Barium Based Halide Scintillator Ceramics for Gamma Ray Detection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Barium Chloride Dihydrate
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 432 TOXICOLOGY AND CARCINOGENESIS STUDIES OF BARIUM CHLORIDE DIHYDRATE (CAS NO. 10326-27-9) IN F344/N RATS AND B6C3Fl MICE (DRINKING WATER STUDIES) U.S. DEPARTMENT OF HEALTE AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Useof Animals. The prechronic and chronic studies were conducted in compliancewith Food and Drug Administration(FDA) Good Laboratory Practice Regulations, and all aspects of the chronic studies were subjectedto retrospective quality assurance audits before being presented for public review. -
Aldrich FT-IR Collection Edition I Library
Aldrich FT-IR Collection Edition I Library Library Listing – 10,505 spectra This library is the original FT-IR spectral collection from Aldrich. It includes a wide variety of pure chemical compounds found in the Aldrich Handbook of Fine Chemicals. The Aldrich Collection of FT-IR Spectra Edition I library contains spectra of 10,505 pure compounds and is a subset of the Aldrich Collection of FT-IR Spectra Edition II library. All spectra were acquired by Sigma-Aldrich Co. and were processed by Thermo Fisher Scientific. Eight smaller Aldrich Material Specific Sub-Libraries are also available. Aldrich FT-IR Collection Edition I Index Compound Name Index Compound Name 3515 ((1R)-(ENDO,ANTI))-(+)-3- 928 (+)-LIMONENE OXIDE, 97%, BROMOCAMPHOR-8- SULFONIC MIXTURE OF CIS AND TRANS ACID, AMMONIUM SALT 209 (+)-LONGIFOLENE, 98+% 1708 ((1R)-ENDO)-(+)-3- 2283 (+)-MURAMIC ACID HYDRATE, BROMOCAMPHOR, 98% 98% 3516 ((1S)-(ENDO,ANTI))-(-)-3- 2966 (+)-N,N'- BROMOCAMPHOR-8- SULFONIC DIALLYLTARTARDIAMIDE, 99+% ACID, AMMONIUM SALT 2976 (+)-N-ACETYLMURAMIC ACID, 644 ((1S)-ENDO)-(-)-BORNEOL, 99% 97% 9587 (+)-11ALPHA-HYDROXY-17ALPHA- 965 (+)-NOE-LACTOL DIMER, 99+% METHYLTESTOSTERONE 5127 (+)-P-BROMOTETRAMISOLE 9590 (+)-11ALPHA- OXALATE, 99% HYDROXYPROGESTERONE, 95% 661 (+)-P-MENTH-1-EN-9-OL, 97%, 9588 (+)-17-METHYLTESTOSTERONE, MIXTURE OF ISOMERS 99% 730 (+)-PERSEITOL 8681 (+)-2'-DEOXYURIDINE, 99+% 7913 (+)-PILOCARPINE 7591 (+)-2,3-O-ISOPROPYLIDENE-2,3- HYDROCHLORIDE, 99% DIHYDROXY- 1,4- 5844 (+)-RUTIN HYDRATE, 95% BIS(DIPHENYLPHOSPHINO)BUT 9571 (+)-STIGMASTANOL -
RFC: IRIS Barium and Compounds Substance File
October 29, 2002 Information Quality Guidelines Staff Mail Code 28221T U.S. EPA 1200 Pennsylvania Ave., N.W. Washington, DC, 20460 Subject: Request for Correction of the IRIS Barium and Compounds substance file - Information disseminated by EPA that does not comply with EPA or OMB Information Quality Guidelines Dear Madam or Sir; Chemical Products Corporation (CPC), a Georgia corporation which produces Barium and Strontium chemicals at its Cartersville, Georgia facility, hereby submits this Request for Correction (RFC) concerning EPA’s Integrated Risk Information System Barium and Compounds Substance File (IRIS Ba File). The influential information contained in this file fails to comply with the OMB “Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity of Information Disseminated by Federal Agencies”. The information disseminated in EPA’s IRIS Barium and Compounds file directly contradicts the information published by EPA in the January 3, 1997 Federal Register and, therefore, cannot represent an EPA consensus position. The IRIS Ba File was revised in 1998 and 1999, yet it contains no mention of the toxicological evaluation conducted by EPA’s Office of Pollution, Pesticides, and Toxic Substances reported in 62 FR 366-372 (No. 2, January 3, 1997). There is no explanation of how a radically different interpretation of the same data could be justified. The NOAEL employed to calculate the Oral Reference Dose in the IRIS Ba File is 0.21 mg/kg/day; there is no LOAEL associated with this NOAEL. The NOAEL reported in 62 FR 366-372 is 70 mg/kg/day in rats and 165 mg/kg/day in mice; these values are taken from a National Toxicology Program technical report and are associated with a LOAEL of 180 mg/kg/day. -
Chemical Resistance of NYCAST Materials
