Matching Methods for Causal Inference: a Review and a Look Forward

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Statistical Science 2010, Vol. 25, No. 1, 1–21 DOI: 10.1214/09-STS313 c Institute of Mathematical Statistics, 2010 Matching Methods for Causal Inference: A Review and a Look Forward Elizabeth A. Stuart Abstract. When estimating causal effects using observational data, it is desirable to replicate a randomized experiment as closely as possi- ble by obtaining treated and control groups with similar covariate dis- tributions. This goal can often be achieved by choosing well-matched samples of the original treated and control groups, thereby reducing bias due to the covariates. Since the 1970s, work on matching meth- ods has examined how to best choose treated and control subjects for comparison. Matching methods are gaining popularity in fields such as economics, epidemiology, medicine and political science. However, until now the literature and related advice has been scattered across disci- plines. Researchers who are interested in using matching methods—or developing methods related to matching—do not have a single place to turn to learn about past and current research. This paper provides a structure for thinking about matching methods and guidance on their use, coalescing the existing research (both old and new) and providing a summary of where the literature on matching methods is now and where it should be headed. Key words and phrases: Observational study, propensity scores, sub- classification, weighting. 1. INTRODUCTION However, while the field is expanding, there has been no single source of information for researchers in- One of the key benefits of randomized experiments terested in an overview of the methods and tech- for estimating causal effects is that the treated and niques available, nor a summary of advice for ap- control groups are guaranteed to be only randomly different from one another on all background co- plied researchers interested in implementing these arXiv:1010.5586v1 [stat.ME] 27 Oct 2010 variates, both observed and unobserved. Work on methods. In contrast, the research and resources matching methods has examined how to replicate have been scattered across disciplines such as statis- this as much as possible for observed covariates with tics (Rosenbaum, 2002; Rubin, 2006), epidemiology observational (nonrandomized) data. Since early (Brookhart et al., 2006), sociology (Morgan and work in matching, which began in the 1940s, the Harding, 2006), economics (Imbens, 2004) and po- methods have increased in both complexity and use. litical science (Ho et al., 2007). This paper coalesces the diverse literature on matching methods, bring- Elizabeth A. Stuart is Assistant Professor, Departments ing together the original work on matching methods— of Mental Health and Biostatistics, Johns Hopkins of which many current researchers are not aware— Bloomberg School of Public Health, Baltimore, Maryland and tying together ideas across disciplines. In addi- 21205, USA e-mail: [email protected]. tion to providing guidance on the use of matching methods, the paper provides a view of where re- This is an electronic reprint of the original article published by the Institute of Mathematical Statistics in search on matching methods should be headed. Statistical Science, 2010, Vol. 25, No. 1, 1–21. This We define “matching” broadly to be any method reprint differs from the original in pagination and that aims to equate (or “balance”) the distribution typographic detail. of covariates in the treated and control groups. This 1 2 E. A. STUART may involve 1 : 1 matching, weighting or subclas- the history and theory underlying matching meth- sification. The use of matching methods is in the ods. Sections 2–5 provide details on each of the steps broader context of the careful design of nonexperi- involved in implementing matching: defining a dis- mental studies (Rosenbaum, 1999, 2002; Rubin, tance measure, doing the matching, diagnosing the 2007). While extensive time and effort is put into matching, and then estimating the treatment effect the careful design of randomized experiments, rela- after matching. The paper concludes with sugges- tively little effort is put into the corresponding “de- tions for future research and practical guidance in sign” of nonexperimental studies. In fact, precisely Section 6. because nonexperimental studies do not have the 1.1 Two Settings benefit of randomization, they require even more careful design. In this spirit of design, we can think Matching methods are commonly used in two types of any study aiming to estimate the effect of some of settings. The first is one in which the outcome intervention as having two key stages: (1) design, values are not yet available and matching is used and (2) outcome analysis. Stage (1) uses only back- to select subjects for follow-up (e.g., Reinisch et al., ground information on the individuals in the study, 1995; Stuart and Ialongo, 2009). It is particularly designing the nonexperimental study as would be a relevant for studies with cost considerations that randomized experiment, without