode (presumptive Nanophyetus salmincola) and myxozoan parasites (Parvicapsula minibicornis and Ceratomyxa shasta). The incidence of two parasites Ceratomyxa shasta and Parvicapsula minibicornis in juvenile chinook salmon is of special concern. Another focus in 2004-2005 was done in collaboration with Nevada Division of Wildlife’s regional biologists.
    [Show full text]
  • List of the Pathogens Intended to Be Controlled Under Section 18 B.E
    (Unofficial Translation) NOTIFICATION OF THE MINISTRY OF PUBLIC HEALTH RE: LIST OF THE PATHOGENS INTENDED TO BE CONTROLLED UNDER SECTION 18 B.E. 2561 (2018) By virtue of the provision pursuant to Section 5 paragraph one, Section 6 (1) and Section 18 of Pathogens and Animal Toxins Act, B.E. 2558 (2015), the Minister of Public Health, with the advice of the Pathogens and Animal Toxins Committee, has therefore issued this notification as follows: Clause 1 This notification is called “Notification of the Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2561 (2018).” Clause 2 This Notification shall come into force as from the following date of its publication in the Government Gazette. Clause 3 The Notification of Ministry of Public Health Re: list of the pathogens intended to be controlled under Section 18, B.E. 2560 (2017) shall be cancelled. Clause 4 Define the pathogens codes and such codes shall have the following sequences: (1) English alphabets that used for indicating the type of pathogens are as follows: B stands for Bacteria F stands for fungus V stands for Virus P stands for Parasites T stands for Biological substances that are not Prion R stands for Prion (2) Pathogen risk group (3) Number indicating the sequence of each type of pathogens Clause 5 Pathogens intended to be controlled under Section 18, shall proceed as follows: (1) In the case of being the pathogens that are utilized and subjected to other law, such law shall be complied. (2) Apart from (1), the law on pathogens and animal toxin shall be complied.
    [Show full text]
  • Freshwater and Marine Prevalence of Nanophyetus Infections in Puget Sound
    Freshwater and Marine Prevalence of Nanophyetus infections in Puget Sound. Martin Chen1,Robert Conrad1,Bruce Stewart1, Paul Hershberger2 and Kevin Snekvik3 1Northwest Indian Fisheries Commission, OlympiaFish Health Assessment of outmigrating steelhead 2USGS‐Western Fisheries Research Center, Marrowstone Island Marine Field Station, Nordland 3Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman Nanophyetus salmincola lifecycle The first intermediate host is a snail Juga plicifera Juga silicula (Juga formerly known as Oxytrema) Salmon Poisoning Disease of dogs is caused by the bacterium Neorickettsia helminthoeca carried by Nanophyetus salmincola Remove posterior kidney and count numbers of metacercaria. (59) Kidney samples were placed in a sample bag, compressed between two glass plates and examined at 15X. Study Questions: 1. Is there a correlation between the lower return of steelhead to South Sound Rivers and the presence and intensity of N. salmincola infection? 2. Does the intensity of infection as outmigration proceeds suggest a causal effect between N. salmincola and poor marine survival? Sampling Design 5 Puget Sound watersheds Hatcheries Traps Lower River / Estuary 3 Offshore Areas • Whidbey Basin • Green / Duwamish • Nisqually % Prevalence of Nanophyetus salmincola, other parasites and organ pathology in steelhead smolts from four Puget Sound river basins in 2014. (n)= sample size Site N. Kidney Sanguinicola Gill Heart salmincola Myxosporean Pathology Pathology Skagit R. 5 (21) 40 (5) 0 (5) 0 (5) 0 (5) Whidbey 7 (42) 36 (31) 3 (31) 0 (31) 3 (31) Offshore Snohomish R. 0 (7) 20 (5) 0 (5) 0 (5) 0 (5) Green R. 73 (112) 12 (89) 0 (89) 28 (89) 45 (89) South‐Central 94 (15) 36 (14) 14 (14) 7 (14) 29 (14) Offshore Nisqually R.
    [Show full text]
  • The Salmon of Knowledge Free
    FREE THE SALMON OF KNOWLEDGE PDF none | none | 21 Feb 2013 | Poolbeg Press Ltd | 9781842235942 | English | Dublin, Ireland Legend of Finn Mac Cumhaill and the Salmon of Knowledge According to the story, an ordinary salmon ate nine The Salmon of Knowledge that fell into the Well of Wisdom an Tobar Segais from nine hazel trees that surrounded the well. By this act, the salmon gained The Salmon of Knowledge the world's knowledge. The first person to eat of its flesh would in turn gain this knowledge. The poet Finn Eces or Finegas spent seven years fishing for The Salmon of Knowledge salmon. Finally Finn caught the salmon and gave the fish to Fionn, his servant and son of Cumhaillwith instructions to cook it but on no account to eat any of it. Fionn cooked the salmon, turning The Salmon of Knowledge over and over, but when he touched the fish with his thumb to see if it was cooked, he burnt his finger on a drop of hot cooking fish fat. Fionn sucked on his burned finger to ease the pain. Little did Fionn know that all of the salmon's wisdom had been concentrated into that one drop of fish fat. When he brought the cooked meal to Finn Eces, his master saw that the boy's eyes shone with a previously unseen The Salmon of Knowledge. Finn Eces asked Fionn if he had eaten any of the salmon. Answering no, the boy explained what had happened. Finn Eces realized that Fionn had received the wisdom of the salmon, so gave him the rest of the fish to eat.
