Cumulative Factors Potentially Impacting Wild Salmon Declines Kristina M
Evolutionary Applications Evolutionary Applications ISSN 1752-4571 REVIEWS AND SYNTHESIS Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines Kristina M. Miller,1,2 Amy Teffer,3 Strahan Tucker,1 Shaorong Li,1 Angela D. Schulze,1 Marc Trudel,1,3 Francis Juanes,3 Amy Tabata,1 Karia H. Kaukinen,1 Norma G. Ginther,1 Tobi J. Ming,1 Steven J. Cooke,6 J. Mark Hipfner,5 David A. Patterson4 and Scott G. Hinch2 1 Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada 2 Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada 3 Biology Department, University of Victoria, Victoria, BC, Canada 4 Fisheries and Oceans Canada, School of Resource and Environmental Management, Simon Fraser University, Science Branch, Burnaby, BC, Canada 5 Environment Canada, Wildlife Research Division, Delta, BC, Canada 6 Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton Univerisy, Ottawa, ON, Canada Keywords Abstract climate, coevolution, cumulative impacts, ecological impacts, infectious disease, Emerging diseases are impacting animals under high-density culture, yet few microparasite, predation, wild salmon studies assess their importance to wild populations. Microparasites selected for enhanced virulence in culture settings should be less successful maintaining infec- Correspondence tivity in wild populations, as once the host dies, there are limited opportunities Kristina M. Miller, Pacific Biological Station,
[Show full text]