Plant Anatomy Richard Crang† Sheila Lyons-Sobaski Robert Wise Plant Anatomy

Total Page:16

File Type:pdf, Size:1020Kb

Plant Anatomy Richard Crang† Sheila Lyons-Sobaski Robert Wise Plant Anatomy Plant Anatomy Richard Crang† Sheila Lyons-Sobaski Robert Wise Plant Anatomy A Concept-Based Approach to the Structure of Seed Plants Richard Crang† Sheila Lyons-Sobaski Department of Plant Biology Biology Department University of Illinois at Urbana-Champaign Albion College Urbana, IL Albion, MI USA USA Robert Wise Biology Department University of Wisconsin, Oshkosh Oshkosh, WI USA †Deceased ISBN 978-3-319-77208-0 ISBN 978-3-319-77315-5 (eBook) https://doi.org/10.1007/978-3-319-77315-5 Library of Congress Control Number: 2018948823 © Springer Nature Switzerland AG 2018, corrected publication 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita- tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or infor- mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica- tion does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Cover illustration: SEM of Alium sp. leaf cross section and LM of Clematis sp. stem cross-section. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Richard was a vital contributor to this project from its infancy to its final production phase. We take some comfort that he knew the book was essentially complete prior to his passing. We greatly miss our colleague and friend, and so we dedicate this book to Richard who was a courageous and venturesome guy, a brilliant scholar, an innovative teacher, and a kind, thoughtful man. SLS and RRW Preface The science of plant anatomy extends back made a substantial effort to update the to the late seventeenth century and, by subject matter, reveal new ways in which now, spans over 300 years and encom- aspects of plant anatomy play a key role in passes hundreds of thousands of reports in a variety of related disciplines in plant the scientific literature. The early plant biology, and present the topics in an anatomy research was summarized in understandable and interesting manner to 1899 by Dr. Hans Solereder in his two vol- the student and instructor. Heavy reliance ume work entitled Systematische Anatomie was made on original light and electron der Dicotyledonen: Ein Handbuch für Lab- micrographs, and color has been used oratorien der wissenschaftlichen und ange- extensively. Literature citations were kept wandten Botanik. The 1908 English to a minimum because, in today’s elec- translation by Boodle, Fritsch, and Scott tronically searchable world, a wealth of remains as fresh, informative, and useful knowledge on any topic is a mere click or today as when it was published over two away. 100 years ago. Several important texts were published in the 1950s. The two-volume This effort was started over two decades work of Metcalfe and Chalk, Anatomy of ago when a collaboration between Prof. the Dicotyledons (1950) with second edi- Richard Crang of the University of Illinois tions in 1979 (Volume 1) and 1983 (Vol- at Urbana-Champaign and Prof. Andrey ume 2), is a thorough survey of anatomical Vassilyev of the Komarov Botanical Insti- traits and features arranged by family. tute in St. Petersburg, Russia, identified the Some of the taxonomy has been rear- need for novel approaches to the teaching ranged, but the anatomical references of plant anatomy. This led to the develop- remain accurate and valuable. The year ment that used modern educational tech- 1953 saw the publication of the first edi- nologies in a searchable, compact disk tion of the classic Plant Anatomy by Kath- format that presented a traditional view erine Esau. Encyclopedic in its coverage, regarding the anatomy of temperate seed insightful in interpretation, and complete plants, their place in evolution, and taxo- in its synthesis, “Esau” (as it has been nomic relations, with a novel approach in referred to by several generations of bota- subject delivery. Although Prof. Vassilyev nists) remains a go-to reference to this day. died in 2012, his significant contributions A second edition was released in 1977 and to botany must not be overlooked. Edu- Dr. Ray Evert authored the third, revised cated in dendrology, he devoted his life to edition, published in 2006. Additionally, plant anatomy, specializing in plant secre- the 1988 Plant Anatomy by Dr. James tory structures. Dr. Vassilyev worked at the Mauseth and Dr. Avraham Fahn’s 1967 Komarov Botanical Institute and Garden Plant Anatomy (4th edition in 1990) in St. Petersburg (formerly Leningrad), belong on every plant anatomist’s book Russia, and rose to the position of Lead shelf as valuable references. Scientist at that institute. His contributions in the field of plant anatomy, and to the In 2018, plant anatomy continues to play beginnings of this project, must be noted. key roles in studies of molecular plant biology, forestry, plant pathology, plant It has been felt for some