REPRESENTATIONS of Sl2(C)

Total Page:16

File Type:pdf, Size:1020Kb

REPRESENTATIONS of Sl2(C) REPRESENTATIONS OF sl2(C) JAY TAYLOR Basic Definitions and Introduction Definition. A Lie algebra g is a vector space over a field k with an associated bilinear map [·; ·]: g × g ! g, such that the following hold: • [x; x] = 0 for all x 2 g, • [x; [y; z]] + [y; [z; x]] + [z; [x; y]] = 0 for all x; y; z 2 g. Note. We call the latter axiom of the above definition the Jacobi Identity. The idea of this axiom is to be a replacement for associativity, as we do not have that a Lie algebra is an associative algebra. We refer to the bilinear map [·; ·] as the Lie bracket of g. Example. (a) Let g be any vector space over any field k. Then we can endow g with the trivial bracket operation [x; y] = 0 for all x; y 2 g. We refer to this as an abelian Lie algebra. (b) Let k = R and let g = R3. We define a product structure on g using the standard vector product x ^ y for all x; y 2 g. In other words if x; y 2 g such that x = (x1; x2; x3) and y = (y1; y2; y3) then [x; y] = (x2y3 − x3y2; x3y1 − x1y3; x1y2 − x2y1): (c) Let V be any finite-dimensional vector space over a field k. We define the general linear Lie algebra gl(V ) to be the vector space of all linear maps from V to V , endowed with the commutator bracket [x; y] = x ◦ y − y ◦ x for all x; y 2 gl(V ): (d) We now define a matrix analogue for the Lie algebra in example (c). Let k be any field and let gl(n; k) be the vector space of all n × n matrices defined over k. Then gl(n; k) is a Lie algebra with Lie bracket given by [x; y] = xy − yx for all x; y 2 gl(n; k); i.e. the commutator bracket. Note that a basis for gl(n; k) as a vector space is given by the n × n unit matrices eij which have entry 1 in the ijth position and zeros elsewhere. We then see that the commutator bracket is given by [eij; ek`] = δjkei` − δi`ekj; where δij is the Kronecker delta. 1 2 JAY TAYLOR (e) Let k be any field and sl(2; k) = fx 2 gl(2; k) j tr(x) = 0g ⊂ gl(2; k) be the vector subspace of gl(2; k) whose elements have trace 0. Now if x; y 2 sl(2; k) then we will have [x; y] = xy − yx 2 sl(2; k) hence the commutator brackets gives sl(2; k) a Lie algebra structure. As a vector space it can be shown that sl(2; k) has a basis given by 0 1 0 0 1 0 e = f = h = : 0 0 1 0 0 −1 These elements have Lie bracket relations [e; f] = h,[h; f] = −2f,[h; e] = 2e. (f) Let A be an associative algebra over a field k. Clearly A is a vector space over k and we can give it the structure of a Lie algebra by endowing it with the commutator bracket [x; y] = xy − yx for all x; y 2 A. Definition. Let g be a Lie algebra over a field k then a derivation D : g ! g is a linear map which satisfies the Leibniz rule D([x; y]) = [D(x); y] + [x; D(y)] for all x; y 2 g: Let g be a Lie algebra over a field k then Der(g) the vector space of all derivations of g is a Lie algebra whose Lie bracket is given by the commutator bracket [D1;D2] = D1 ◦ D2 − D2 ◦ D1 for all D1;D2 2 Der(g). We define a very important derivation known as the adjoint operator. Let x 2 g then we define a map adx : g ! g by adx(y) = [x; y] for all y 2 g. Claim. For any Lie algebra g we have adx 2 Der(g) for all x 2 g. Proof. First of all we must show that adx is linear. For any α; β 2 k and y; z 2 g we have adx(αy + βz) = [x; αy + βz] = α[x; y] + β[x; z] = α adx(y) + β adx(z): Hence the map is linear. We now show that this map satisfies the Liebniz rule. For all y; z 2 g we have adx([y; z]) = [x; [y; z]] = −[y; [z; x]] − [z; [x; y]]; = [y; [x; z]] + [[x; y]; z]; = [adx(y); z] + [y; adx(z)]: Definition. For any Lie algebra g we call a derivation D 2 Der(g) an inner derivation if there exists an element x 2 g such that D = adx. Any derivation of g which is not an inner derivation is called an outer derivation. Note that the derivation adx is not to be confused with the adjoint homomorphism. We define the adjoint homomorphism to be the map ad : g ! gl(g) given by x 