Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria Ambigua) and Murray Cod (Maccullochella Peelii) (Percichthyidae)

Total Page:16

File Type:pdf, Size:1020Kb

Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria Ambigua) and Murray Cod (Maccullochella Peelii) (Percichthyidae) International Journal of Molecular Sciences Article Karyotypes and Sex Chromosomes in Two Australian Native Freshwater Fishes, Golden Perch (Macquaria ambigua) and Murray Cod (Maccullochella peelii) (Percichthyidae) Foyez Shams 1,*, Fiona Dyer 1, Ross Thompson 1, Richard P. Duncan 1, Jason D. Thiem 2, Zuzana Majtánová 3 and Tariq Ezaz 1,* 1 Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, Australian Capital Territory 2617, Australia 2 Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales 2700, Australia 3 Institute of Animal Physiology and Genetics, CAS, p.r.i., 277 21 Libˇechov, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (T.E.); Tel.: +61-2-6201-2872 (F.S.); +61-2-6201-2297 (T.E.) Received: 7 August 2019; Accepted: 28 August 2019; Published: 30 August 2019 Abstract: Karyotypic data from Australian native freshwater fishes are scarce, having been described from relatively few species. Golden perch (Macquaria ambigua) and Murray cod (Maccullochella peelii) are two large-bodied freshwater fish species native to Australia with significant indigenous, cultural, recreational and commercial value. The arid landscape over much of these fishes’ range, coupled with the boom and bust hydrology of their habitat, means that these species have potential to provide useful evolutionary insights, such as karyotypes and sex chromosome evolution in vertebrates. Here we applied standard and molecular cytogenetic techniques to characterise karyotypes for golden perch and Murray cod. Both species have a diploid chromosome number 2n = 48 and a male heterogametic sex chromosome system (XX/XY). While the karyotype of golden perch is composed exclusively of acrocentric chromosomes, the karyotype of Murray cod consists of two submetacentric and 46 subtelocentric/acrocentric chromosomes. We have identified variable accumulation of repetitive sequences (AAT)10 and (CGG)10 along with diverse methylation patterns, especially on the sex chromosomes in both species. Our study provides a baseline for future cytogenetic analyses of other Australian freshwater fishes, especially species from the family Percichthyidae, to better understand their genome and sex chromosome evolution. Keywords: sex determination; florescence in situ hybridisation (FISH); comparative genomic hybridisation (CGH); karyogram; DNA methylation 1. Introduction Morphological characteristics of chromosomes, like the size and number (including ploidy) may vary within taxonomic groups such as families, genera and even species [1]. Moreover, functional differences (e.g., accumulation of repetitive sequences, location of a certain gene or DNA methylation) often occur among species as well as among populations or among individuals of the same species [2–4]. Consequently, cytogenetic studies provide a useful tool for establishing phylogenetic and evolutionary relationships among species. Karyotype analysis can also facilitate the discovery of heteromorphic or heterochromatic sex chromosomes. Identification of sex chromosomes is important in dioecious species as it provides information on the evolution of sex determination and insights into the effect of environment in driving sex ratios Int. J. Mol. Sci. 2019, 20, 4244; doi:10.3390/ijms20174244 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 15 Int. J. Mol. Sci. 2019, 20, 4244 2 of 14 Identification of sex chromosomes is important in dioecious species as it provides information ofon populations the evolution through of sex upregulation determination and and downregulation insights into the of effect genes ofin environment gonadal development in driving sex [5, 6]. ratios of populations through upregulation and downregulation of genes in gonadal development The importance of understanding the sex chromosome systems in fish is heightened by the existence of [5,6]. The importance of understanding the sex chromosome systems in fish is heightened by the diverse genetic and epigenetic features such as genetic sex determination (GSD), environmental sex existence of diverse genetic and epigenetic features such as genetic sex determination (GSD), determination (ESD), mixed GSD–ESD and rapid sex reversal within this large group of animals [7]. environmental sex determination (ESD), mixed GSD–ESD and rapid sex reversal within this large Fish comprise more than fifty percent of extant vertebrate species [8], with around 32,500 species, group of animals [7]. includingFish more comprise than 15,000 more freshwaterthan fifty percent species [of9]. exta Freshwatersnt vertebrate are thusspecies hyperdiverse, [8], with around