Years of Excellence 1970 – 2010

Total Page:16

File Type:pdf, Size:1020Kb

Years of Excellence 1970 – 2010 DOE/NA/28302-992 January 2011 40 Years of Excellence 1970 – 2010 Robert L. McCrory LLE Director, 1983–Present Robert L. Sproull Donald K. Hess University of Rochester University of Rochester President Emeritus Vice President Emeritus Moshe J. Lubin Jay M. Eastman LLE Founding Director LLE Director, 1981–1982 1970–1981 ZETA Laser OMEGA 24-Beam Laser 1978 1980 OMEGA EP Laser OMEGA 60-Beam Laser 2008 1995 Omega Laser Facility 2008 Cover Photos Top (left to right): Moshe J. Lubin, the founding director of the Laboratory; Robert L. Sproull, University of Rochester President at the time of the Laboratory’s founding; Robert L. McCrory, present LLE CEO and Director; Donald K. Hess, University of Rochester Vice President at the time of the Laboratory’s founding and, along with Sproull, key to its successful implementation; Jay M. Eastman, LLE Director 1981–1982 and project manager for the original OMEGA 24-beam Laser System. Bottom (left to right): The ZETA target chamber used to conduct experiments with the first six beams of the 24-beam OMEGA system; the OMEGA EP laser (LLE’s latest laser facility) activated in 2008; the 60-beam OMEGA target chamber area during a target shot taken in 2008; the 60-beam OMEGA laser amplifiers during a shot taken during the system activation in 1995; and the original 24-beam OMEGA laser activated in 1980. In the background is a photograph taken of a target shot inside the target chamber of the 60-beam OMEGA laser. This report was prepared as an account of work conducted by the Laboratory for Laser Energetics and sponsored by New York State Energy Research and Development Authority, the University of Rochester, the U.S. Department of Energy, and other agencies. Neither the above named sponsors, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, mark, Printed in the United States of America manufacturer, or otherwise, does not necessarily constitute or imply its Available from endorsement, recommendation, or favoring by the United States Government National Technical Information Services or any agency thereof or any other sponsor. Results reported herein should U.S. Department of Commerce not be taken as necessarily final results as they represent active research. The 5285 Port Royal Road views and opinions expressed herein do not necessarily state or reflect those Springfield, VA 22161 of any of the above sponsoring entities. www.ntis.gov The work described in this volume includes current research at the Laboratory for Laser Energetics, which is supported by New York State Energy Research and Development Authority, the University of Rochester, the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agree- ment No. DE-FC52-08NA28302, and other agencies. For questions or comments, Laboratory for Laser Energetics, 250 East River Road, Rochester, NY 14623-1299, (585) 275-5286. www.lle.rochester.edu DOE/NA/28302-992 January 2011 Highlights of the History of the University of Rochester’s Laboratory for Laser Energetics Foreword versity because of the excellence and expertise of both the This year the University of Rochester’s Laboratory for Laser University of Rochester faculty and the Rochester commu- Energetics (LLE) celebrates its 40th year. An anniversary pro- nity in the physical sciences, particularly physics and optics. vides the opportunity to reflect on the triumphs and difficulties Exceptional leadership at the University, especially that of the of the past and to be reinvigorated by future challenges and University’s 7th President, Robert L. Sproull, a well-respected goals that must be set and achieved. LLE accomplishments, physicist and administrator as well as a former director of the marked by the innovation and brilliance that have received U.S. Government’s Advanced Research Projects Agency, led international attention for 40 years, have been possible because to the establishment of the Laboratory in 1970. This document, of the dedication, talent, creativity, and resolve of the research prepared in large part by Dr. John Soures, whose professional team—the scientists, faculty, students, and staff of the Labo- career spans LLE’s entire history, provides a brief history of the ratory. Equally important in our history are the support and Laboratory for Laser Energetics as we prepare for what is most funding LLE has received from our major sponsors including likely the most exciting time in history in the quest and grand the University, private industry, the State of New York, and challenge to tame nuclear fusion for the good of mankind. the Federal government. The collective accomplishments of the Laboratory are testimony to the tradition of scientific and Thermonuclear fusion is the process by which low-atomic- technical excellence that marks the rich history of the Univer- weight nuclei such as hydrogen combine to form a higher- sity of Rochester. atomic-weight nucleus