Some Practical Guidance for the Implementation of Propensity Score Matching
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statistical Matching: a Paradigm for Assessing the Uncertainty in the Procedure
Journal of Of®cial Statistics, Vol. 17, No. 3, 2001, pp. 407±422 Statistical Matching: A Paradigm for Assessing the Uncertainty in the Procedure Chris Moriarity1 and Fritz Scheuren2 Statistical matching has been widely used by practitioners without always adequate theoreti- cal underpinnings. The work of Kadane (1978) has been a notable exception and the present article extends his insights. Kadane's 1978 article is reprinted in this JOS issue. Modern com- puting can make possible, under techniques described here, a real advance in the application of statistical matching. Key words: Multivariate normal; complex survey designs; robustness; resampling; variance- covariance structures; and application suggestions. 1. Introduction Many government policy questions, whether on the expenditure or tax side, lend them- selves to microsimulation modeling, where ``what if'' analyses of alternative policy options are carried out (e.g., Citro and Hanushek 1991). Often, the starting point for such models, in an attempt to achieve a degree of verisimilitude, is to employ information contained in several survey microdata ®les. Typically, not all the variables wanted for the modeling have been collected together from a single individual or family. However, the separate survey ®les may have many demographic and other control variables in common. The idea arose, then, of matching the separate ®les on these common variables and thus creating a composite ®le for analysis. ``Statistical matching,'' as the technique began to be called, has been more or less widely practiced since the advent of public use ®les in the 1960's. Arguably, the desire to employ statistical matching was even an impetus for the release of several of the early public use ®les, including those involving U.S. -
A Machine Learning Approach to Census Record Linking∗
A Machine Learning Approach to Census Record Linking∗ James J. Feigenbaumy March 28, 2016 Abstract Thanks to the availability of new historical census sources and advances in record linking technology, economic historians are becoming big data geneal- ogists. Linking individuals over time and between databases has opened up new avenues for research into intergenerational mobility, the long run effects of early life conditions, assimilation, discrimination, and the returns to edu- cation. To take advantage of these new research opportunities, scholars need to be able to accurately and efficiently match historical records and produce an unbiased dataset of links for analysis. I detail a standard and transparent census matching technique for constructing linked samples that can be repli- cated across a variety of cases. The procedure applies insights from machine learning classification and text comparison to record linkage of historical data. My method teaches an algorithm to replicate how a well trained and consistent researcher would create a linked sample across sources. I begin by extracting a subset of possible matches for each record, and then use training data to tune a matching algorithm that attempts to minimize both false positives and false negatives, taking into account the inherent noise in historical records. To make the procedure precise, I trace its application to an example from my own work, linking children from the 1915 Iowa State Census to their adult-selves in the 1940 Federal Census. In addition, I provide guidance on a number of practical questions, including how large the training data needs to be relative to the sample. ∗I thank Christoph Hafemeister, Jamie Lee, Christopher Muller, Martin Rotemberg, and Nicolas Ziebarth for detailed feedback and thoughts on this project, as well as seminar participants at the NBER DAE Summer Institute and the Berkeley Demography Conference on Census Linking. -
Stability and Median Rationalizability for Aggregate Matchings
games Article Stability and Median Rationalizability for Aggregate Matchings Federico Echenique 1, SangMok Lee 2, Matthew Shum 1 and M. Bumin Yenmez 3,* 1 Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA; [email protected] (F.E.); [email protected] (M.S.) 2 Department of Economics, Washington University in St. Louis, St. Louis, MO 63130, USA; [email protected] 3 Department of Economics, Boston College, Chestnut Hill, MA 02467, USA * Correspondence: [email protected] Abstract: We develop the theory of stability for aggregate matchings used in empirical studies and establish fundamental properties of stable matchings including the result that the set of stable matchings is a non-empty, complete, and distributive lattice. Aggregate matchings are relevant as matching data in revealed preference theory. We present a result on rationalizing a matching data as the median stable matching. Keywords: aggregate matching; median stable matching; rationalizability; lattice 1. Introduction Following the seminal work of [1], an extensive literature has developed regarding matching markets with non-transferable utility. This literature assumes that there are agent-specific preferences, and studies the existence of stable matchings in which each Citation: Echenique, F.; Lee, S.; agent prefers her assigned partner to the outside option of being unmatched, and there Shum, M.; Yenmez, M.B. Stability and are no pairs of agents that would like to match with each other rather than keeping their Median Rationalizability for assigned partners. Aggregate Matchings. Games 2021, 12, In this paper, we develop the theory of stability for aggregate matchings, which we 33. -