considering 32,500 this habitatspecies, constitutes including less more than than 0.3% 15,000 [10] of freshwater available global species water. [9]. Freshwaters Freshwater fishare arethus thus hyperdiverse, an important componentconsidering of this global habitat biodiversity constitutes and less evolutionary than 0.3% [10] studies. of available global water. Freshwater fish are thusThe an familyimportant Percichthyidae component of global (Order: biodiversity Centrarchiformes) and evolutionary or temperate studies. perches, consists of 22 freshwaterThe family and estuarinePercichthyidae species (Order: under Centrarchifo nine genera,rmes) distributed or temperate in Australia perches, and consists South Americaof 22 (Figurefreshwater1)[ 11 ].and The estuarine species investigatedspecies under here nine are gene goldenra, distributed perch (Macquaria in Australia ambigua and )South and Murray America cod (Maccullochella(Figure 1) [11]. peelii The), species two large-bodied investigated freshwaterhere are golden fish speciesperch (Macquaria native to ambigua the Murray) and DarlingMurray cod Basin (MDB)(Maccullochella in south-eastern peelii), Australiatwo large-bodied [12,13]. Goldenfreshwater perch fish also species occurs native in central to the Australia Murray Darling in the Lake Basin Eyre Basin(MDB) and in in south-eastern the central, coastal Australia Queensland [12,13]. Golden Fitzroy perch Basin, also although occurs in these central populations Australia are in consideredthe Lake toEyre be separate Basin and cryptic in the species central, [14 coastal]. Both Queenslan golden perchd Fitzroy and Murray Basin, although cod have these significant populations indigenous, are cultural,considered recreational to be separate and commercial cryptic species value. [14]. Moreover, Both golden both perch species and have Murray been bredcod have in hatcheries significant and extensivelyindigenous, stocked cultural, in catchmentsrecreational acrossand commercial the MDB forvalue. more Moreover, than 30 years.both species have been bred in hatcheries and extensively stocked in catchments across the MDB for more than 30 years. Figure 1 1.. DistributionDistribution of of nine nine genera genera of ofPercichthyidae Percichthyidae covering covering Australia, Australia, Chile Chile and andArgentina Argentina. SexSex chromosomes chromosomes in fishin fish have have been been studied studied since since theearly the early twentieth twentieth century, century, when thewhen presence the ofpresence heterogametic of heterogametic sex chromosome sex chromosome systems (either systems XY (either or WZ) XY was or describedWZ) was described [15–17]. Studies[15–17]. in fishesStudies have in identified fishes have diverse identified sex chromosomal diverse sex chromosomal systems (including systems XX (including/XY, XX/X0, XX/XY, ZZ/ZW, XX/X0, ZZ/Z0, XXZZ/ZW,/XY1Y2, ZZ/Z0, X1X1X2X2 XX/XY1Y2,/X1X2Y, ZZX1X1X2X2/X1X2Y,/ZW1W2, Z1Z1Z2Z2 ZZ/ZW1W2,/Z1Z2W), Z1Z1Z2Z2/Z1Z2W), with the XX/XY (male with heterogametic) the XX/XY and(male ZZ /heterogametic)ZW (female heterogametic) and ZZ/ZW (female systems heterogametic) being predominant systems being [18,19 predominant]. The ancestral [18,19]. fish The sex chromosomeancestral fish (sex-determining sex chromosome locus) (sex-determining has gone through locus) a complete has gone shift through of chromosome a complete pairs shift because of ofchromosome frequent chromosome pairs because rearrangements of frequent such chromosome as fusion andrearrangements translocation orsuch transposition as fusion [and20,21 ]. Suchtranslocation rearrangement or transposition events across [20,21]. the Such genome, rearrangement including events the sex across chromosomes, the genome, make including teleost the fish potentiallysex chromosomes, informative make for studiesteleost offish karyotype potentiall andy informative sex chromosome for studies evolution. of karyotype To date, thereand sex have beenchromosome no published evolution. studies onTo thedate, mode there of sexhave determination been no published in Australian studies freshwater on the mode fish. of sex determinationThe karyotype in Australian data for Australianfreshwater fish. freshwater fish fauna are scarce (Figure2)[ 22,23]. Prior to the current study, there have been no published accounts of karyotype data for any fish from the family Percichthyidae. Molecular characterisation of karyotypes is an important first step towards understanding genome evolution and organisation. In particular, mapping repetitive sequences Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 15 Int. J. Mol.The Sci. karyotype2019, 20, 4244 data for Australian freshwater fish fauna are scarce (Figure 2) [22,23]. Prior to the3 of 14 current study, there have been no published accounts of karyotype data for any fish from the family Percichthyidae.