7! adx for all x 2 g. However, for this to make sense we must define what we mean by a Lie algebra homomorphism. REPRESENTATIONS OF sl2(C) 3 Definition. Let g1; g2 be Lie algebras defined over a common field k. Then a homomor- phism of Lie algebras ' : g1 ! g2 is a linear map of vector spaces such that '([x; y]) = ['(x);'(y)], i.e. it preserves the Lie bracket. Claim. The map ad : g ! gl(g) is a homomorphism of Lie algebras. Proof. Clearly this map is linear by the linearity properties of the Lie bracket. Hence to show this is a homomorphism we must show that ad[x;y] = [adx; ady] = adx ◦ ady − ady ◦ adx for all x; y 2 g. We do this by showing equivalence for all z 2 g ad[x;y](z) = [[x; y]; z] = −[z; [x; y]]; = [x; [y; z]] + [y; [z; x]]; = adx([y; z]) − ady([x; z]); = (adx ◦ ady − ady ◦ adx)(z): Definition. A representation of a Lie algebra g is a pair (V; ρ) where V is a vector space over k and ρ : g ! gl(V ) is a Lie algebra homomorphism. Example. (a) Take V to be any vector space over k and ρ = 0 to be the zero map. We call this the trivial representation of g. (b) The adjoint homomorphism of g is a representation of g with V = g and ρ = ad. We call this the adjoint representation of g. Alternatively instead of thinking of representations we can also consider modules for a Lie algebra g. Definition. Let g be a Lie algebra over a field k.A g-module is a pair (V; ·) where V is a vector space and · : g × V ! V is a map satisfying the following conditions for all x; y 2 g, v; w 2 V and λ, µ 2 k. • (λx + µy) · v = λ(x · v) + µ(y · v), • x · (λv + µw) = λ(x · v) + µ(x · w), • [x; y] · v = x · (y · v) − y · (x · v). The Universal Enveloping Algebra In the beginning one of the main stumbling blocks in the representation theory of Lie algebras was that the Lie algebra is not an associative algebra over k. This proves quite irritating as we already know a lot about the representation theory of associative algebras and we would like to apply this to Lie algebras. Enter the Universal Enveloping Algebra. Definition. Let g be a Lie algebra over k with basis xi and Lie bracket [·; ·] defined P k by [xi; xj] = k cijxk. The universal enveloping algebra U(g) is the associative algebra P k generated by the xi's with the defining relations xixj − xjxi = k cijxk. We call the k elements cij the structure constants of U(g). 4 JAY TAYLOR The Universal Enveloping Algebra of g is an associative algebra generated as \freely" as possible by g, (to quote [Hum78]), with respect to the bracket relations. This algebra is always infinite dimensional unless the Lie algebra is abelian. Example. (a) Let g = spanfx1g be a 1-dimensional Lie algebra over a field k. The only Lie bracket relation on g comes from [x1; x1] = 0. Therefore we only have one structure 1 constant c11 = 0 and hence U(g) is the polynomial algebra k[x1] in one variable. (b) Consider sl(2; k) for any field k. Now U(sl(2; k)) is a free algebra generated by e; f; g, which is subject to the relations ef − fe = h hf − fh = −2f he − eh = 2e: We know that sl(2; k) = spanffg ⊕ spanfhg ⊕ spanfeg. Therefore U(sl(2; k)) will contain U(spanffg), i.e. all polynomials in f. Similarly we will get that U(sl(2; k)) wil contain all polynomials in h and all polynomials in e. As well as this we will get U(sl(2; k)) contains all products of these elements. Theorem (Poincar´e-Birkoff-Witt or PBW Theorem). Let g be a finite dimensional Lie algebra over a field k and let x1; : : : ; xn be an ordered basis for g. Then the universal enveloping algebra U(g) will have a basis given by a1 an fx1 : : : xn j a1; : : : ; an > 0g: Proof. See section 17.4 of [Hum78]. We note that we have only stated the PBW Theorem for finite dimensional Lie algebras, (for ease of notation), but this works perfectly well for infinite dimensional Lie algebras as well. See section 17.3 of [Hum78] for more details. Corollary. The elements x1; : : : ; xn in U(g) are linearly independent and hence g is a vector subspace of U(g).