Report on Exact and Statistical Matching Techniques
Statistical Policy Working Papers are a series of technical documents prepared under the auspices of the Office of Federal Statistical Policy and Standards. These documents are the product of working groups or task forces, as noted in the Preface to each report. These Statistical Policy Working Papers are published for the purpose of encouraging further discussion of the technical issues and to stimulate policy actions which flow from the technical findings and recommendations. Readers of Statistical Policy Working Papers are encouraged to communicate directly with the Office of Federal Statistical Policy and Standards with additional views, suggestions, or technical concerns. Office of Joseph W. Duncan Federal Statistical Director Policy Standards For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Statistical Policy Working Paper 5 Report on Exact and Statistical Matching Techniques Prepared by Subcommittee on Matching Techniques Federal Committee on Statistical Methodology DEPARTMENT OF COMMERCE UNITED STATES OF AMERICA U.S. DEPARTMENT OF COMMERCE Philip M. Klutznick Courtenay M. Slater, Chief Economist Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Issued: June 1980 Office of Federal Statistical Policy and Standards Joseph W. Duncan, Director Katherine K. Wallman, Deputy Director, Social Statistics Gaylord E. Worden, Deputy Director, Economic Statistics Maria E. Gonzalez, Chairperson, Federal Committee on Statistical Methodology Preface This working paper was prepared by the Subcommittee on Matching Techniques, Federal Committee on Statistical Methodology. The Subcommittee was chaired by Daniel B. Radner, Office of Research and Statistics, Social Security Administration, Department of Health and Human Services. Members of the Subcommittee include Rich Allen, Economics, Statistics, and Cooperatives Service (USDA); Thomas B. -
Auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics
auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics APREPRINT Alicja Gosiewska Przemysław Biecek Faculty of Mathematics and Information Science Faculty of Mathematics and Information Science Warsaw University of Technology Warsaw University of Technology Poland Faculty of Mathematics, Informatics and Mechanics [email protected] University of Warsaw Poland [email protected] May 27, 2020 ABSTRACT Machine learning models have spread to almost every area of life. They are successfully applied in biology, medicine, finance, physics, and other fields. With modern software it is easy to train even a complex model that fits the training data and results in high accuracy on test set. The problem arises when models fail confronted with the real-world data. This paper describes methodology and tools for model-agnostic audit. Introduced tech- niques facilitate assessing and comparing the goodness of fit and performance of models. In addition, they may be used for analysis of the similarity of residuals and for identification of outliers and influential observations. The examination is carried out by diagnostic scores and visual verification. Presented methods were implemented in the auditor package for R. Due to flexible and con- sistent grammar, it is simple to validate models of any classes. K eywords machine learning, R, diagnostics, visualization, modeling 1 Introduction Predictive modeling is a process that uses mathematical and computational methods to forecast outcomes. arXiv:1809.07763v4 [stat.CO] 26 May 2020 Lots of algorithms in this area have been developed and are still being develop. Therefore, there are countless possible models to choose from and a lot of ways to train a new new complex model. -
Alternatives to Randomized Control Trials: a Review of Three Quasi-Experimental Designs for Causal Inference
Actualidades en Psicología, 29(119), 2015, 19- 27 ISSN 2215-3535 http://revistas.ucr.ac.cr/index.php/actualidades DOI: http://dx.doi.org/10.15517/ap.v29i119.18810 Alternatives to Randomized Control Trials: A Review of Three Quasi-experimental Designs for Causal Inference Alternativas a las Pruebas Controladas Aleatorizadas: una revisión de tres diseños cuasi experimentales para la inferencia causal Pavel Pavolovich Panko1 Jacob D. Curtis2 Brittany K. Gorrall3 Todd Daniel Little4 Texas Tech University, United States Abstract. The Randomized Control Trial (RCT) design is typically seen as the gold standard in psychological research. As it is not always possible to conform to RCT specifications, many studies are conducted in the quasi-experimental framework. Although quasi-experimental designs are considered less preferable to RCTs, with guidance they can produce inferences which are just as valid. In this paper, the authors present 3 quasi-experimental designs which are viable alternatives to RCT designs. These designs are Regression Point Displacement (RPD), Regression Discontinuity (RD), and Propensity Score Matching (PSM). Additionally, the authors outline several notable methodological improvements to use with these designs. Keywords. Psychometrics, Quasi-Experimental Design, Regression Point Displacement, Regression Discontinuity, Propensity Score Matching. Resumen. Los diseños de Pruebas Controladas Aleatorizadas (PCA) son típicamente vistas como el mejor diseño en la investigación en psicología. Como tal, no es siempre posible cumplir con las especificaciones de las PCA y por ello muchos estudios son realizados en un marco cuasi experimental. Aunque los diseños cuasi experimentales son considerados menos convenientes que los diseños PCA, con directrices estos pueden producir inferencias igualmente válidas. -