Recommended publications
  • Comprehensive Phylogeny of Ray-Finned Fishes (Actinopterygii) Based on Transcriptomic and Genomic Data
    Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data Lily C. Hughesa,b,1,2, Guillermo Ortía,b,1,2, Yu Huangc,d,1, Ying Sunc,e,1, Carole C. Baldwinb, Andrew W. Thompsona,b, Dahiana Arcilaa,b, Ricardo Betancur-R.b,f, Chenhong Lig, Leandro Beckerh, Nicolás Bellorah, Xiaomeng Zhaoc,d, Xiaofeng Lic,d, Min Wangc, Chao Fangd, Bing Xiec, Zhuocheng Zhoui, Hai Huangj, Songlin Chenk, Byrappa Venkateshl,2, and Qiong Shic,d,2 aDepartment of Biological Sciences, The George Washington University, Washington, DC 20052; bNational Museum of Natural History, Smithsonian Institution, Washington, DC 20560; cShenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute Academy of Marine Sciences, Beijing Genomics Institute Marine, Beijing Genomics Institute, 518083 Shenzhen, China; dBeijing Genomics Institute Education Center, University of Chinese Academy of Sciences, 518083 Shenzhen, China; eChina National GeneBank, Beijing Genomics Institute-Shenzhen, 518120 Shenzhen, China; fDepartment of Biology, University of Puerto Rico–Rio Piedras, San Juan 00931, Puerto Rico; gKey Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306 Shanghai, China; hLaboratorio de Ictiología y Acuicultura Experimental, Universidad Nacional del Comahue–CONICET, 8400 Bariloche, Argentina; iProfessional Committee of Native Aquatic Organisms and Water Ecosystem, China Fisheries Association, 100125 Beijing, China; jCollege of Life Science and Ecology, Hainan Tropical Ocean University, 572022 Sanya, China; kYellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 266071 Qingdao, China; and lComparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, 138673 Singapore Edited by Scott V.
    [Show full text]
  • Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role.
    [Show full text]
  • Global Patterns of Ranavirus Detections
    NOTE Global patterns of ranavirus detections Jesse L. Brunnera*, Deanna H. Olsonb, Matthew J. Grayc, Debra L. Millerd, and Amanda L.J. Duffuse aSchool of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA; bUSDA Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331-8550, USA; cDepartment of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; dCollege of Veterinary Medicine, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-4563, USA; eDepartment of Natural Sciences, Gordon State College, Barnesville, GA 30204, USA *[email protected] Abstract Ranaviruses are emerging pathogens of poikilothermic vertebrates. In 2015 the Global Ranavirus Reporting System (GRRS) was established as a centralized, open access, online database for reports of the presence (and absence) of ranavirus around the globe. The GRRS has multiple data layers (e.g., location, date, host(s) species, and methods of detection) of use to those studying the epidemiol- ogy, ecology, and evolution of this group of viruses. Here we summarize the temporal, spatial, diag- nostic, and host-taxonomic patterns of ranavirus reports in the GRRS. The number, distribution, and host diversity of ranavirus reports have increased dramatically since the mid 1990s, presumably in response to increased interest in ranaviruses and the conservation of their hosts, and also the availability of molecular diagnostics. Yet there are clear geographic and taxonomic biases among the OPEN ACCESS reports. We encourage ranavirus researchers to add their studies to the portal because such collation can provide collaborative opportunities and unique insights to our developing knowledge of this For personal use only.