Recommended publications
  • Representations of the Symmetric Group and Its Hecke Algebra Nicolas Jacon
    Representations of the symmetric group and its Hecke algebra Nicolas Jacon To cite this version: Nicolas Jacon. Representations of the symmetric group and its Hecke algebra. 2012. hal-00731102v1 HAL Id: hal-00731102 https://hal.archives-ouvertes.fr/hal-00731102v1 Preprint submitted on 12 Sep 2012 (v1), last revised 10 Nov 2012 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Representations of the symmetric group and its Hecke algebra N. Jacon Abstract This paper is an expository paper on the representation theory of the symmetric group and its Hecke algebra in arbitrary characteristic. We study both the semisimple and the non semisimple case and give an introduction to some recent results on this theory (AMS Class.: 20C08, 20C20, 05E15) . 1 Introduction Let n N and let S be the symmetric group acting on the left on the set 1, 2, . , n . Let k be a field ∈ n { } and consider the group algebra kSn. This is the k-algebra with: k-basis: t σ S , • { σ | ∈ n} 2 multiplication determined by the following rule: for all (σ, σ′) S , we have t .t ′ = t ′ . • ∈ n σ σ σσ The aim of this survey is to study the Representation Theory of Sn over k.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]
  • DIFFERENTIAL GEOMETRY FINAL PROJECT 1. Introduction for This
    DIFFERENTIAL GEOMETRY FINAL PROJECT KOUNDINYA VAJJHA 1. Introduction For this project, we outline the basic structure theory of Lie groups relating them to the concept of Lie algebras. Roughly, a Lie algebra encodes the \infinitesimal” structure of a Lie group, but is simpler, being a vector space rather than a nonlinear manifold. At the local level at least, the Fundamental Theorems of Lie allow one to reconstruct the group from the algebra. 2. The Category of Local (Lie) Groups The correspondence between Lie groups and Lie algebras will be local in nature, the only portion of the Lie group that will be of importance is that portion of the group close to the group identity 1. To formalize this locality, we introduce local groups: Definition 2.1 (Local group). A local topological group is a topological space G, with an identity element 1 2 G, a partially defined but continuous multiplication operation · :Ω ! G for some domain Ω ⊂ G × G, a partially defined but continuous inversion operation ()−1 :Λ ! G with Λ ⊂ G, obeying the following axioms: • Ω is an open neighbourhood of G × f1g Sf1g × G and Λ is an open neighbourhood of 1. • (Local associativity) If it happens that for elements g; h; k 2 G g · (h · k) and (g · h) · k are both well-defined, then they are equal. • (Identity) For all g 2 G, g · 1 = 1 · g = g. • (Local inverse) If g 2 G and g−1 is well-defined in G, then g · g−1 = g−1 · g = 1. A local group is said to be symmetric if Λ = G, that is, every element g 2 G has an inverse in G.A local Lie group is a local group in which the underlying topological space is a smooth manifold and where the associated maps are smooth maps on their domain of definition.
    [Show full text]
  • A Natural Transformation of the Spec Functor
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 10, 69-91 (1968) A Natural Transformation of the Spec Functor IAN G. CONNELL McGill University, Montreal, Canada Communicated by P. Cohn Received November 28, 1967 The basic functor underlying the Grothendieck algebraic geometry is Spec which assigns a ringed space to each ring1 A; we denote the topological space by spec A and the sheaf of rings by Spec A. We shall define a functor which is both a generalization and a natural transformation of Spec, in a sense made precise below. Our setting is the category Proj, of commutative K-algebras, where k is a fixed ring, and specializations over K which are defined below. A k-algebra is, strictly speaking, a ring homomorphism pA : K -+ A (pa is called the representation or structural homomorphism) and a K-algebra homomorphism is a commutative triangle k of ring homomorphisms. As is customary we simplify this to “A is a K-algebra” and “4 : A -+ B is a K-algebra homomorphism”, when there can be no ambiguity about the p’s. When we refer to K as a K-algebra we mean of course the identity representation. 1. PRIMES AND PLACES Recall the definition of a place $ on the field A with values in the field B (cf. [6], p. 3). It is a ring homomorphism 4 : A, -+ B defined on a subring A, of A with the property that for all X, y E A, xy E A, , x 6 A, =Py E Ker 4.