such as helium. Two isotopes of hydro- gen—deuterium (composed of a hydrogen nucleus containing LLE is a unique national resource for research and education one neutron and one proton) and tritium (a hydrogen nucleus in science and technology and a major asset of the University. containing one proton and two neutrons)—provide the most The Rochester area and the University have a history of inno- energetically favorable fusion reactants. In the fusion process vation that provides a singular environment for LLE within a some of the mass of the original nuclei is transformed to energy technologically sophisticated scientific community, resulting in in the form of high-energy particles. Energy from fusion reac- substantial regional economic impact. Established in 1970 as a tions is the most basic form of energy in the universe; our sun center for the investigation of the interaction of intense radia- and all other stars produce energy by thermonuclear fusion tion with matter, LLE has a five-fold mission: (1) to conduct reactions. The most significant long-term potential commercial laser-fusion implosion experiments in support of the National application of fusion is the generation of electric power. Fusion Inertial Confinement Fusion (ICF) program; (2) to develop new does not generate nuclear waste nor does it enhance nuclear laser and materials technologies; (3) to provide education in proliferation concerns, in contrast to the nuclear fission reactors electro-optics, high-power lasers, high-energy-density physics, currently in use. The fuel for fusion, which occurs naturally in plasma physics, and nuclear fusion technology; (4) to conduct water, is essentially inexhaustible. A demonstration of “igni- research and development in advanced technology related to tion,” the beginning of a self-sustaining fusion reaction, in the high-energy-density physics; and (5) to operate the National laboratory is expected in the next few years on the National Laser Users’ Facility (NLUF). Ignition Facility (NIF), a $3.5 billion facility built by the U.S. Department of Energy’s National Nuclear Security The year 2010 marks the 50th anniversary of the inven- Administration at Lawrence Livermore National Laboratory. tion of the laser. The year is also the 81st anniversary of The LLE is one of the four institutional partners in the NIF and, as Institute of Optics, one of the exceptional departments within part of this National effort, is justifiably proud to stand on the the Hajim School of Engineering and Applied Sciences. The threshold of the realization of fusion energy with our national potential of the laser was immediately recognized at the Uni- research partners. i HigHligHts of tHe History of tHe laboratory for laser energetics The OMEGA Laser System and the OMEGA EP Laser LLE’s activities include the development of technologies System are the pre-eminent facilities within the inertial fusion to support its research mission. As a relatively small facility, and high-energy-density physics communities that support an competing with the national laboratories, LLE has relied on its important national mission. Extensive use of OMEGA is essen- technology development to perform cutting-edge research and tial to the national program to achieve ignition, to provide laser to maintain a competitive advantage. Technology development facility time for national laboratory experiments, and to operate provides a fertile opportunity to develop sources of external the NLUF. OMEGA is the staging and support facility for the funding, to stimulate collaboration with River Campus faculty, NIF. External users currently account for approximately 50% and to establish interactions with industry. A number of LLE- of the use of OMEGA. LLE’s principal collaborating institu- developed technologies have been commercialized, benefiting tion in inertial fusion research is Lawrence Livermore National local and national companies. Laboratory (LLNL). Additionally, the Laboratory benefits from strong strategic alliances with the Massachusetts Institute of Tech- On a personal note, the 40th anniversary of the Laboratory nology (MIT) and the State University of New York (SUNY) is a very special occasion. It is my great privilege and pleasure at Geneseo to further its educational mission and increase the to have served as Director since 1983. I have been at LLE dur- number of technically qualified people in the field. ing the most intensely productive period of the Laboratory’s history as we grew large enough to be effective and remained The long-term viability of the Laboratory has been due in small enough to be agile. We are now in a position to see the part to a strategy that contains options that have been respon- promise of fusion realized. The Laboratory is one element that sive to changing national research priorities and the complex makes the University of Rochester a unique institution among political realities associated with any large national effort.