    [Show full text]
  • Tese Inpa.Pdf
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA UNIVERSIDADE FEDERAL DO AMAZONAS PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA, CONSERVAÇÃO E BIOLOGIA EVOLUTIVA ESTRUTURAÇÃO E DINÂMICA POPULACIONAL DE Pellona castelnaeana, VALENCIENNES, 1847, E EVIDÊNCIAS DE UNIDADES EVOLUTIVAS EM Pellona flavipinnis (VALENCIENNES, 1837) NA BACIA AMAZÔNICA ALINE MOURÃO XIMENES Manaus, Amazonas Novembro de 2014 ALINE MOURÃO XIMENES ESTRUTURAÇÃO E DINÂMICA POPULACIONAL DE Pellona castelnaeana, VALENCIENNES, 1847, E EVIDÊNCIAS DE UNIDADES EVOLUTIVAS EM Pellona flavipinnis (VALENCIENNES, 1837) NA BACIA AMAZÔNICA ORIENTADORA: DRA. IZENI PIRES FARIAS CO-ORIENTADOR: DR. EMIL JOSÉ HERNÁNDEZ RUZ Dissertação apresentada ao Programa de Pós-Graduação do Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do título de Mestre em Genética, Conservação e Biologia Evolutiva. Manaus, Amazonas Novembro de 2014 ii FICHA CATALOGRÁFICA CDD 597.092 X4 Ximenes, Aline Mourão Estruturação e dinâmica populacional de Pellona castelnaeana, valenciennes, 1847, e evidências de unidades evolutivas em Pellona / Aline Mourão Ximenes. --- Manaus: [s.n.], 2014. xii, 86 f. : il. color. Dissertação (Mestrado) --- INPA/UFAM, Manaus, 2014. Orientador : Izeni Pires Farias. Coorientador : Emil José Hernández Ruz. Área de concentração : Genética, Conservação e Biologia Evolutiva. 1. DNA mitocondrial. 2. Microssatélites. 3. Apapás. I. Título. Sinopse: Foram caracterizados locos de microssatélites para estudo de genética de população em Pellona. Utilizou-se esses microssatélites e região D-loop para o estudo de dinâmica populacional e estrutura genética de Pellona castelnaeana, os resultados a partir da região D-loop indicaram que esta forma uma população panmítica na bacia Amazônica e os resultados a partir dos microssátiles mostraram um padrão de estruturação em megarregiões, ambos microssatélites e região D-loop foram concordantes em indicar que as corredeiras do alto rio Madeira atuaram restrigindo o fluxo gênico em P.
    [Show full text]
  • Otolith Description and Age-And-Growth of Kurtus Gulliveri from Northern Australia
    Journal of Fish Biology (2004) 65, 354–362 doi:10.1111/j.1095-8649.2004.00454.x,availableonlineathttp://www.blackwell-synergy.com Otolith description and age-and-growth of Kurtus gulliveri from northern Australia T. M. BERRA* AND D. D. ADAY Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Mansfield, OH 44906, U.S.A. (Received 15 July 2003, Accepted 22 April 2004) The sagitta of Kurtus gulliveri was ovate, moderately thick with the following attributes: lateral surface convex, mesial surface flat; dorsal margin sinuate, posterior margin rounded ventrally, ventral margin rounded and irregular; sulcus divided into ostium and cauda by constriction of dorsal and ventral margins, heterosulcoid, colliculum heteromorph; dorsal depression large and distinct, ventral groove close to margin in larger otoliths; rostrum broad and antirostrum small, separated by wide, shallow excisural notch. Otolith size was moderate, average 4Á6% standard length (LS), typical for a perciform. Annuli on 78 whole sagittae were read, and 15% of these were transversely sectioned for verification of the annuli. Males ranged from 94 to 235 mm LS and females from 95 to 284 mm LS. There was little difference in size distribution of the sample between the sexes, perhaps due to a 6 month spawning season over which young were continually added to the population. Some sexual dimorphism was noted, however, as age 2 year females were significantly larger than males of the same age. The largest fish aged was a 284 mm LS, 3 year-old female, and the oldest age reached was 4 years by two males. It appears likely that most spawning females are 2 years old, but some larger 1 year old fish may attain sexual maturity.