    [Show full text]
  • D070p001.Pdf
    DISEASES OF AQUATIC ORGANISMS Vol. 70: 1–36, 2006 Published June 12 Dis Aquat Org OPENPEN ACCESSCCESS FEATURE ARTICLE: REVIEW Guide to the identification of fish protozoan and metazoan parasites in stained tissue sections D. W. Bruno1,*, B. Nowak2, D. G. Elliott3 1FRS Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK 2School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, CRC Aquafin, University of Tasmania, Locked Bag 1370, Launceston, Tasmania 7250, Australia 3Western Fisheries Research Center, US Geological Survey/Biological Resources Discipline, 6505 N.E. 65th Street, Seattle, Washington 98115, USA ABSTRACT: The identification of protozoan and metazoan parasites is traditionally carried out using a series of classical keys based upon the morphology of the whole organism. However, in stained tis- sue sections prepared for light microscopy, taxonomic features will be missing, thus making parasite identification difficult. This work highlights the characteristic features of representative parasites in tissue sections to aid identification. The parasite examples discussed are derived from species af- fecting finfish, and predominantly include parasites associated with disease or those commonly observed as incidental findings in disease diagnostic cases. Emphasis is on protozoan and small metazoan parasites (such as Myxosporidia) because these are the organisms most likely to be missed or mis-diagnosed during gross examination. Figures are presented in colour to assist biologists and veterinarians who are required to assess host/parasite interactions by light microscopy. KEY WORDS: Identification · Light microscopy · Metazoa · Protozoa · Staining · Tissue sections Resale or republication not permitted without written consent of the publisher INTRODUCTION identifying the type of epithelial cells that compose the intestine.
    [Show full text]
  • UNIVERSITY of WISCONSIN-LA CROSSE Graduate Studies FISH
    UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies FISH HEALTH ASSESMENTS OF GREAT LAKES COREGONIDS A Manuscript Style Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Christopher M. Olds College of Science and Health Aquatic Science Concentration May, 2012 FISH HEALTH ASSESSMENTS OF GREAT LAKES COREGONIDS By Christopher M. Olds We recommend acceptance of this thesis in partial fulfillment of the candidate's requirements for the degree of Master of Science in Biology (Aquatic Sciences Concentration) The candidate has completed the oral defense of the thesis. A- r-1;)_ Date (-f--ZVIZ... Gregory Sanclt n , Ph.D. Date Thesis Committee Co-Chairperson .x IJ(..;{. 6/2 Roger H ro, P .D. I ate Thesis Committee Member 'd.--+ -J.o 12 Date Thesis Committee Member Thesis accepted 2 -"1~ -.?a/~ Robert H. Hoar, Ph.D. Date Associate Vice Chancellor for Academic Affairs ABSTRACT Olds, C. M. Fish health assessments of Great Lakes Coregonids. MS in Biology, May 2012, 70pp. (B. Lasee and G. Sandland) Health of Great Lakes coregonids is continuously monitored for the spread of pathogens because of their economic importance. An infectious disease and parasite survey was conducted to build on previous data collected in the past but to also examine other factors that may affect distribution of pathogens in Great Lakes lake whitefish, round whitefish, · and bloater populations. Coregonids (n=394) were collected from 3-4 regions in Lake Michigan, Lake Huron and Lake Superior and screened for target pathogens according to the procedures outlined in the AFS Blue Book Fish Health Section Inspection Manual.
    [Show full text]
  • Trout (Oncorhynchus Mykiss)
    Acta vet. scand. 1995, 36, 299-318. A Checklist of Metazoan Parasites from Rainbow Trout (Oncorhynchus mykiss) By K. Buchmann, A. Uldal and H. C. K. Lyholt Department of Veterinary Microbiology, Section of Fish Diseases, The Royal Veterinary and Agricultural Uni­ versity, Frederiksberg, Denmark. Buchmann, K., A. Uldal and H. Lyholt: A checklist of metazoan parasites from rainbow trout Oncorhynchus mykiss. Acta vet. scand. 1995, 36, 299-318. - An extensive litera­ ture survey on metazoan parasites from rainbow trout Oncorhynchus mykiss has been conducted. The taxa Monogenea, Cestoda, Digenea, Nematoda, Acanthocephala, Crustacea and Hirudinea are covered. A total of 169 taxonomic entities are recorded in rainbow trout worldwide although few of these may prove synonyms in future anal­ yses of the parasite specimens. These records include Monogenea (15), Cestoda (27), Digenea (37), Nematoda (39), Acanthocephala (23), Crustacea (17), Mollusca (6) and Hirudinea ( 5). The large number of parasites in this salmonid reflects its cosmopolitan distribution. helminths; Monogenea; Digenea; Cestoda; Acanthocephala; Nematoda; Hirudinea; Crustacea; Mollusca. Introduction kova (1992) and the present paper lists the re­ The importance of the rainbow trout Onco­ corded metazoan parasites from this host. rhynchus mykiss (Walbaum) in aquacultural In order to prevent a reference list being too enterprises has increased significantly during extensive, priority has been given to reports the last century. The annual total world pro­ compiling data for the appropriate geograph­ duction of this species has been estimated to ical regions or early records in a particular 271,478 metric tonnes in 1990 exceeding that area. Thus, a number of excellent papers on of Salmo salar (FAO 1991).
    [Show full text]