Matching Via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16) Matching via Dimensionality Reduction for Estimation of Treatment Effects in Digital Marketing Campaigns Sheng Li Nikos Vlassis Jaya Kawale Yun Fu Northeastern University Adobe Research Adobe Research Northeastern University Boston, MA, USA San Jose, CA, USA San Jose, CA, USA Boston, MA, USA [email protected] [email protected] [email protected] [email protected] Abstract units in the control group are interpreted as counterfactuals, and the average treatment effect on treated (ATT) is estimated A widely used method for estimating counterfactu- by comparing the outcomes of every matched pair. als and causal treatment effects from observational data is nearest-neighbor matching. This typically One of the widely used matching methods is Nearest involves pairing each treated unit with its nearest- Neighbor Matching (NNM) [Rubin, 1973a]. For each treated in-covariates control unit, and then estimating an unit, NNM finds its nearest neighbor in the control group average treatment effect from the set of matched to generate a matched pair, and the ATT is then estimated pairs. Although straightforward to implement, this from the set of matched pairs. Different NNM methods are estimator is known to suffer from a bias that in- characterized by the choice of a distance measure for de- creases with the dimensionality of the covariate termining such a match. Some of the popularly used dis- space, which can be undesirable in applications tance measures are Exact Matching and its variant Coars- that involve high-dimensional data. To address this ened Exact Matching (CEM) [Iacus et al., 2011], Maha- problem, we propose a novel estimator that first lanobis distance matching [Rubin, 1979], and Propensity projects the data to a number of random linear sub- Score Matching (PSM) [Rosenbaum and Rubin, 1983]. -
Frequency Matching Case-Control Techniques: an Epidemiological Perspective
Frequency Matching case-control techniques: an epidemiological perspective. Authors: Hai Nguyen, MS (1st and Corresponding Author) Research Assistant Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago Phone: 1-312-355-4471 Email: [email protected] Trang Pham, MS Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago [email protected] Garth Rauscher, PhD Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago [email protected] Abstract In many cohort and case-control studies, subjects are matched to intend to control confounding and to improve study efficiency by improving precision. An often-used approach is to check to see that the frequency distributions in each study group are alike. Being alike in the frequency distributions of key variables would provide evidence that the groups are comparable. However, there are instances where the overall distributions could be alike, but the individual cases could vary substantially. While there are no methods that can guarantee comparability, individual case matching has often been used to provide assurances that the groups are comparable. We propose an algorithm build a macro in SAS to match control for the case given a set of matching criteria, including match exact on site, on the year, exact or 5-year interval match on age. Cases will be matched with a large number of controls. A large dataset from 2000-2017 from Metropolitan Chicago Breast Cancer Registry with more than 485000 women obtaining breast screening or diagnostic imaging (more than 15000 cases:30000 controls) was applied. -
ROC Curve Analysis and Medical Decision Making
ROC curve analysis and medical decision making: what’s the evidence that matters for evidence-based diagnosis ? Piergiorgio Duca Biometria e Statistica Medica – Dipartimento di Scienze Cliniche Luigi Sacco – Università degli Studi – Via GB Grassi 74 – 20157 MILANO (ITALY) [email protected] 1) The ROC (Receiver Operating Characteristic) curve and the Area Under the Curve (AUC) The ROC curve is the statistical tool used to analyse the accuracy of a diagnostic test with multiple cut-off points. The test could be based on a continuous diagnostic indicant, such as a serum enzyme level, or just on an ordinal one, such as a classification based on radiological imaging. The ROC curve is based on the probability density distributions, in actually diseased and non diseased patients, of the diagnostician’s confidence in a positive diagnosis, and upon a set of cut-off points to separate “positive” and “negative” test results (Egan, 1968; Bamber, 1975; Swets, Pickett, 1982; Metz, 1986; Zhou et al, 2002). The Sensitivity (SE) – the proportion of diseased turned out to be test positive – and the Specificity (SP) – the proportion of non diseased turned out to be test negative – will depend on the particular confidence threshold the observer applies to partition the continuously distributed perceptions of evidence into positive and negative test results. The ROC curve is the plot of all the pairs of True Positive Rates (TPR = SE), as ordinate, and False Positive Rates (FPR = (1 – SP)), as abscissa, related to all the possible cut-off points. An ROC curve represents all of the compromises between SE and SP can be achieved, changing the confidence threshold. -
Estimating the Variance of a Propensity Score Matching Estimator for the Average Treatment Effect