    [Show full text]
  • BREAK-OUT SESSIONS at a GLANCE THURSDAY, 24 JULY, Afternoon Sessions
    2008 Joint Meeting (JMIH), Montreal, Canada BREAK-OUT SESSIONS AT A GLANCE THURSDAY, 24 JULY, Afternoon Sessions ROOM Salon Drummond West & Center Salons A&B Salons 6&7 SESSION/ Fish Ecology I Herp Behavior Fish Morphology & Histology I SYMPOSIUM MODERATOR J Knouft M Whiting M Dean 1:30 PM M Whiting M Dean Can She-male Flat Lizards (Platysaurus broadleyi) use Micro-mechanics and material properties of the Multiple Signals to Deceive Male Rivals? tessellated skeleton of cartilaginous fishes 1:45 PM J Webb M Paulissen K Conway - GDM The interopercular-preopercular articulation: a novel Is prey detection mediated by the widened lateral line Variation In Spatial Learning Within And Between Two feature suggesting a close relationship between canal system in the Lake Malawi cichlid, Aulonocara Species Of North American Skinks Psilorhynchus and labeonin cyprinids (Ostariophysi: hansbaenchi? Cypriniformes) 2:00 PM I Dolinsek M Venesky D Adriaens Homing And Straying Following Experimental Effects of Batrachochytrium dendrobatidis infections on Biting for Blood: A Novel Jaw Mechanism in Translocation Of PIT Tagged Fishes larval foraging performance Haematophagous Candirú Catfish (Vandellia sp.) 2:15 PM Z Benzaken K Summers J Bagley - GDM Taxonomy, population genetics, and body shape The tale of the two shoals: How individual experience A Key Ecological Trait Drives the Evolution of Monogamy variation of Alabama spotted bass Micropterus influences shoal behaviour in a Peruvian Poison Frog punctulatus henshalli 2:30 PM M Pyron K Parris L Chapman
    [Show full text]
  • Stock Assessment of Golden Perch for PIRSA
    Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 October 2012 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture 1 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 October 2012 2 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA This publication may be cited as: Ferguson, G. J. and Ye, Q (2012). Stock Assessment of Golden perch (Macquaria ambigua). Stock Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. F2007/01051- 1. SARDI Research Report Series No. 656. 55pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]
  • Systematic Morphology of Fishes in the Early 21St Century
    Copeia 103, No. 4, 2015, 858–873 When Tradition Meets Technology: Systematic Morphology of Fishes in the Early 21st Century Eric J. Hilton1, Nalani K. Schnell2, and Peter Konstantinidis1 Many of the primary groups of fishes currently recognized have been established through an iterative process of anatomical study and comparison of fishes that has spanned a time period approaching 500 years. In this paper we give a brief history of the systematic morphology of fishes, focusing on some of the individuals and their works from which we derive our own inspiration. We further discuss what is possible at this point in history in the anatomical study of fishes and speculate on the future of morphology used in the systematics of fishes. Beyond the collection of facts about the anatomy of fishes, morphology remains extremely relevant in the age of molecular data for at least three broad reasons: 1) new techniques for the preparation of specimens allow new data sources to be broadly compared; 2) past morphological analyses, as well as new ideas about interrelationships of fishes (based on both morphological and molecular data) provide rich sources of hypotheses to test with new morphological investigations; and 3) the use of morphological data is not limited to understanding phylogeny and evolution of fishes, but rather is of broad utility to understanding the general biology (including phenotypic adaptation, evolution, ecology, and conservation biology) of fishes. Although in some ways morphology struggles to compete with the lure of molecular data for systematic research, we see the anatomical study of fishes entering into a new and exciting phase of its history because of recent technological and methodological innovations.