Recommended publications
  • Footnotes for ATOMIC ADVENTURES
    Footnotes for ATOMIC ADVENTURES Secret Islands, Forgotten N-Rays, and Isotopic Murder - A Journey into the Wild World of Nuclear Science By James Mahaffey While writing ATOMIC ADVENTURES, I tried to be careful not to venture off into subplots, however interesting they seemed to me, and keep the story flowing and progressing at the right tempo. Some subjects were too fascinating to leave alone, and there were bits of further information that I just could not abandon. The result is many footnotes at the bottom of pages, available to the reader to absorb at his or her discretion. To get the full load of information from this book, one needs to read the footnotes. Some may seem trivia, but some are clarifying and instructive. This scheme works adequately for a printed book, but not so well with an otherwise expertly read audio version. Some footnotes are short enough to be inserted into the audio stream, but some are a rambling half page of dense information. I was very pleased when Blackstone Audio agreed wholeheartedly that we needed to include all of my footnotes in this version of ATOMIC ADVENTURES, and we came up with this added feature: All 231 footnotes in this included text, plus all the photos and explanatory diagrams that were included in the text. I hope you enjoy reading some footnotes while listening to Keith Sellon-Wright tell the stories in ATOMIC ADVENTURES. James Mahaffey April 2017 2 Author’s Note Stories Told at Night around the Glow of the Reactor Always striving to beat the Atlanta Theater over on Edgewood Avenue, the Forsyth Theater was pleased to snag a one-week engagement of the world famous Harry Houdini, extraordinary magician and escape artist, starting April 19, 1915.1 It was issued an operating license, no.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Lect. 20: Lasers
    Lect. 20: Lasers Optical Amplifier E2 Pin Pout = G Pin E1 Light source based on stimulated emission? - Use photons produced by spontaneous emission as initial seeds - Recycle output photons as seeds for further stimulated emission - Use mirror for recycling output photons LASER: Light Amplification by Stimulated Emission Radiation Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers LASER: Optical Amplifier + Mirror Pump Gain Medium R R L Optical property of gain medium: n, g Imaginary part for k ? g g is due to absorption and stimulated emission knk0 j 2 g depends on material property, , amount of pumping factor of 2 because g is often defined for power Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers Pump g Gain Medium knkj 0 2 R R Z=L Assume initially there is one photon moving in z-direction inside gain medium What is the condition that this this photon can be maintained within? No loss after one round trip. jkL jkL Ee00 re r E 11 re22 jkL1 e jkL2 rR2 1 1 ee jnkL2 0 gL eegL and jnkL2 0 1 R R Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers 1 Pump eegL and jnkL2 0 1 R Gain Medium gL 111 From eg, th ln R LR R R L ==> Sufficient gain to compensate mirror loss 2L Frome jnkL2 0 1, 22nk L m or Lm 0 nm 2n cavity length should be multiples of half wavelength: mode Photons are in phase after one round trip Optoelectronics (16/2) W.-Y. Choi Lect. 20: Lasers 11 2L Two conditions for lasing: (1) g ln and (2) th L Rnm In real lasers, gain is function of wavelength gth λ λ Lasing spectrum Lasing modes has non-zero linewidth λ Laser length determines mode wavelength Optoelectronics (16/2) W.-Y.
    [Show full text]
  • A Laser (From the Acronym Light Amplification by Stimulated Emission of Radiation) Is an Optical Source That Emits Photons in a Coherent Beam
    LASER A laser (from the acronym Light Amplification by Stimulated Emission of Radiation) is an optical source that emits photons in a coherent beam. The verb to lase means "to produce coherent light" or possibly "to cut or otherwise treat with coherent light", and is a back- formation of the term laser. Laser light is typically near-monochromatic, i.e. consisting of a single wavelength or color, and emitted in a narrow beam. This is in contrast to common light sources, such as the incandescent light bulb, which emit incoherent photons in almost all directions, usually over a wide spectrum of wavelengths. Laser action is explained by the theories of quantum mechanics and thermodynamics. Many materials have been found to have the required characteristics to form the laser gain medium needed to power a laser, and these have led to the invention of many types of lasers with different characteristics suitable for different applications. The laser was proposed as a variation of the maser principle in the late 1950's, and the first laser was demonstrated in 1960. Since that time, laser manufacturing has become a multi- billion dollar industry, and the laser has found applications in fields including science, industry, medicine, and consumer electronics. Contents [hide] 1 Physics 2 History 2.1 Recent innovations 3 Uses 3.1 Popular misconceptions 3.2 "LASER" 3.3 Scientific misconceptions 4 Laser safety 5 Categories 5.1 By type 5.2 By output power 6 See also 7 Further reading 7.1 Books 7.2 Periodicals 8 References 9 External links [edit] Physics See also: Laser science Principal components: 1.