access to the out- prohibit the collection of outcome data for the full come values. Matching methods are a key tool for control group. This was the setting for most of the stage (1). Only after stage (1) is finished does stage original work in matching methods, particularly the (2) begin, comparing the outcomes of the treated theoretical developments, which compared the ben- and control individuals. While matching is generally efits of selecting matched versus random samples of the control group (Althauser and Rubin, 1970; used to estimate causal effects, it is also sometimes Rubin, 1973a, 1973b). The second setting is one in used for noncausal questions, for example, to inves- which all of the outcome data is already available, tigate racial disparities (Schneider, Zaslavsky and and the goal of the matching is to reduce bias in the Epstein, 2004). estimation of the treatment effect. Alternatives to matching methods include adjust- A common feature of matching methods, which ing for background variables in a regression model, is automatic in the first setting but not the sec- instrumental variables, structural equation model- ond, is that the outcome values are not used in the ing or selection models. Matching methods have a matching process. Even if the outcome values are few key advantages over those other approaches. First, available at the time of the matching, the outcome matching methods should not be seen in conflict values should not be used in the matching process. with regression adjustment and, in fact, the two This precludes the selection of a matched sample methods are complementary and best used in com- that leads to a desired result, or even the appear- bination. Second, matching methods highlight areas ance of doing so (Rubin, 2007). The matching can of the covariate distribution where there is not suf- thus be done multiple times and the matched sam- ficient overlap between the treatment and control ples with the best balance—the most similar treated groups, such that the resulting treatment effect esti- and control groups—are chosen as the final matched mates would rely heavily on extrapolation. Selection samples; this is similar to the design of a random- models and regression models have been shown to ized experiment where a particular randomization perform poorly in situations where there is insuffi- may be rejected if it yields poor covariate balance cient overlap, but their standard diagnostics do not (Hill, Rubin and Thomas, 1999; Greevy et al., 2004). involve checking this overlap (Dehejia and Wahba, This paper focuses on settings with a treatment 1999, 2002; Glazerman, Levy and Myers, 2003). defined at some particular point in time, covariates Matching methods in part serve to make researchers measured at (or relevant to) some period of time aware of the quality of resulting inferences. Third, before the treatment, and outcomes measured af- matching methods have straightforward diagnostics ter the treatment. It does not consider more com- by which their performance can be assessed. plex longitudinal settings where individuals may go The paper proceeds as follows. The remainder of in and out of the treatment group, or where treat- Section 1 provides an introduction to matching meth- ment assignment date is undefined for the control ods and the scenarios considered, including some of group. Methods such as marginal structural models MATCHING METHODS 3 (Robins, Hernan and Brumback, 2000) or balanced from one another on all covariates, observed and un- risk set matching (Li, Propert and Rosenbaum, 2001) observed. In nonexperimental studies, we must posit are useful in those settings. an assignment mechanism, which determines which 1.2 Notation and Background: Estimating individuals receive treatment and which receive con- Causal Effects trol. A key assumption in nonexperimental studies is that of a strongly ignorable treatment assignment As first formalized in Rubin (1974), the estima- (Rosenbaum and Rubin, 1983b) which implies that tion of causal effects, whether from a randomized (1) treatment assignment (T ) is independent of the experiment or a nonexperimental study, is inher- potential outcomes (Y (0),Y (1)) given the covariates ently a comparison of potential outcomes. In par- (X): T ⊥(Y (0),Y (1))|X, and (2) there is a positive ticular, the causal effect for individual i is the com- probability of receiving each treatment for all val- parison of individual i’s outcome if individual i re- ues of X: 0 < P (T = 1|X) < 1 for all X. The first ceives the treatment (the potential outcome under component of the definition of strong ignorability treatment), Yi(1), and individual i’s outcome if in- is sometimes termed “ignorable,” “no hidden bias” dividual i receives the control (the potential out- or “unconfounded.” Weaker versions of the ignora- come under control), Yi(0). For simplicity, we use bility assumption are sufficient for some quantities the term “individual” to refer to the units that re- of interest, as discussed further in Imbens (2004).
Recommended publications
  • Statistical Matching: a Paradigm for Assessing the Uncertainty in the Procedure