    [Show full text]
  • Math 250A: Groups, Rings, and Fields. H. W. Lenstra Jr. 1. Prerequisites
    Math 250A: Groups, rings, and fields. H. W. Lenstra jr. 1. Prerequisites This section consists of an enumeration of terms from elementary set theory and algebra. You are supposed to be familiar with their definitions and basic properties. Set theory. Sets, subsets, the empty set , operations on sets (union, intersection, ; product), maps, composition of maps, injective maps, surjective maps, bijective maps, the identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence classes, partial and total orderings, the cardinality #X of a set X. The principle of math- ematical induction. Zorn's lemma will be assumed in a number of exercises. Later in the course the terminology and a few basic results from point set topology may come in useful. Group theory. Groups, multiplicative and additive notation, the unit element 1 (or the zero element 0), abelian groups, cyclic groups, the order of a group or of an element, Fermat's little theorem, products of groups, subgroups, generators for subgroups, left cosets aH, right cosets, the coset spaces G=H and H G, the index (G : H), the theorem of n Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the factor group G=N and the canonical map G G=N, homomorphism theorems, the Jordan- ! H¨older theorem (see Exercise 1.4), the commutator subgroup [G; G], the center Z(G) (see Exercise 1.12), the group Aut G of automorphisms of G, inner automorphisms. Examples of groups: the group Sym X of permutations of a set X, the symmetric group S = Sym 1; 2; : : : ; n , cycles of permutations, even and odd permutations, the alternating n f g group A , the dihedral group D = (1 2 : : : n); (1 n 1)(2 n 2) : : : , the Klein four group n n h − − i V , the quaternion group Q = 1; i; j; ij (with ii = jj = 1, ji = ij) of order 4 8 { g − − 8, additive groups of rings, the group Gl(n; R) of invertible n n-matrices over a ring R.
    [Show full text]
  • 10 Group Theory and Standard Model
    Physics 129b Lecture 18 Caltech, 03/05/20 10 Group Theory and Standard Model Group theory played a big role in the development of the Standard model, which explains the origin of all fundamental particles we see in nature. In order to understand how that works, we need to learn about a new Lie group: SU(3). 10.1 SU(3) and more about Lie groups SU(3) is the group of special (det U = 1) unitary (UU y = I) matrices of dimension three. What are the generators of SU(3)? If we want three dimensional matrices X such that U = eiθX is unitary (eigenvalues of absolute value 1), then X need to be Hermitian (real eigenvalue). Moreover, if U has determinant 1, X has to be traceless. Therefore, the generators of SU(3) are the set of traceless Hermitian matrices of dimension 3. Let's count how many independent parameters we need to characterize this set of matrices (what is the dimension of the Lie algebra). 3 × 3 complex matrices contains 18 real parameters. If it is to be Hermitian, then the number of parameters reduces by a half to 9. If we further impose traceless-ness, then the number of parameter reduces to 8. Therefore, the generator of SU(3) forms an 8 dimensional vector space. We can choose a basis for this eight dimensional vector space as 00 1 01 00 −i 01 01 0 01 00 0 11 λ1 = @1 0 0A ; λ2 = @i 0 0A ; λ3 = @0 −1 0A ; λ4 = @0 0 0A (1) 0 0 0 0 0 0 0 0 0 1 0 0 00 0 −i1 00 0 01 00 0 0 1 01 0 0 1 1 λ5 = @0 0 0 A ; λ6 = @0 0 1A ; λ7 = @0 0 −iA ; λ8 = p @0 1 0 A (2) i 0 0 0 1 0 0 i 0 3 0 0 −2 They are called the Gell-Mann matrices.