Chemical Resistance of NYCAST Materials Distributed by: Chemical Temp.0C conc.% rating Chemical Temp.0C conc.% rating ACETALDEHYDE 23 40 A BARIUM HYDROXIDE 23 100 G ACETAMIDE 23 50 G BARIUM NITRATE 23 100 G ACETC ACID 100 2 G BARIUM SULFATE 23 15 G ACETIC ACID 100 10 P BARIUM SULFIDE 23 100 G ACETIC ACID 23 2 G BEER 23 100 G ACETIC ACID 23 10 P BEET LIQUIDS 23 100 H ACETICANHYDRIDE 23 100 P BENZALDEHYDE 23 100 P ACETONE 23 100 G BENZALDEHYDE 23 0.3 G ACETONITRILE 23 100 G BENZENE 23 100 G ACETYL CHLORIDE 23 100 P BENZOIC ACID 23 100 P ACETYLENE 23 100 G BENZYL ALCOHOL 23 100 Q ACRYLONITRILE 23 100 G BENZVL CHLORIDE 23 100 G ALLYLALCOHOL 23 100 A BORAX 23 SAT G ALLYL CHLORIDE 23 100 G BORIC ACID 23 10 A ALUM 23 SAT A BRANDY 23 100 G ALUMINUM CHLORIDE 23 10 G BROMINE 23 100 Q ALUMINUM FLUORIDE 23 100 G BROMINE 23 10 Q ALUMINUM HYDROXIDE 23 100 G BUTANE 23 100 G ALUMINUM POTASSIUMSULPHATE 23 10 P BUTANOL 23 100 G ALUMINUM SULFATE 50 10 G BUTTER 23 100 G AMMONIA 23 10 G BUTIER MILK 23 100 G AMMONIA 100 10 G BUTYL ACETATE 23 100 G AMMONIUM ACETATE 23 100 G BUTYLENE 23 100 A AMMONIUM CARBONATE 23 100 G BUTYLENE GLYCOL 23 100 G AMMONIUM CHLORIDE 23 10 G BUTYRIC ACID 23 100 A AMMONIUM CHLORIDE 23 37 G CALCIUM BISULFIDE 23 100 G AMMONIUM FLUORIDE 23 100 G CALCIUM BISULFITE 50 100 G AMMONIUM HYDROXIDE 23 40 G CALCIUM CARBONATE 23 100 G AMMONIUM NITRATE 23 100 G CALCIUM CHLORIDE 23 SAT Q AMMONIUM PERSULFATE 23 100 Q CALCIUM CHLORIDE 100 SAT P AMMONIUM PHOSPHATE 23 100 G CALCIUM HYDROXIDE 50 100 G AMMONIUM SULPHATE 23 100 G CALCIUM HYPOCHLORITE 23 -
Net Ionic Equation Worksheet Answers
Honors Chemistry Name__________________________________ Period_____ Net Ionic Equation Worksheet READ THIS: When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a precipitation reaction, and the solid produced in the reaction is known as the precipitate. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms. There are three types of equations that are commonly written to describe a precipitation reaction. The molecular equation shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The complete ionic equation shows each of the aqueous compounds as separate ions. Insoluble substances are not separated and these have the symbol (s) written next to them. Water is also not separated and it has a (l) written next to it. Notice that there are ions that are present on both sides of the reaction arrow –> that is, they do not react. These ions are known as spectator ions and they are eliminated from complete ionic equation by crossing them out. The remaining equation is known as the net ionic equation. For example: The reaction of potassium chloride and lead II nitrate Molecular Equation: 2KCl (aq) + Pb(NO3)2 (aq) -> 2KNO3 (aq) + PbCl2 (s) + - 2+ 3– + – Complete Ionic Equation: 2K (aq) + 2Cl (aq) + Pb (aq) + 2NO (aq) -> 2K (aq) + 2NO3 (aq) + PbCl2 (s) - 2+ Net Ionic Equation: 2Cl (aq) + Pb (aq) -> PbCl2 (s) Directions: Write balanced molecular, ionic, and net ionic equations for each of the following reactions. -
Introduetion
THE CONCENTFL4TION OF RADIUM AND MESO- THORIUM BY FRACTIONAL CRYSTALLIZATION* BY JOHN I,. NIERMAN Introduetion MarkwaldlO and Soddyl' have shown independently that mesothorium is absolutely identical in chemical nature with radium and cannot be separated therefrom.** In consequence all radium separated from uranium minerals containing thorium, contains also the mesothorium in the mineral, and all preparations of mesothorium contain the radium that is present in the mineral from which the thorium is derived. In the extraction and recovery of the minute quantities of mesothorium and radium present in radioactive minerals, these elements become associated with barium and follow the barium throughout the process. The refining of mesothorium and radium then consists in separating these elements from barium, the method generally followed being fractional crystallization of the barium solution, first as chloride, and later as bromide. The mesothorium and radium continue to be enriched in the crystal fractions, and reduced in the succes- sive mother liquors. t In practice, l2 a fair concentration of acid