Observational Studies 4 (2018) 71-96 Submitted 5/15; Published 3/18 Estimating the variance of a propensity score matching estimator for the average treatment effect Ronnie Pingel [email protected] Department of Statistics Uppsala University Uppsala, Sweden Abstract This study considers variance estimation when estimating the asymptotic variance of a propensity score matching estimator for the average treatment effect. We investigate the role of smoothing parameters in a variance estimator based on matching. We also study the properties of estimators using local linear estimation. Simulations demonstrate that large gains can be made in terms of mean squared error, bias and coverage rate by prop- erly selecting smoothing parameters. Alternatively, a residual-based local linear estimator could be used as an estimator of the asymptotic variance. The variance estimators are implemented in analysis to evaluate the effect of right heart catheterisation. Keywords: Average Causal Effect, Causal Inference, Kernel estimator 1. Introduction Matching estimators belong to a class of estimators of average treatment effects (ATEs) in observational studies that seek to balance the distributions of covariates in a treatment and control group (Stuart, 2010). In this study we consider one frequently used matching method, the simple nearest-neighbour matching with replacement (Rubin, 1973; Abadie and Imbens, 2006). Rosenbaum and Rubin (1983) show that instead of matching on covariates directly to remove confounding, it is sufficient to match on the propensity score. In observational studies the propensity score must almost always be estimated. An important contribution is therefore Abadie and Imbens (2016), who derive the large sample distribution of a nearest- neighbour propensity score matching estimator when using the estimated propensity score. -
Package 'Matching'
Package ‘Matching’ April 14, 2021 Version 4.9-9 Date 2021-03-15 Title Multivariate and Propensity Score Matching with Balance Optimization Author Jasjeet Singh Sekhon <[email protected]> Maintainer Jasjeet Singh Sekhon <[email protected]> Description Provides functions for multivariate and propensity score matching and for finding optimal balance based on a genetic search algorithm. A variety of univariate and multivariate metrics to determine if balance has been obtained are also provided. For details, see the paper by Jasjeet Sekhon (2007, <doi:10.18637/jss.v042.i07>). Depends R (>= 2.6.0), MASS (>= 7.2-1), graphics, grDevices, stats Suggests parallel, rgenoud (>= 2.12), rbounds License GPL-3 URL http://sekhon.berkeley.edu/matching/ NeedsCompilation yes RoxygenNote 7.1.1 Repository CRAN Date/Publication 2021-04-13 22:00:15 UTC R topics documented: balanceUV . .2 GenMatch . .4 GerberGreenImai . 11 ks.boot . 13 lalonde . 15 Match . 16 MatchBalance . 22 Matchby . 26 1 2 balanceUV qqstats . 30 summary.balanceUV . 32 summary.ks.boot . 33 summary.Match . 34 summary.Matchby . 34 Index 36 balanceUV Univariate Balance Tests Description This function provides a number of univariate balance metrics. Generally, users should call MatchBalance and not this function directly. Usage balanceUV(Tr, Co, weights = rep(1, length(Co)), exact = FALSE, ks=FALSE, nboots = 1000, paired=TRUE, match=FALSE, weights.Tr=rep(1,length(Tr)), weights.Co=rep(1,length(Co)), estimand="ATT") Arguments Tr A vector containing the treatment observations. Co A vector containing the control observations. weights A vector containing the observation specific weights. Only use this option when the treatment and control observations are paired (as they are after matching). -
A Comparison of Different Methods to Handle Missing Data in the Context of Propensity Score Analysis
European Journal of Epidemiology https://doi.org/10.1007/s10654-018-0447-z (0123456789().,-volV)(0123456789().,- volV) METHODS A comparison of different methods to handle missing data in the context of propensity score analysis 1 1,2 1,3 Jungyeon Choi • Olaf M. Dekkers • Saskia le Cessie Received: 21 May 2018 / Accepted: 25 September 2018 Ó The Author(s) 2018 Abstract Propensity score analysis is a popular method to control for confounding in observational studies. A challenge in propensity methods is missing values in confounders. Several strategies for handling missing values exist, but guidance in choosing the best method is needed. In this simulation study, we compared four strategies of handling missing covariate values in propensity matching and propensity weighting. These methods include: complete case analysis, missing indicator method, multiple imputation and combining multiple imputation and missing indicator method. Concurrently, we aimed to provide guidance in choosing the optimal strategy. Simulated scenarios varied regarding missing mechanism, presence of effect modification or unmeasured confounding. Additionally, we demonstrated how missingness graphs help clarifying the missing structure. When no effect modification existed, complete case analysis yielded valid causal treatment effects even when data were missing not at random. In some situations, complete case analysis was also able to partially correct for unmeasured confounding. Multiple imputation worked well if the data were missing (completely) at random, and if the imputation model was correctly specified. In the presence of effect modification, more complex imputation models than default options of commonly used statistical software were required. Multiple imputation may fail when data are missing not at random.