    [Show full text]
  • Universal Enveloping Algebras and Some Applications in Physics
    Universal enveloping algebras and some applications in physics Xavier BEKAERT Institut des Hautes Etudes´ Scientifiques 35, route de Chartres 91440 – Bures-sur-Yvette (France) Octobre 2005 IHES/P/05/26 IHES/P/05/26 Universal enveloping algebras and some applications in physics Xavier Bekaert Institut des Hautes Etudes´ Scientifiques Le Bois-Marie, 35 route de Chartres 91440 Bures-sur-Yvette, France [email protected] Abstract These notes are intended to provide a self-contained and peda- gogical introduction to the universal enveloping algebras and some of their uses in mathematical physics. After reviewing their abstract definitions and properties, the focus is put on their relevance in Weyl calculus, in representation theory and their appearance as higher sym- metries of physical systems. Lecture given at the first Modave Summer School in Mathematical Physics (Belgium, June 2005). These lecture notes are written by a layman in abstract algebra and are aimed for other aliens to this vast and dry planet, therefore many basic definitions are reviewed. Indeed, physicists may be unfamiliar with the daily- life terminology of mathematicians and translation rules might prove to be useful in order to have access to the mathematical literature. Each definition is particularized to the finite-dimensional case to gain some intuition and make contact between the abstract definitions and familiar objects. The lecture notes are divided into four sections. In the first section, several examples of associative algebras that will be used throughout the text are provided. Associative and Lie algebras are also compared in order to motivate the introduction of enveloping algebras. The Baker-Campbell- Haussdorff formula is presented since it is used in the second section where the definitions and main elementary results on universal enveloping algebras (such as the Poincar´e-Birkhoff-Witt) are reviewed in details.
    [Show full text]
  • GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS of AFFINE LIE ALGEBRAS 1. Introduction in This Paper, We Continue the Study ([2, 3
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 360, Number 6, June 2008, Pages 2923–2940 S 0002-9947(07)04394-2 Article electronically published on December 11, 2007 GRADED LEVEL ZERO INTEGRABLE REPRESENTATIONS OF AFFINE LIE ALGEBRAS VYJAYANTHI CHARI AND JACOB GREENSTEIN Abstract. We study the structure of the category of integrable level zero representations with finite dimensional weight spaces of affine Lie algebras. We show that this category possesses a weaker version of the finite length property, namely that an indecomposable object has finitely many simple con- stituents which are non-trivial as modules over the corresponding loop algebra. Moreover, any object in this category is a direct sum of indecomposables only finitely many of which are non-trivial. We obtain a parametrization of blocks in this category. 1. Introduction In this paper, we continue the study ([2, 3, 7]) of the category Ifin of inte- grable level zero representations with finite-dimensional weight spaces of affine Lie algebras. The category of integrable representations with finite-dimensional weight spaces and of non-zero level is semi-simple ([16]), and the simple objects are the highest weight modules. In contrast, it is easy to see that the category Ifin is not semi-simple. For instance, the derived Lie algebra of the affine algebra itself provides an example of a non-simple indecomposable object in that category. The simple objects in Ifin were classified in [2, 7] but not much else is known about the structure of the category. The category Ifin can be regarded as the graded version of the category F of finite-dimensional representations of the corresponding loop algebra.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Notes on Representations of Finite Groups
    NOTES ON REPRESENTATIONS OF FINITE GROUPS AARON LANDESMAN CONTENTS 1. Introduction 3 1.1. Acknowledgements 3 1.2. A first definition 3 1.3. Examples 4 1.4. Characters 7 1.5. Character Tables and strange coincidences 8 2. Basic Properties of Representations 11 2.1. Irreducible representations 12 2.2. Direct sums 14 3. Desiderata and problems 16 3.1. Desiderata 16 3.2. Applications 17 3.3. Dihedral Groups 17 3.4. The Quaternion group 18 3.5. Representations of A4 18 3.6. Representations of S4 19 3.7. Representations of A5 19 3.8. Groups of order p3 20 3.9. Further Challenge exercises 22 4. Complete Reducibility of Complex Representations 24 5. Schur’s Lemma 30 6. Isotypic Decomposition 32 6.1. Proving uniqueness of isotypic decomposition 32 7. Homs and duals and tensors, Oh My! 35 7.1. Homs of representations 35 7.2. Duals of representations 35 7.3. Tensors of representations 36 7.4. Relations among dual, tensor, and hom 38 8. Orthogonality of Characters 41 8.1. Reducing Theorem 8.1 to Proposition 8.6 41 8.2. Projection operators 43 1 2 AARON LANDESMAN 8.3. Proving Proposition 8.6 44 9. Orthogonality of character tables 46 10. The Sum of Squares Formula 48 10.1. The inner product on characters 48 10.2. The Regular Representation 50 11. The number of irreducible representations 52 11.1. Proving characters are independent 53 11.2. Proving characters form a basis for class functions 54 12. Dimensions of Irreps divide the order of the Group 57 Appendix A.
    [Show full text]