is maintained throughout the chloride and bromide systems, for the reason ' that the factor of enrichment of mesothorium radium chloride from barium chloride and also of mesothorium radium bromide from barium bromide is regarded as more favorable in acid than in neutral solutions. While it has been shown3 that the crystallization factor is higher for bromides than for chlorides, the effect of the acidity of the solutions on the progress of * Abstract of a thesis submitted in partial fulfilment of the requirements for the degree of Master of Arts in the Graduate, School of the University of Missouri, August, 1919. -
Effects of Intravenous Injections of Radium Bromide. by R
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central EFFECTS OF INTRAVENOUS INJECTIONS OF RADIUM BROMIDE. BY R. BURTON-OPITZ AND GUSTAVE M. MEYER. (From the Laboratories of Physiology and Physiological Chemistry of Colum- bia University, at the College of Physicians and Surgeons, New York.) PLATE XVI. The present study was undertaken with a view of determining in a general way the effects of intravenous administration of ra- dium upon the circulation and respiration. The problem was sug- gested to us by Dr. William J. Gies, under whose guidance a number of researches, dealing with the more extensive question of the action of radium upon animal and vegetable cells, have re- cently been carried on in the laboratories of Columbia University.1 For the radium used in these experiments we are greatly in- debted to Mr. Hugo Lieber. It was supplied to us in the form of the bromide, in preparations of 240 , iooo, and io,ooo activities. The strength of the solution used was the same in all cases. It contained 45 rag. of the dry substance in 25 c. c. of the solvent; each cubic centimeter of the solution, therefore, contained 1.8 rag. of the radium preparation. The amount of the radium present varies directly with the ra- dio-activity. Preparations of ~,5oo,ooo activity are said to repre- sent pure radium bromide3 Taking this figure as the standard of purity, ~ .8 rag. of the radium preparation of io,ooo activity contained approximately only o.o~ 26 mg., the same quantity of the preparation of ~ooo activity contained o.ooi26 rag. -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
W1 Worked Answers
WORKSHOP ON STOICHIOMETRY Q1. Calculate the mass of 2.0 mol of silicon. Atomic weight of Si = 28.09 Mass of 2 mol of Si = 2.0 × 28.09 = 56.18 = 56 g (2 significant figures) Q2. Calculate the mass of 0.37 mol of barium chloride. Formula weight of BaCl 2 = 137.3 + (2 × 35.45) = 208.2 Mass of 0.37 mol of BaCl 2 = 0.37 × 208.2 = 77.034 = 77 g (2 significant figures) Q3. Calculate the amount (in mol) present in 2.8 g sulfur. n = m/M = 2.8/32.07 = 0.08731 = 0.087 (2 significant figures) Q4. Calculate the amount (in mol) present in 36.0 g of water. Molecular weight of water is 16.00 + (2 × 1.008) = 18.016 n = m/M = 36.0/18.016 = 1.998 = 2.00 (3 significant figures) Q5. Calculate the mass of 6.022 × 10 23 molecules of hydrogen. Molecular weight of H 2 = 2 × 1.008 = 2.016 23 n = 6.022 × 10 / NA = 1.000 mol m = n × M = 1.000 × 2.016 = 2.016 g (4 significant figures) Q6. Calculate the amount (in mol) present in 2.0 × 10 20 molecules of carbon dioxide. 20 –4 –4 n = 2.0 × 10 / NA = 3.321 × 10 = 3.3 × 10 mol (2 significant figures) Q7. Calculate the amount (in mol) present in 5.6 L of argon at STP. 1 mol of any gas at STP occupies 22.4 L ∴ 5.6 L of Ar = 5.6 / 22.4 = 0.25 mol Q8. -
Barium Chloride, Anhydrous MSDS # 79.00