time that a new physiology, horticulture, agronomy, and a and more extensive approach to the teach- host of related botanical disciplines. There- ing of plant anatomy should be developed. fore, the authors of this plant anatomy Such plans began in 2013 and grew to resource – printed book and e-book – have include two established plant biologists VII Preface with extensive backgrounds in plant anat- ground in microscopy applications as well omy. Prof. Robert Wise of the University of as years of experience in teaching courses Wisconsin at Oshkosh and Dr. Sheila and research in plant anatomy to this Lyons-Sobaski from Albion College in effort. Michigan each bring new ideas and ­experiences to this effort in publishing. May the concepts of plant structure and Prof. Wise integrates anatomy and elec- development help open our minds to a tron microscopy with a full background in better understanding of the interrelation- plant physiology, and Dr. Lyons-Sobaski ship of life in its various forms throughout has added strength in ecology and evolu- the Earth and, perhaps, beyond. And may tion with relevance to plant anatomy. Prof. this text help, in a limited way, to aid in Emeritus Crang conveyed a lengthy back- that fuller understanding. Richard Crang† Urbana, IL, USA Sheila Lyons-Sobaski Albion, MI, USA Robert Wise Oshkosh, WI, USA †Deceased The original version of this book was revised. The correction to this book can be found at https://doi.org/10.1007/978-3-319-77315-5_20 Acknowledgments Support from the following persons has Dr. Brett Jestrow, Fairchild Tropical been invaluable to the success of this Botanic Garden, Miami ­project. With their help, the authors gained access to literally thousands of prepared Mr. Tom Perzentka, University of Wiscon- slides and specimens and were able to con- sin, Oshkosh, WI struct a library of over 10,000 images that formed the basis of this book project. Their Dr. Brian Piasecki, Lawrence University, assistance is greatly appreciated. We par- Appleton, WI ticularly wish to acknowledge and thank Dr. George Rogers, Palm Beach State Col- Eric Stannard, Senior Botany Editor, lege, Palm Beach Gardens, FL Springer for all his help and support in this project. Ms. JoAnn Stamm, Lawrence University, Appleton, WI Dr. Ranessa Cooper, Western Illinois Uni- versity, Macomb, Illinois Dr. Qiang Sun, University of Wisconsin, Stevens Point, WI Dr. John D. Curtis, University of Wiscon- sin, Stevens Point, WI This work was supported by grants from the Hewlett-Mellon Fund for Faculty Mr. John Hardy, University of Wisconsin, Development at Albion College, Albion, Stevens Point, WI MI and the University of Wisconsin Osh- kosh Faculty Development Program, Osh- Dr. James Horn, University of Wisconsin, kosh, WI. Green Bay, WI Dr. Harry Horner, Iowa State University, Ames, Iowa IX Contents I Plants as Unique Organisms; History and Tools of Plant Anatomy 1 The Nature of Plants �������������������������������������������������������������������������������������������������������������������� 3 1.1 Plants Have Multiple Pigments with Multiple Functions ���������������������������������������������������� 5 1.2 Plants Use Water, and the Properties of Water, in Unique Ways ��������������������������������������� 6 1.3 Plants Use Anabolic Metabolism to Manufacture Every Molecule Needed for Growth and Produce Virtually No Waste ������������������������������������������������������������ 8 1.4 Cell Walls Are Nonliving Matrices Outside the Plant Cell Membrane that House and/or Perform a Variety of Functions ������������������������������������������������������������������������� 9 1.5 The Plant Life Cycle Alternates Between a Haploid Gametophyte Stage and a ­Diploid Sporophyte Stage
Recommended publications
  • Beyond Plant Blindness: Seeing the Importance of Plants for a Sustainable World
    Sanders, Dawn, Nyberg, Eva, Snaebjornsdottir, Bryndis, Wilson, Mark, Eriksen, Bente and Brkovic, Irma (2017) Beyond plant blindness: seeing the importance of plants for a sustainable world. In: State of the World’s Plants Symposium, 25-26 May 2017, Royal Botanic Gardens Kew, London, UK. (Unpublished) Downloaded from: http://insight.cumbria.ac.uk/id/eprint/4247/ Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines. Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that • the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form • a hyperlink/URL to the original Insight record of that item is included in any citations of the work • the content is not changed in any way • all files required for usage of the item are kept together with the main item file. You may not • sell any part of an item • refer to any part of an item without citation • amend any item or contextualise it in a way that will impugn the creator’s reputation • remove or alter the copyright statement on an item. The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing [email protected].