    [Show full text]
  • Underpinning of Soviet Industrial Paradigms
    Science and Social Policy: Underpinning of Soviet Industrial Paradigms by Chokan Laumulin Supervised by Professor Peter Nolan Centre of Development Studies Department of Politics and International Studies Darwin College This dissertation is submitted for the degree of Doctor of Philosophy May 2019 Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. 2 Chokan Laumulin, Darwin College, Centre of Development Studies A PhD thesis Science and Social Policy: Underpinning of Soviet Industrial Development Paradigms Supervised by Professor Peter Nolan. Abstract. Soviet policy-makers, in order to aid and abet industrialisation, seem to have chosen science as an agent for development. Soviet science, mainly through the Academy of Sciences of the USSR, was driving the Soviet industrial development and a key element of the preparation of human capital through social programmes and politechnisation of the society.
    [Show full text]
  • Congressional Record—House H3090
    H3090 CONGRESSIONAL RECORD — HOUSE May 4, 2010 Ms. FUDGE. Mr. Speaker, at this Whereas LaserFest is a year-long celebra- standing that, in a prior life, Dr. time, I would ask that my colleagues tion of the 50th anniversary intended to EHLERS knew one of the persons cited support H. Res. 1213. bring public awareness to the story of the in this resolution, Dr. Townes, so it is I yield back the balance of my time. laser and scientific achievement generally, especially fitting that he is the spon- and was founded by the following partners: The SPEAKER pro tempore. The the Optical Society of America, the Amer- sor. question is on the motion offered by ican Physical Society, the International So- Mr. Speaker, I urge my colleagues to the gentlewoman from Ohio (Ms. ciety for Optical Engineering, and IEEE: support the resolution, and I reserve FUDGE) that the House suspend the Now, therefore, be it the balance of my time. rules and agree to the resolution, H. Resolved, That the House of Representa- Mr. HALL of Texas. I yield myself Res. 1213. tives— such time as I may consume. The question was taken. (1) recognizes the 50th anniversary of the Mr. Speaker, H. Res. 1310 celebrates The SPEAKER pro tempore. In the laser; and the 50th anniversary of the construc- opinion of the Chair, two-thirds being (2) recognizes the need for continued sup- tion of the laser, marking a major port of scientific research to maintain Amer- in the affirmative, the ayes have it. ica’s future competitiveness. milestone in scientific discovery.
    [Show full text]
  • 108–650 Senate Hearings Before the Committee on Appropriations
    S. HRG. 108–650 Senate Hearings Before the Committee on Appropriations Energy and Water Development Appropriations Fiscal Year 2005 108th CONGRESS, SECOND SESSION H.R. 4614 DEPARTMENT OF DEFENSE—CIVIL DEPARTMENT OF ENERGY DEPARTMENT OF THE INTERIOR NONDEPARTMENTAL WITNESSES Energy and Water Development Appropriations, 2005 (H.R. 4614) S. HRG. 108–650 ENERGY AND WATER DEVELOPMENT APPROPRIATIONS FOR FISCAL YEAR 2005 HEARINGS BEFORE A SUBCOMMITTEE OF THE COMMITTEE ON APPROPRIATIONS UNITED STATES SENATE ONE HUNDRED EIGHTH CONGRESS SECOND SESSION ON H.R. 4614 AN ACT MAKING APPROPRIATIONS FOR ENERGY AND WATER DEVELOP- MENT FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 2005, AND FOR OTHER PURPOSES Department of Defense—Civil Department of Energy Department of the Interior Nondepartmental witnesses Printed for the use of the Committee on Appropriations ( Available via the World Wide Web: http://www.access.gpo.gov/congress/senate U.S. GOVERNMENT PRINTING OFFICE 92–143 PDF WASHINGTON : 2005 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2250 Mail: Stop SSOP, Washington, DC 20402–0001 COMMITTEE ON APPROPRIATIONS TED STEVENS, Alaska, Chairman THAD COCHRAN, Mississippi ROBERT C. BYRD, West Virginia ARLEN SPECTER, Pennsylvania DANIEL K. INOUYE, Hawaii PETE V. DOMENICI, New Mexico ERNEST F. HOLLINGS, South Carolina CHRISTOPHER S. BOND, Missouri PATRICK J. LEAHY, Vermont MITCH MCCONNELL, Kentucky TOM HARKIN, Iowa CONRAD BURNS, Montana BARBARA A. MIKULSKI, Maryland RICHARD C. SHELBY, Alabama HARRY REID, Nevada JUDD GREGG, New Hampshire HERB KOHL, Wisconsin ROBERT F. BENNETT, Utah PATTY MURRAY, Washington BEN NIGHTHORSE CAMPBELL, Colorado BYRON L.