    Statistical Matching: a Paradigm for Assessing the Uncertainty in the Procedure

    Journal of Of®cial Statistics, Vol. 17, No. 3, 2001, pp. 407±422 Statistical Matching: A Paradigm for Assessing the Uncertainty in the Procedure Chris Moriarity1 and Fritz Scheuren2 Statistical matching has been widely used by practitioners without always adequate theoreti- cal underpinnings. The work of Kadane (1978) has been a notable exception and the present article extends his insights. Kadane's 1978 article is reprinted in this JOS issue. Modern com- puting can make possible, under techniques described here, a real advance in the application of statistical matching. Key words: Multivariate normal; complex survey designs; robustness; resampling; variance- covariance structures; and application suggestions. 1. Introduction Many government policy questions, whether on the expenditure or tax side, lend them- selves to microsimulation modeling, where ``what if'' analyses of alternative policy options are carried out (e.g., Citro and Hanushek 1991). Often, the starting point for such models, in an attempt to achieve a degree of verisimilitude, is to employ information contained in several survey microdata ®les. Typically, not all the variables wanted for the modeling have been collected together from a single individual or family. However, the separate survey ®les may have many demographic and other control variables in common. The idea arose, then, of matching the separate ®les on these common variables and thus creating a composite ®le for analysis. ``Statistical matching,'' as the technique began to be called, has been more or less widely practiced since the advent of public use ®les in the 1960's. Arguably, the desire to employ statistical matching was even an impetus for the release of several of the early public use ®les, including those involving U.S.
  • A Machine Learning Approach to Census Record Linking∗

    A Machine Learning Approach to Census Record Linking∗

    A Machine Learning Approach to Census Record Linking∗ James J. Feigenbaumy March 28, 2016 Abstract Thanks to the availability of new historical census sources and advances in record linking technology, economic historians are becoming big data geneal- ogists. Linking individuals over time and between databases has opened up new avenues for research into intergenerational mobility, the long run effects of early life conditions, assimilation, discrimination, and the returns to edu- cation. To take advantage of these new research opportunities, scholars need to be able to accurately and efficiently match historical records and produce an unbiased dataset of links for analysis. I detail a standard and transparent census matching technique for constructing linked samples that can be repli- cated across a variety of cases. The procedure applies insights from machine learning classification and text comparison to record linkage of historical data. My method teaches an algorithm to replicate how a well trained and consistent researcher would create a linked sample across sources. I begin by extracting a subset of possible matches for each record, and then use training data to tune a matching algorithm that attempts to minimize both false positives and false negatives, taking into account the inherent noise in historical records. To make the procedure precise, I trace its application to an example from my own work, linking children from the 1915 Iowa State Census to their adult-selves in the 1940 Federal Census. In addition, I provide guidance on a number of practical questions, including how large the training data needs to be relative to the sample. ∗I thank Christoph Hafemeister, Jamie Lee, Christopher Muller, Martin Rotemberg, and Nicolas Ziebarth for detailed feedback and thoughts on this project, as well as seminar participants at the NBER DAE Summer Institute and the Berkeley Demography Conference on Census Linking.
  • Stability and Median Rationalizability for Aggregate Matchings

    Stability and Median Rationalizability for Aggregate Matchings

    games Article Stability and Median Rationalizability for Aggregate Matchings Federico Echenique 1, SangMok Lee 2, Matthew Shum 1 and M. Bumin Yenmez 3,* 1 Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] (F.E.); [email protected] (M.S.) 2 Department of Economics, Washington University in St. Louis, St. Louis, MO 63130, USA; [email protected] 3 Department of Economics, Boston College, Chestnut Hill, MA 02467, USA * Correspondence: [email protected] Abstract: We develop the theory of stability for aggregate matchings used in empirical studies and establish fundamental properties of stable matchings including the result that the set of stable matchings is a non-empty, complete, and distributive lattice. Aggregate matchings are relevant as matching data in revealed preference theory. We present a result on rationalizing a matching data as the median stable matching. Keywords: aggregate matching; median stable matching; rationalizability; lattice 1. Introduction Following the seminal work of [1], an extensive literature has developed regarding matching markets with non-transferable utility. This literature assumes that there are agent-specific preferences, and studies the existence of stable matchings in which each Citation: Echenique, F.; Lee, S.; agent prefers her assigned partner to the outside option of being unmatched, and there Shum, M.; Yenmez, M.B. Stability and are no pairs of agents that would like to match with each other rather than keeping their Median Rationalizability for assigned partners. Aggregate Matchings. Games 2021, 12, In this paper, we develop the theory of stability for aggregate matchings, which we 33.
  • Report on Exact and Statistical Matching Techniques