    [Show full text]
  • Week 1 Topic: Plant Anatomy Reading: Chapter 42, Sections 1-3 I Have A
    Biology 103, Spring 2008 Dr. Karen Bledsoe Notes http://www.wou.edu/~bledsoek/ Week 1 Reading: Chapter 42, sections 1-3 Topic: Plant anatomy I have a friend who’s an artist, and he sometimes takes a view which I don’t agree with. He’ll hold up a flower and say, “Look how beautiful it is,” and I’ll agree. But then he’ll say, “I, as an artist, can see who beautiful a flower is. But you, as a scientist, take it all apart and it becomes quite dull.” I think he’s kind of nutty... There are all kinds of interesting questions that come from a knowledge of science, which only adds to the excitement and mystery of a flower. It only adds. Richard Feynman, What Do You Care What Other People Think? (1989, p. 11) Main concepts: • The cell is the basic unit of all living things. Tissues are made up of one or more types of cells, organs are made up of tissues, and systems are made up of organs. Most groups of multicellular organisms, including plants, are made up of multiple organ systems. • The organs and organ systems of a plant include roots (root system), stems, leaves, and flowers (shoot system) • Plants are divided into two broad groups, the monocots (single cotyledon in the seed) and dicots (two cotyledons in the seed). A number of structural differences make these two groups fairly easy to tell apart: • monocots: 3 petals and 3 sepals (though the sepals may look like the petals), parallel veins in the leaves, fibrous root system.
    [Show full text]
  • Redalyc.Radicular Anatomy of Twelve Representatives of the Catasetinae
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil Pedroso-de-Moraes, Cristiano; de Souza-Leal, Thiago; Brescansin, Rafael L.; Pettini-Benelli, Adarilda; das Graças Sajo, Maria Radicular anatomy of twelve representatives of the Catasetinae subtribe (Orchidaceae: Cymbidieae) Anais da Academia Brasileira de Ciências, vol. 84, núm. 2, junio, 2012, pp. 455-467 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32722628016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2012) 84(2): 455-467 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Radicular anatomy of twelve representatives of the Catasetinae subtribe (Orchidaceae: Cymbidieae) CRISTIANO PEDROSO-DE-MORAES1, THIAGO DE SOUZA-LEAL1 , RAFAEL L. BRESCANSIN1, ADARILDA PETTINI-BENELLI2 and MARIA DAS GRAÇAS SAJO3 1 Centro Universitário Hermínio Ometto (UNIARARAS), Av. Dr. Maximiliano Baruto, 500, Jd. Universitário, 13607-339 Araras, SP, Brasil 2 Universidade Federal de Mato Grosso, Herbário-Depto de Botânica, Caixa Postal 198, Centro, 78005-970 Cuiabá, MT, Brasil 3 Departamento de Botânica, IBUNESP, Caixa Postal 199, 13506-900 Rio Claro, SP, Brasil Manuscript received on December 20, 2010; accepted for publication on May 23, 2011 ABSTRACT Considering that the root structure of the Brazilian genera belonging to the Catasetinae subtribe is poorly known, we describe the roots of twelve representatives from this subtribe.