    [Show full text]
  • Betanodavirus and VER Disease: a 30-Year Research Review
    pathogens Review Betanodavirus and VER Disease: A 30-year Research Review Isabel Bandín * and Sandra Souto Departamento de Microbioloxía e Parasitoloxía-Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] * Correspondence: [email protected] Received: 20 December 2019; Accepted: 4 February 2020; Published: 9 February 2020 Abstract: The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control. Keywords: nervous necrosis virus (NNV); viral encephalopathy and retinopathy (VER); virus–host interaction; epizootiology; diagnostics; control 1. Introduction Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN). The disease was first described at the end of the 1980s in Australia and in the Caribbean [1–3], and has since caused a great deal of mortalities and serious economic losses in a variety of reared marine fish species, but also in freshwater species worldwide.
    [Show full text]
  • Estuary Perch
    Percichthyidae Macquaria colonorum (Günther, 1863) Estuary Perch A.C. Hay & T. Trnski D IX-X, 8-11 A III, 7-9 P1 12-16 P2 I, 5 C 17 V 25 Distribution Adults occur in coastal drainages of Size at south-eastern Australia from the Richmond River, NSW (28º53´S) to the Murray River, SA (139ºE). Hatching <4.8 mm They are catadromous, generally inhabiting estuaries Notochord flexion 4.8 – 5.5 mm and tidal reaches of rivers and they move to estuary Settlement 10.3-13.5 mm mouths to spawn during winter. Adults are silvery- Formation of fins: grey dorsally and silvery-white ventrally. Very similar Caudal <4.8–5.4 mm; Dorsal <4.8–11.3 mm; Anal to Maquaria novemaculeata, except for a snout profile <4.8 –11.3 mm; Pectoral 5.4–10.3 mm; Pelvic 6.3– that is concave and a paler colouration. Maximum size 10.3 mm 75cm but more commonly 40cm (Harris & Rowland 1996, Allen et al. 2002, Hoese et al., in press). Pigmentation Larvae are moderately pigmented with melanophores concentrated on the dorsal and Diagnostic characters ventral midlines, and midlateral surface of the trunk and tail. External: Small, expanded melanophores are • Myomeres 12-14 + 11-13 = 25 present at the tips of the upper and lower jaws. • Ratio SnL = ED until 7 mm, after which SnL<ED Melanophores are present on the snout and operculum • No spines on anterior preopercular border in line with the eye. One or 2 melanophores are • 4-7 expanded melanophores along the dorsal midline present on the ventral midline of the gular membrane, of the trunk and tail and there is one at the angle of the lower jaw.
    [Show full text]
  • Early Life History of the Nurseryfish, Kurtus Gulliveri (Perciformes
    Copeia, 2003(2), pp. 384±390 Early Life History of the Nursery®sh, Kurtus gulliveri (Perciformes: Kurtidae), from Northern Australia TIM M. BERRA AND FRANCISCO J. NEIRA Eggs and larvae of nursery®sh, Kurtus gulliveri, one of two known species of Kurtidae, are described and illustrated for the ®rst time using material collected in two rivers of Australia's Northern Territory. Nursery®sh are unique among ®shes in that males carry a cluster of fertilized eggs on a bony hook projecting from their foreheads. No brooding males were captured during this study, although one partial egg cluster was found adjacent to a male caught in a gill net. Three clusters found attached to gill nets without associated males had approximately 900±1300, slightly elliptical, 2.1±2.5 mm diameter, eggs, each with multiple oil droplets and a single, relatively thick chorionic ®lamentous strand at opposite poles. Larvae are pelagic and hatch at approximately 5-mm body length (BL) at the ¯exion stage possessing a large yolk sac, forming dorsal, caudal, and anal ®ns, and little pigment. Notochord ¯exion and yolk-sac resorption are complete by 6.9 mm. Post±yolk-sac larvae resem- ble adults in having a hatchet-shaped body that is almost transparent in life, includ- ing a large head with relatively small eyes, preopercular spines and a prominent, in¯ated gas bladder. Larval length data obtained fortnightly from August to Novem- ber 2001 suggests that breeding occurs during northern Australia's dry season (May to November) and that larvae leave the pelagic environment at about 25 mm.
    [Show full text]