    Report on Exact and Statistical Matching Techniques

    Statistical Policy Working Papers are a series of technical documents prepared under the auspices of the Office of Federal Statistical Policy and Standards. These documents are the product of working groups or task forces, as noted in the Preface to each report. These Statistical Policy Working Papers are published for the purpose of encouraging further discussion of the technical issues and to stimulate policy actions which flow from the technical findings and recommendations. Readers of Statistical Policy Working Papers are encouraged to communicate directly with the Office of Federal Statistical Policy and Standards with additional views, suggestions, or technical concerns. Office of Joseph W. Duncan Federal Statistical Director Policy Standards For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Statistical Policy Working Paper 5 Report on Exact and Statistical Matching Techniques Prepared by Subcommittee on Matching Techniques Federal Committee on Statistical Methodology DEPARTMENT OF COMMERCE UNITED STATES OF AMERICA U.S. DEPARTMENT OF COMMERCE Philip M. Klutznick Courtenay M. Slater, Chief Economist Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Issued: June 1980 Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Katherine K. Wallman, Deputy Director, Social Statistics Gaylord E. Worden, Deputy Director, Economic Statistics Maria E. Gonzalez, Chairperson, Federal Committee on Statistical Methodology Preface This working paper was prepared by the Subcommittee on Matching Techniques, Federal Committee on Statistical Methodology. The Subcommittee was chaired by Daniel B. Radner, Office of Research and Statistics, Social Security Administration, Department of Health and Human Services. Members of the Subcommittee include Rich Allen, Economics, Statistics, and Cooperatives Service (USDA); Thomas B.
  • Alternatives to Randomized Control Trials: a Review of Three Quasi-Experimental Designs for Causal Inference

    Alternatives to Randomized Control Trials: a Review of Three Quasi-Experimental Designs for Causal Inference

    Actualidades en Psicología, 29(119), 2015, 19- 27 ISSN 2215-3535 http://revistas.ucr.ac.cr/index.php/actualidades DOI: http://dx.doi.org/10.15517/ap.v29i119.18810 Alternatives to Randomized Control Trials: A Review of Three Quasi-experimental Designs for Causal Inference Alternativas a las Pruebas Controladas Aleatorizadas: una revisión de tres diseños cuasi experimentales para la inferencia causal Pavel Pavolovich Panko1 Jacob D. Curtis2 Brittany K. Gorrall3 Todd Daniel Little4 Texas Tech University, United States Abstract. The Randomized Control Trial (RCT) design is typically seen as the gold standard in psychological research. As it is not always possible to conform to RCT specifications, many studies are conducted in the quasi-experimental framework. Although quasi-experimental designs are considered less preferable to RCTs, with guidance they can produce inferences which are just as valid. In this paper, the authors present 3 quasi-experimental designs which are viable alternatives to RCT designs. These designs are Regression Point Displacement (RPD), Regression Discontinuity (RD), and Propensity Score Matching (PSM). Additionally, the authors outline several notable methodological improvements to use with these designs. Keywords. Psychometrics, Quasi-Experimental Design, Regression Point Displacement, Regression Discontinuity, Propensity Score Matching. Resumen. Los diseños de Pruebas Controladas Aleatorizadas (PCA) son típicamente vistas como el mejor diseño en la investigación en psicología. Como tal, no es siempre posible cumplir con las especificaciones de las PCA y por ello muchos estudios son realizados en un marco cuasi experimental. Aunque los diseños cuasi experimentales son considerados menos convenientes que los diseños PCA, con directrices estos pueden producir inferencias igualmente válidas.
  • Matching Via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns

    Matching Via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns

    Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Matching via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns Sheng Li Nikos Vlassis Jaya Kawale Yun Fu Northeastern University Adobe Research Adobe Research Northeastern University Boston, MA, USA San Jose, CA, USA San Jose, CA, USA Boston, MA, USA [email protected] [email protected] [email protected] [email protected] Abstract units in the control group are interpreted as counterfactuals, and the average treatment effect on treated (ATT) is estimated A widely used method for estimating counterfactu- by comparing the outcomes of every matched pair. als and causal treatment effects from observational data is nearest-neighbor matching. This typically One of the widely used matching methods is Nearest involves pairing each treated unit with its nearest- Neighbor Matching (NNM) [Rubin, 1973a]. For each treated in-covariates control unit, and then estimating an unit, NNM finds its nearest neighbor in the control group average treatment effect from the set of matched to generate a matched pair, and the ATT is then estimated pairs. Although straightforward to implement, this from the set of matched pairs. Different NNM methods are estimator is known to suffer from a bias that in- characterized by the choice of a distance measure for de- creases with the dimensionality of the covariate termining such a match. Some of the popularly used dis- space, which can be undesirable in applications tance measures are Exact Matching and its variant Coars- that involve high-dimensional data. To address this ened Exact Matching (CEM) [Iacus et al., 2011], Maha- problem, we propose a novel estimator that first lanobis distance matching [Rubin, 1979], and Propensity projects the data to a number of random linear sub- Score Matching (PSM) [Rosenbaum and Rubin, 1983].
  • Frequency Matching Case-Control Techniques: an Epidemiological Perspective