    [Show full text]
  • Plant Anatomy for the Twenty-First Century, Second Edition
    This page intentionally left blank An Introduction to Plant Structure and Development Plant Anatomy for the Twenty-First Century Second Edition This is a plant anatomy textbook unlike any other on the market today. As suggested by the subtitle, it is plant anatomy for the twenty-first cen- tury. Whereas traditional plant anatomy texts include primarily descriptive aspects of structure with some emphasis on patterns of development, this book not only provides a comprehensive coverage of plant structure, but also introduces, in some detail, aspects of the mechanisms of development, especially the genetic and hormonal controls, and the roles of the cytoskele- ton. The evolution of plant structure and the relationship between structure and function are also discussed throughout the book. Consequently, it pro- vides students and, perhaps, some teachers as well, with an introduction to many of the exciting, contemporary areas at the forefront of research, especially those areas concerning development of plant structure. Those who wish to delve more deeply into areas of plant development will find the extensive bibliographies at the end of each chapter indispensible. If this book stimulates a few students to become leaders in teaching and research in plant anatomy of the future, the goal of the author will have been accomplished. charles b. beck, Professor Emeritus of Botany at the University of Michi- gan, received his PhD degree from Cornell University where he developed an intense interest in the structure of fossil and living plants under the influence of Professor Harlan Banks and Professor Arthur Eames. Following post-doctoral study with Professor John Walton at Glasgow University in Scotland, he joined the faculty of the University of Michigan.
    [Show full text]
  • BI 103: Leaves Plant Anatomy: Vegetative Organs Introduction
    Plant Anatomy: Vegetative Organs Leaves: Stem: Photosynthesis Support BI 103: Leaves Gas exchange Transport Light absorption Storage An examination of leaves Chapter 43 cont. Roots: Anchorage Storage Form = Function Transport Absorption Introduction Adapted for Photosynthesis • Other functions of leaves: • Leaves are usually thin – Wastes from metabolic processes accumulate in leaves and are disposed of – High surface area-to-volume when leaves are shed. ratio – Promotes diffusion of carbon – Play major role in movement of water dioxide in, oxygen out absorbed by roots • Transpiration occurs when water evaporates • Leaves are arranged to from leaf surface. capture sunlight • Guttation - Root pressure forces water out hydathodes at tips of leaf veins in some plants. – Are held perpendicular to rays of sun – Arranged so they don’t shade one another Common Leaf Forms Internal Anatomy of Leaves Specialized structures: DICOT MONOCOT • Veins petiole axillary – surrounded by bundle sheath bud blade • Mesophyll node • Stomata– openings for gas exchange blade sheath node 1 leaf blade Leaf Vein (one vascular bundle) cuticle Epidermis: Cuticle leaf vein Upper Epidermis Palisade • Waxy cuticle secreted by epidermis cells Mesophyll stem • Protective layer against disease xylem Spongy • Reduced water loss from cells Water, dissolved Mesophyll mineral ions from roots and stems move into leaf Lower vein (blue arrow) Epidermis 50m phloem cuticle-coated cell of lower epidermis Photosynthetic products (pink one stoma (opening arrow) enter across epidermia) vein, will be Carbon transported Oxygen and water vapor dioxide in throughout outside air plant body diffuse out of leaf at enters leaf at stomata. stomata. Fig. 29-14, p.501 Guard Cells Dermal tissue • Epidermis - Single layer of cells covering the entire surface of the leaf – Devoid of chloroplasts – Coated with cuticle – Functions to protect tissues inside leaves – Waste materials may accumulate in epidermal cells.