    [Show full text]
  • Introduction to Macroscopic Quantum Phenomena
    Introduction to Macroscopic Quantum Phenomena Luca Salasnich Dipartimento di Fisica e Astronomia \Galileo Galilei", Universit`adi Padova PhD School in Physics, UNIPD 2020 Summary Bosons and fermions Laser Light Superconductivity Superfluidity Bose-Einstein condensation with ultracold atoms Bosons and fermions (I) Any particle has an intrinsic angular momentum, called spin ~ S =( Sx ; Sy ; Sz ), characterized by two quantum numbers s ed ms , where for s fixed one has ms = −s; −s + 1; :::; s − 1; s, and in addition Sz = ms ~ ; with ~ (1:054 · 10−34 Joule×seconds) the reduced Planck constant. All the particles can be divided into two groups: { bosons, characterized by an integer s: s = 0; 1; 2; 3; ::: { fermions, characterized by a half-integer s: 1 3 5 7 s = ; ; ; ; ::: 2 2 2 2 Examples: the photon is a boson (s = 1, ms = −1; 1), while the electron 1 1 1 is a fermion (s = 2 , ms = − 2 ; 2 ). 4 Among \not elementary particles": helium 2He is a boson (s = 0, 3 1 1 1 ms = 0), while helium 2He is a fermion (s = 2 , ms = − 2 ; 2 ). Bosons and fermions (II) A fundamental experimental result: identical bosons and identical fermions have a very different behavior!! { Identical bosons can occupy the same single-particle quantum state, i.e. thay can stay together; if all bosons are in the same single-particle quantum state one has Bose-Einstein condensation. { Identical fermions CANNOT occupy the same single-particle quantum state, i.e. they somehow repel each other: Pauli exclusion principle. Identical bosons (a) and identical spin-polarized fermions (b) in a harmonic trap at very low temperature.
    [Show full text]
  • La Universidad Nacional De Investigación Nuclear “Instituto De Ingeniería Física De Moscú”
    la Universidad Nacional de Investigación Nuclear “Instituto de Ingeniería Física de Moscú” Año de fundaciónón: 1942 Total de estudiantes: 7 064 / Estudiantes extranjeros: 1 249 Facultades: 12 / Departamentos: 76 Profesores: 1 503 Profesor Docentes Doctor en ciencias Candidatos de las ciencias Profesores extranjeros 512 649 461 759 223 Principales programas de educación para los extranjeros: 177 Licenciatura Maestría Especialista Formación del personal altamente calificado 55 68 23 31 Programas educativos adicionales para los extranjeros: 13 Programa de preparación El estudio de la lengua rusa Programas cortos preuniversitaria como extranjera Otros programas 11 1 1 The history of the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) began with the foundation in 1942 of the Moscow Mechanical Institute of Ammunition. The leading Russian nuclear university MEPhI was later established there and top Soviet scientists, including the head of the Soviet atomic project Igor Kurchatov, played a part in its development and formation. Six Nobel Prize winners have worked at MEPhI over the course of its history – Nikolay Basov, Andrei Sakharov, Nikolay Semenov, Igor Tamm, Ilya Frank and Pavel Cherenkov. Today, MEPhI is one of the leading research universities of Russia, training engineers and scientists in more than 200 fields. The most promising areas of study include: Nanomaterials and nanotechnologies; Radiation and beam technologies; Medical physics and nuclear medicine; Superconductivity and controlled thermonuclear fusion; Ecology and biophysics; Information security. In addition, future managers, experts and analysts in the fields of management, engineering economics, nuclear law and international scientific and technological cooperation study at MEPhI. Programmes at MEPhI: 1 Meet international standards for quality of education.
    [Show full text]
  • Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats
    Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats FY 2018–FY 2022 Report to Congress November 2017 National Nuclear Security Administration United States Department of Energy Washington, DC 20585 Department of Energy/National Nuclear Security Administration | November 2017 Message from the Administrator The Department of Energy’s (DOE) National Nuclear Security Administration (NNSA) Fiscal Year 2018 report, Prevent, Counter, and Respond—A Strategic Plan to Reduce Global Nuclear Threats, outlines DOE/NNSA’s plans and programs to prevent the proliferation of nuclear weapons, counter the threat of nuclear terrorism, and respond to nuclear and radiological incidents around the world. The report is a companion to the Fiscal Year 2018 Stockpile Stewardship and Management Plan, which describes DOE/NNSA’s activities to ensure the reliability of the U.S. nuclear stockpile and maintain its foundational capabilities and infrastructure. In keeping with our commitment to transparency, updated versions of these reports are published each year. Maintaining the U.S. nuclear stockpile and reducing global nuclear threats—two missions that are often thought to involve different technical expertise and pursue disparate goals—are far more interconnected than they may appear. Many activities within these two DOE/NNSA mission pillars are mutually reinforcing and supportive of common objectives. The facilities and scientific knowledge that underpin stockpile stewardship, for example, are harnessed for a range of nonproliferation and counterterrorism missions, from assessing foreign weapons programs and potential terrorist devices to managing the proliferation risks posed by civil nuclear applications. Preventing the spread of nuclear weapons around the world yields considerable benefits for the U.S.