    Frequency Matching Case-Control Techniques: an Epidemiological Perspective

    Frequency Matching case-control techniques: an epidemiological perspective. Authors: Hai Nguyen, MS (1st and Corresponding Author) Research Assistant Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago Phone: 1-312-355-4471 Email: [email protected] Trang Pham, MS Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago [email protected] Garth Rauscher, PhD Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago [email protected] Abstract In many cohort and case-control studies, subjects are matched to intend to control confounding and to improve study efficiency by improving precision. An often-used approach is to check to see that the frequency distributions in each study group are alike. Being alike in the frequency distributions of key variables would provide evidence that the groups are comparable. However, there are instances where the overall distributions could be alike, but the individual cases could vary substantially. While there are no methods that can guarantee comparability, individual case matching has often been used to provide assurances that the groups are comparable. We propose an algorithm build a macro in SAS to match control for the case given a set of matching criteria, including match exact on site, on the year, exact or 5-year interval match on age. Cases will be matched with a large number of controls. A large dataset from 2000-2017 from Metropolitan Chicago Breast Cancer Registry with more than 485000 women obtaining breast screening or diagnostic imaging (more than 15000 cases:30000 controls) was applied.
  • Package 'Matching'

    Package 'Matching'

    Package ‘Matching’ April 14, 2021 Version 4.9-9 Date 2021-03-15 Title Multivariate and Propensity Score Matching with Balance Optimization Author Jasjeet Singh Sekhon <[email protected]> Maintainer Jasjeet Singh Sekhon <[email protected]> Description Provides functions for multivariate and propensity score matching and for finding optimal balance based on a genetic search algorithm. A variety of univariate and multivariate metrics to determine if balance has been obtained are also provided. For details, see the paper by Jasjeet Sekhon (2007, <doi:10.18637/jss.v042.i07>). Depends R (>= 2.6.0), MASS (>= 7.2-1), graphics, grDevices, stats Suggests parallel, rgenoud (>= 2.12), rbounds License GPL-3 URL http://sekhon.berkeley.edu/matching/ NeedsCompilation yes RoxygenNote 7.1.1 Repository CRAN Date/Publication 2021-04-13 22:00:15 UTC R topics documented: balanceUV . .2 GenMatch . .4 GerberGreenImai . 11 ks.boot . 13 lalonde . 15 Match . 16 MatchBalance . 22 Matchby . 26 1 2 balanceUV qqstats . 30 summary.balanceUV . 32 summary.ks.boot . 33 summary.Match . 34 summary.Matchby . 34 Index 36 balanceUV Univariate Balance Tests Description This function provides a number of univariate balance metrics. Generally, users should call MatchBalance and not this function directly. Usage balanceUV(Tr, Co, weights = rep(1, length(Co)), exact = FALSE, ks=FALSE, nboots = 1000, paired=TRUE, match=FALSE, weights.Tr=rep(1,length(Tr)), weights.Co=rep(1,length(Co)), estimand="ATT") Arguments Tr A vector containing the treatment observations. Co A vector containing the control observations. weights A vector containing the observation specific weights. Only use this option when the treatment and control observations are paired (as they are after matching).
  • A Comparison of Different Methods to Handle Missing Data in the Context of Propensity Score Analysis

    A Comparison of Different Methods to Handle Missing Data in the Context of Propensity Score Analysis

    European Journal of Epidemiology https://doi.org/10.1007/s10654-018-0447-z (0123456789().,-volV)(0123456789().,- volV) METHODS A comparison of different methods to handle missing data in the context of propensity score analysis 1 1,2 1,3 Jungyeon Choi • Olaf M. Dekkers • Saskia le Cessie Received: 21 May 2018 / Accepted: 25 September 2018 Ó The Author(s) 2018 Abstract Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random.
  • Performance of Logistic Regression, Propensity Scores, and Instrumental Variable for Estimating Their True Target Odds Ratios In

    Performance of Logistic Regression, Propensity Scores, and Instrumental Variable for Estimating Their True Target Odds Ratios In