    [Show full text]
  • Plant Anatomy,Morphology of Angiosperms and Plant Propagation
    IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-IV II BSC IV SEMESTER Plant Anatomy,Morphology of Angiosperms and Plant propagation SOLVED QUESTION BANK 1 IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions Unit-1 : Meristamatic tissues – structure, classification based on origin, 14 Hrs. position and function. Theories of Apical meristems -Histogen theory, Tunica-Corpus theory. Permanent tissues-Simple and Complex and Secretory tissues. Unit-2: Structure of Dicot & Monocot Root, Stem and Leaf. 8 Hrs. Unit-3: Secondary growth in Dicot stem, Anamalous secondary growth in 10 Hrs. Dracena and Boerhaavia. Wood anatomy-A brief account, types of wood (Spring, Autumn Duramen, Alburnum, Porus wood and Non Porous wood). Unit-4: Morphology of Angiosperms-Root System and its modifications, 20 Hrs. Shoot system and Stem modifications, Leaf and its modifications, Inflorescence, Floral morphology and Fruits. Unit-5 : Plant Propagation-Methods of Vegetative propagation- Natural- 8 Hrs. Rhizome, Tuber, Corm, Bulb, Sucker, Stolon and offset, Artificial- Stem Cutting, Grafting and Layering. 2 IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions 3 Plant Anatomy,Morphology of Angiosperms and Plant propagation SOLVED QUESTION BANK 2 MARKS QUESTIONS 1. What is meristematic tissue?Classify them basaed on Origin. Meristematic tissue is a group of cells that has power of continuous division.Cells are immature and young Meristematic tissue is commonly called as meristems. Types of meristematic tissue on the basis of origin: Promeristem (primodial meristem) Primary meristem Secondary meristem 2.
    [Show full text]
  • Anatomy of Flowering Plants
    This page intentionally left blank Anatomy of Flowering Plants Understanding plant anatomy is not only fundamental to the study of plant systematics and palaeobotany, but is also an essential part of evolutionary biology, physiology, ecology, and the rapidly expanding science of developmental genetics. In the third edition of her successful textbook, Paula Rudall provides a comprehensive yet succinct introduction to the anatomy of flowering plants. Thoroughly revised and updated throughout, the book covers all aspects of comparative plant structure and development, arranged in a series of chapters on the stem, root, leaf, flower, seed and fruit. Internal structures are described using magnification aids from the simple hand-lens to the electron microscope. Numerous references to recent topical literature are included, and new illustrations reflect a wide range of flowering plant species. The phylogenetic context of plant names has also been updated as a result of improved understanding of the relationships among flowering plants. This clearly written text is ideal for students studying a wide range of courses in botany and plant science, and is also an excellent resource for professional and amateur horticulturists. Paula Rudall is Head of Micromorphology(Plant Anatomy and Palynology) at the Royal Botanic Gardens, Kew. She has published more than 150 peer-reviewed papers, using comparative floral and pollen morphology, anatomy and embryology to explore evolution across seed plants. Anatomy of Flowering Plants An Introduction to Structure and Development PAULA J. RUDALL CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521692458 © Paula J.
    [Show full text]
  • Anatomy of Flowering Plants
    84 BIOLOGY CHAPTER 6 ANATOMY OF FLOWERING PLANTS 6.1 The Tissues You can very easily see the structural similarities and variations in the external morphology of the larger living organism, both plants and 6.2 The Tissue animals. Similarly, if we were to study the internal structure, one also System finds several similarities as well as differences. This chapter introduces 6.3 Anatomy of you to the internal structure and functional organisation of higher plants. Dicotyledonous Study of internal structure of plants is called anatomy. Plants have cells and as the basic unit, cells are organised into tissues and in turn the tissues Monocotyledonous are organised into organs. Different organs in a plant show differences in Plants their internal structure. Within angiosperms, the monocots and dicots are also seen to be anatomically different. Internal structures also show 6.4 Secondary adaptations to diverse environments. Growth 6.1 THE TISSUES A tissue is a group of cells having a common origin and usually performing a common function. A plant is made up of different kinds of tissues. Tissues are classified into two main groups, namely, meristematic and permanent tissues based on whether the cells being formed are capable of dividing or not. 6.1.1 Meristematic Tissues Growth in plants is largely restricted to specialised regions of active cell division called meristems (Gk. meristos: divided). Plants have different kinds of meristems. The meristems which occur at the tips of roots and shoots and produce primary tissues are called apical meristems (Figure 6.1). 2021-22 ANATOMY OF FLOWERING PLANTS 85 Central cylinder Cortex Leaf primordium Protoderm Shoot apical Meristematic zone Initials of central cylinder Root apical and cortex Axillary bud meristem Differentiating Initials of vascular tissue root cap Root cap Figure 6.1 Apical meristem: (a) Root (b) Shoot Root apical meristem occupies the tip of a root while the shoot apical meristem occupies the distant most region of the stem axis.