    [Show full text]
  • Stockpile Stewardshipquarterly
    DOE/NA-0066 Office of Research, Development, Test, and Evaluation Stockpile Stewardship Quarterly VOLUME 7 | NUMBER 4 | DECEMBER 2017 essage from the Assistant Deputy Administrator for Research, M Development, Test, and Evaluation, Dr. Kathleen Alexander In stockpile stewardship, one of the most Laboratory (LANL) takes a different focus, widely studied phenomena is the equation looking at the EOS and shock-driven of state (EOS). An EOS is a mathematical decomposition of ‘soft’ materials. LANL relationship that describes the state of uses a two-stage gas gun to collect shock matter (i.e., gas, liquid, or solid) using data of polymers to incorporate in their the material properties of temperature, EOS. volume, pressure, and internal energy. The The Joint Actinide Shock Physics EOS characterizes the properties of a state Experimental Research facility two-stage of matter under a given set of physical gas gun at Nevada National Security Site conditions. It is of interest for the metals (NNSS) is used for both hazardous and and non-metals of stockpile stewardship non-hazardous material studies for input application and is critical to understanding to EOS tables. Many EOS experiments Hong Sio, NNSA-supported senior Physics material behavior. Each of our weapon Department PhD student at the Massachusetts at NNSS involve dynamic materials and laboratories has extensive EOS activities. Institute of Technology (second from left) associated diagnostic developments found time to strike a pose with (left to This issue of the Stockpile Stewardship pertaining to stockpile materials. right) Dr. Njema Frazier and Dr. Bryan Sims Quarterly (SSQ) highlights representative (Research, Development, Test, and Evaluation) EOS activities at our national laboratories, Some of our innovative EOS work origi- and Mark Visosky (TechSource, Inc.) at the the Nevada National Security Site, and nated from the LDRD program projects at 59th Annual Meeting of the American Physical in the Laboratory Directed Research and Sandia.
    [Show full text]
  • Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013)
    Laser Physics Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 05, 2013) Laser: Light Amplification by Stimulated Emission of Radiation ________________________________________________________________________ Charles Hard Townes (born July 28, 1915) is an American Nobel Prize-winning physicist and educator. Townes is known for his work on the theory and application of the maser, on which he got the fundamental patent, and other work in quantum electronics connected with both maser and laser devices. He shared the Nobel Prize in Physics in 1964 with Nikolay Basov and Alexander Prokhorov. The Japanese FM Towns computer and game console is named in his honor. http://en.wikipedia.org/wiki/Charles_Hard_Townes http://physics.aps.org/assets/ab8dcdddc4c2309c?1321836906 ________________________________________________________________________ Nikolay Gennadiyevich Basov (Russian: Никола́й Генна́диевич Ба́сов; 14 December 1922 – 1 July 2001) was a Soviet physicist and educator. For his fundamental work in the field of quantum electronics that led to the development of laser and maser, Basov shared the 1964 Nobel Prize in Physics with Alexander Prokhorov and Charles Hard Townes. 1 http://en.wikipedia.org/wiki/Nikolay_Basov ________________________________________________________________________ Alexander Mikhaylovich Prokhorov (Russian: Алекса́ндр Миха́йлович Про́хоров) (11 July 1916– 8 January 2002) was a Russian physicist known for his pioneering research on lasers and masers for which he shared the Nobel Prize in Physics in 1964 with Charles Hard Townes and Nikolay Basov. http://en.wikipedia.org/wiki/Alexander_Prokhorov Nobel prizes related to laser physics 1964 Charles H. Townes, Nikolai G. Basov, and Alexandr M. Prokhorov for developing masers (1951–1952) and lasers. 2 1981 Nicolaas Bloembergen and Arthur L. Schawlow for developing laser spectroscopy and Kai M.
    [Show full text]