    Performance of Logistic Regression, Propensity Scores, and Instrumental Variable for Estimating Their True Target Odds Ratios in the Absence and Presence of Unmeasured Confounder Tianqi Yu West China Hospital of Sichuan University Chengyu Ke Southern Methodist University Wentao Xu West China Hospital of Sichuan University Jing Li ( [email protected] ) West China Hospital of Sichuan University Research Article Keywords: bias, unmeasured confounder, logistic model, propensity score, instrumental variable Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133868/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Yu et al. RESEARCH Performance of logistic regression, propensity scores, and instrumental variable for estimating their true target odds ratios in the absence and presence of unmeasured confounder Tianqi. Yu1, Chengyu. Ke2 , Wentao. Xu1 and Jing. Li1* *Correspondence: [email protected] Abstract 1 Department of Evidence-Based Medicine and Clinical Background: A lot of studies have compared the ability of statistical methods to Epidemiology, Sichuan University control for confounding. However, a majority of studies mistakenly assumed these West China Hospital, Chengdu, China methods estimate the same effect. The aim of this study was to use Monte Carlo Full list of author information is simulations to compare logistic regression, propensity scores and instrumental available at the end of the article variable analysis for estimating their true target odds ratios in terms of bias and precision in the absence and presence of unmeasured confounder. Methods: We established the formula allowing us to compute the true odds ratio of each method. We varied the instrument’s strength and the unmeasured confounder to cover a large range of scenarios in the simulation study.
  • An Empirical Evaluation of Statistical Matching Methodologies

    An Empirical Evaluation of Statistical Matching Methodologies

    Southern Methodist University SMU Scholar Historical Working Papers Cox School of Business 1982 An Empirical Evaluation of Statistical Matching Methodologies Richard A. Barry Southern Methodist University William H. Stewart Oklahoma State University - Main Campus J. Scott Turner Oklahoma State University - Main Campus Follow this and additional works at: https://scholar.smu.edu/business_workingpapers Part of the Business Commons This document is brought to you for free and open access by the Cox School of Business at SMU Scholar. It has been accepted for inclusion in Historical Working Papers by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. Research and Development Scbool of "P us i ness Administraticm Southern Methodist Univeraitv Dallas. Texas 75275 · AN EMPIRICAL EVALUATION OF STATISTICAL MATCHING METHODOLOGIES Working Paper 82-804* by Richard A. Barr William H. Stewart J. Scott Turner Richard A. Barr Edwin L. Cox School of Business Southern Methodist University Dallas, Texas 75275 William H. Stewart Oklahoma State University Stillwater, Oklahoma J. Scott Turner Oklahoma State University Stillwater, Oklahoma *This paper represents a draft of work in progress by the authors and is bei ng sent to you for inf ormation and review. Responsibility for the contents rests solely wi th the authors . This working paper may not be reproduced or distributed wi thout the written consent of the authors. Please address all correspondence to Richard A. Barr. ACKNOWLEDGEMENTS We wish to acknowledge the strong support and cooperation of the follow­ ing organizations: the Office of Evaluation and Technical Analysis, De­ partment of Health and Human Services; the Office of Research and Sta­ tistics, Social Security Administration; the Internal Revenue Service and Office of Tax Analysis, Department of the Treasury; and our home universities.
  • The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insuranc

    The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insuranc

    Statistical Science 2009, Vol. 24, No. 1, 29–53 DOI: 10.1214/08-STS274 © Institute of Mathematical Statistics, 2009 The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation Kosuke Imai, Gary King and Clayton Nall Abstract. A basic feature of many field experiments is that investigators are only able to randomize clusters of individuals—such as households, com- munities, firms, medical practices, schools or classrooms—even when the individual is the unit of interest. To recoup the resulting efficiency loss, some studies pair similar clusters and randomize treatment within pairs. However, many other studies avoid pairing, in part because of claims in the litera- ture, echoed by clinical trials standards organizations, that this matched-pair, cluster-randomization design has serious problems. We argue that all such claims are unfounded. We also prove that the estimator recommended for this design in the literature is unbiased only in situations when matching is unnecessary; its standard error is also invalid. To overcome this problem without modeling assumptions, we develop a simple design-based estimator with much improved statistical properties. We also propose a model-based approach that includes some of the benefits of our design-based estimator as well as the estimator in the literature. Our methods also address individual- level noncompliance, which is common in applications but not allowed for in most existing methods. We show that from the perspective of bias, efficiency, power, robustness or research costs, and in large or small samples, pairing should be used in cluster-randomized experiments whenever feasible; failing to do so is equivalent to discarding a considerable fraction of one’s data.