    [Show full text]
  • Alien Plants in Poland: Research Directions and Putting the Results Into Practice
    Biodiv. Res. Conserv. 35: 57-74, 2014 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2014-0021 Submitted 27.07.2014, Accepted 27.08.2014 Alien plants in Poland: research directions and putting the results into practice Barbara Tokarska-Guzik*, Katarzyna Bzdęga, Teresa Nowak, Agata Lewandowska, Małgorzata Gancarek & Małgorzata Frelich Department of Plant Systematics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland * corresponding author (e-mail: [email protected]) Abstract: The aim of this study was: (i) to complete and verify the prior review of research on alien plants conducted in Po- land and the practical use of their results, and (ii) to attempt to assess the contribution of the research from the area of Poland to the research conducted on an international level. The analysis was performed based on the information gathered during a literature search which covered the last 200 years, using over 1400 publications out of the 3000 which were available in the pool. As a result, the main areas of biological sciences in the context of the research undertaken on alien plants in Poland (distribution, ecology and biology of the species), the most common thematic studies (new species, new localities, and lists of alien species), and the most often investigated species, as well as tendencies over time were indicated. Although studies on the migration and distribution of alien plants in Poland have over 100 years of tradition, and the part of the studies conducted by Polish researchers contributes to the international scale research, it is still necessary to further analyse many issues and answer numerous questions.
    [Show full text]
  • Alien Plants in Poland: Research Directions and Putting the Results Into Practice
    Biodiv. Res. Conserv. 35: 57-74, 2014 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2014-0021 Submitted 27.07.2014, Accepted 27.08.2014 Alien plants in Poland: research directions and putting the results into practice Barbara Tokarska-Guzik*, Katarzyna Bzdęga, Teresa Nowak, Agata Lewandowska, Małgorzata Gancarek & Małgorzata Frelich Department of Plant Systematics, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland * corresponding author (e-mail: [email protected]) Abstract: The aim of this study was: (i) to complete and verify the prior review of research on alien plants conducted in Po- land and the practical use of their results, and (ii) to attempt to assess the contribution of the research from the area of Poland to the research conducted on an international level. The analysis was performed based on the information gathered during a literature search which covered the last 200 years, using over 1400 publications out of the 3000 which were available in the pool. As a result, the main areas of biological sciences in the context of the research undertaken on alien plants in Poland (distribution, ecology and biology of the species), the most common thematic studies (new species, new localities, and lists of alien species), and the most often investigated species, as well as tendencies over time were indicated. Although studies on the migration and distribution of alien plants in Poland have over 100 years of tradition, and the part of the studies conducted by Polish researchers contributes to the international scale research, it is still necessary to further analyse many issues and answer numerous questions.