Material Safety Data Sheet Page 1 of 2 Barium Chloride, Anhydrous MSDS # 79.00 Section 1: Product and Company Identification Barium Chloride, Anhydrous Synonyms/General Names: Barium Dichloride Product Use: For educational use only Manufacturer: Columbus Chemical Industries, Inc., Columbus, WI 53925. 24 Hour Emergency Information Telephone Numbers CHEMTREC (USA): 800-424-9300 CANUTEC (Canada): 613-424-6666 ScholAR Chemistry; 5100 W. Henrietta Rd, Rochester, NY 14586; (866) 260-0501; www.Scholarchemistry.com Section 2: Hazards Identification White crystalline powder; no odor. HMIS (0 to 4) Health 3 WARNING! Highly toxic by ingestion and skin irritant. Fire Hazard 0 Target organs: Circulatory system, Central nervous system, kidneys Reactivity 0 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Section 3: Composition / Information on Ingredients Barium Chloride, Dihydrate (10361-37-2), 100% Section 4: First Aid Measures Always seek professional medical attention after first aid measures are provided. Eyes: Immediately flush eyes with excess water for 15 minutes, lifting lower and upper eyelids occasionally. Skin: Immediately flush skin with excess water for 15 minutes while removing contaminated clothing. Ingestion: Call Poison Control immediately. Rinse mouth with cold water. Give victim 1-2 cups of water or milk to drink. Induce vomiting immediately. Inhalation: Remove to fresh air. If not breathing, give artificial respiration. Section 5: Fire Fighting Measures Non-flammable solid. When heated to decomposition, emits acrid fumes. 0 Protective equipment and precautions for firefighters: Use foam or dry chemical to extinguish fire. 3 0 Firefighters should wear full fire fighting turn-out gear and respiratory protection (SCBA). -
United States Patent (19) 11) 4,078,045 Nakayama Et Al
United States Patent (19) 11) 4,078,045 Nakayama et al. 45) Mar. 7, 1978 (54) PROCESS FOR PRODUCING CARBONYL (56) References Cited SULFIDE U.S. PATENT DOCUMENTS (75) Inventors: Yoshiki Nakayama, Shimizu; Hironobu Sano, Fuji; Sataro 2,992,897 7/1961 Applegathet al................... 423/416 Okamura; Kazunari Hirao, both of 3,764,661 10/1973 Kanazawa et al. .................. 423/416 Shizuoka, all of Japan Primary Examiner-Earl C. Thomas (73) Assignee: Ihara Chemical Industry Co., Ltd., Attorney, Agent, or Firm-Oblon, Fisher, Spivak, Tokyo, Japan McClelland & Maier 21) Appl. No.: 736,334 57 ABSTRACT 22) Filed: Oct. 28, 1976 Carbonyl sulfide is produced by reacting carbon mon (30) Foreign Application Priority Data oxide with sulfur in the presence of an alkaline earth metal compound selected from the group consisting of Apr. 28, 1976 Japan .................................. 51-48944 calcium, strontium or barium sulfides sulfates and ha (51) Int. C.’.............................................. C01B31/26 lides. 52) U.S. Cl. .................................................... 423/416 (58) Field of Search ................................. 423/414-416 6 Claims, 1 Drawing Figure U.S. Patent March 7, 1978 4,078,045 -a COS 4,078,045 1 2 However, when the conversion is low, carbon mon PROCESS FOR PRODUCING CARBONYL oxide of the unreacted material contained in the reac SULFIDE tion mixture gas at high ratio should be separated and recovered from carbonyl sulfide. Accordingly, the pro BACKGROUND OF THE INVENTION cess is not satisfactory for the industrial operation. The present invention relates to an improved process On the other hand, in the process for reacting carbon for producing carbonyl sulfide which is useful as the monoxide with sulfur in the presence of the alkali metal intermediate for agriculture chemicals, medicines and sulfide such as sodium or potassium sulfide, the catalytic other chemical compounds. -
Download Author Version (PDF)
Analytical Methods Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/methods Page 1 of 21 Analytical Methods 1 2 3 4 Multi-element analysis of sulfuric acid by oaTOF-ICP-MS after matrix 5 6 modification with barium bromide 7 8 9 10 11 Lenka Husáková*, Iva Urbanová, Tereza Šídová, Tomáš Mikysek 12 13 14 Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, 15 16 Pardubice, Studentska 573 HB/D, CZ-532 10, Czech Republic 17 18 19 20 21 * Corresponding author: Tel. +420 466 037 029 fax: +420 466 037 068 Manuscript 22 23 E-mail address: [email protected] 24 25 26 27 28 29 30 31 Accepted 32 33 34 35 36 37 38 39 40 Methods 41 42 43 44 45 46 47 48 49 50 51 Analytical 52 53 54 55 56 57 58 59 60 1 Analytical Methods Page 2 of 21 1 2 3 Abstract 4 5 6 In this work a novel method for simultaneous multi-element analysis of sulfuric acid by 7 8 inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (oaTOF- 9 10 ICP-MS) after matrix modification with barium bromide was introduced.