    [Show full text]
  • Comparative Anatomy of the Absorption Roots of Terrestrial and Epiphytic Orchids
    83 Vol.51, n. 1 : pp.83-93, January-February 2008 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL Comparative Anatomy of the Absorption Roots of Terrestrial and Epiphytic Orchids Ana Sílvia Franco Pinheiro Moreira* and Rosy Mary dos Santos Isaias Universidade Federal de Minas Gerais; Instituto de Ciências Biológicas; Departamento de Botânica; [email protected]; 31270-901; Belo Horizonte - MG - Brasil ABSTRACT The present study compared roots of terrestrial and epiphytic Orchidaceae, analyzing the anatomical characteristics from an ecological point of view. The material was collected at three different sites in Minas Gerais / Brazil and was fixed in FAA. Transverse sections were obtained by freehand sections or from material previously embedded in Paraplast or Historesin. The prominent characteristics of the epiphytic group were: significant smaller perimeter, epidermis with 3 or more cell layers, U-thickened exodermal cell walls, O-thickened endodermal cell walls, and a low ratio between the caliber and the number of protoxylem arches. The terrestrial group presented simple or multiseriate epidermis, and exodermis and endodermis with typical Casparian strips. The anatomical characteristics should have evolved with several adaptations to distinct environments during evolutionary process. Key words: Orchids, terrestrial, epiphytic, anatomy, adaptations INTRODUCTION They have aerial roots with the function of fixation on substrate, and water and minerals absorption. The Orchidaceae constitute one of the largest The terrestrial species absorb their nutrients direct families of flowering plants, having around 20,000 from the soil, and may present three kinds of roots: species. They are unique in forms, colors and (1) one adapted to absorption, and fixation; (2) a flower structure.
    [Show full text]
  • Gagea Granatelii – Contribuţii Lacunoaşterea Structurii
    ROMÂNIA UNIVERSITATEA DIN BUCUREŞTI GRĂDINA BOTANICĂ “D. BRANDZA” ACTA HORTI BOTANICI BUCURESTIENSIS 44 2017 EDITORIAL BOARD Editor-in-Chief Anastasiu Paulina Deputy/ Managing Editor Camen-Comănescu Petronela Editorial Advisory Board Cristea Vasile, University “Babeş-Bolyai”, Cluj-Napoca, Romania Ingelög Torleif, Artdatabanken Swedish Species Information Centre, Uppsala, Swedish Janauer Georg, University of Wien, Austria Popescu Ioana, Drury University, Springfield, United States of America Tănase Cătălin, University “Al. I. Cuza”, Iaşi, Romania Toma Constantin, University “Al. I. Cuza”, Iaşi, Romania Editors Plant morphology & anatomy: Sârbu Anca, Smarandache Daniela Systematic botany & vegetation: Sârbu Ion, Anastasiu Paulina Plants, algae and fungi biodiversity: Şesan Tatiana Eugenia, Negrean Gavril, Anastasiu Paulina Plant physiology and biochemistry: Lazăr Daniela, Cogălniceanu Gina Plant genetics and biotechnology: Simon-Gruiţă Alexandra, Stoica Ileana Plant pathology: Şesan Tatiana Eugenia Horticulture: Iliescu Ana-Felicia Language Editors Anastasiu Andreea, 2 Ferry Hinksey Road, Oxford, OXON OX2 0BY, U.K. Technical Editors Meri Pogonariu, University of Bucharest, Romania Publisher: Editura Universităţii din Bucureşti Acta Horti Botanici Bucurestiensis (text and summaries in English) is published once a year by the Botanical Garden “D. Brandza”, University of Bucharest (Şoseaua Cotroceni 32, 060114, Bucureşti, România) and it is available for exchange. Scientific papers are also available online at: http://www.degruyter.com/view/j/ahbb ISSN 2359-7089 (on line) ISSN –L 1453-8830 CONTENTS Scientific papers Sîrbu C., Samuil C., Oprea A. – Meum athamanticum (Apiaceae) in the Eastern Carpathians, Romania ...................................................................................... 5 Strat D., Stoyanov S., Holobiuc I. – The Occurrence of the Allien Plant Species Cenchrus longispinus on the Danube Delta Shore (North West Black Sea Coast) – Threats and Possible Impact on the Local Biodiversity .................
    [Show full text]