IAEA SAFEGUARDS GLOSSARY 2001 Edition INTERNATIONAL NUCLEAR VERIFICATION SERIES No

Total Page:16

File Type:pdf, Size:1020Kb

IAEA SAFEGUARDS GLOSSARY 2001 Edition INTERNATIONAL NUCLEAR VERIFICATION SERIES No IAEA SAFEGUARDS GLOSSARY 2001 Edition INTERNATIONAL NUCLEAR VERIFICATION SERIES No. 3 IAEA SAFEGUARDS GLOSSARY 2001 Edition The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA PANAMA ALBANIA GREECE PARAGUAY ALGERIA GUATEMALA PERU ANGOLA HAITI PHILIPPINES ARGENTINA HOLY SEE POLAND ARMENIA HUNGARY PORTUGAL AUSTRALIA ICELAND QATAR AUSTRIA INDIA REPUBLIC OF MOLDOVA AZERBAIJAN INDONESIA ROMANIA BANGLADESH IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ SAUDI ARABIA BELGIUM IRELAND SENEGAL BENIN ISRAEL SIERRA LEONE BOLIVIA ITALY SINGAPORE BOSNIA AND HERZEGOVINA JAMAICA SLOVAKIA BOTSWANA JAPAN SLOVENIA BRAZIL JORDAN SOUTH AFRICA BULGARIA KAZAKHSTAN SPAIN BURKINA FASO KENYA SRI LANKA CAMBODIA KOREA, REPUBLIC OF SUDAN CAMEROON KUWAIT SWEDEN CANADA LATVIA SWITZERLAND CENTRAL AFRICAN LEBANON SYRIAN ARAB REPUBLIC REPUBLIC LIBERIA TAJIKISTAN CHILE LIBYAN ARAB JAMAHIRIYA THAILAND CHINA LIECHTENSTEIN THE FORMER YUGOSLAV COLOMBIA LITHUANIA REPUBLIC OF MACEDONIA COSTA RICA LUXEMBOURG TUNISIA CÔTE D’IVOIRE MADAGASCAR TURKEY CROATIA MALAYSIA UGANDA CUBA MALI UKRAINE CYPRUS MALTA UNITED ARAB EMIRATES CZECH REPUBLIC MARSHALL ISLANDS UNITED KINGDOM OF DEMOCRATIC REPUBLIC MAURITIUS GREAT BRITAIN AND OF THE CONGO MEXICO NORTHERN IRELAND DENMARK MONACO UNITED REPUBLIC DOMINICAN REPUBLIC MONGOLIA OF TANZANIA ECUADOR MOROCCO UNITED STATES OF AMERICA EGYPT MYANMAR URUGUAY EL SALVADOR NAMIBIA UZBEKISTAN ESTONIA NETHERLANDS VENEZUELA ETHIOPIA NEW ZEALAND VIET NAM FINLAND NICARAGUA YEMEN FRANCE NIGER YUGOSLAVIA, GABON NIGERIA FEDERAL REPUBLIC OF GEORGIA NORWAY ZAMBIA GERMANY PAKISTAN ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. © IAEA, 2002 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria June 2002 IAEA/NVS/3/CD INTERNATIONAL NUCLEAR VERIFICATION SERIES No. 3 IAEA SAFEGUARDS GLOSSARY 2001 Edition INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2002 VIC Library Cataloguing in Publication Data IAEA safeguards glossary. — 2001 ed. — Vienna: International Atomic Energy Agency, 2002. p. ; 24 cm. — (International nuclear verification series, ISSN 1020–6205 ; no. 3) IAEA/NVS/3/CD ISBN 92-0-138602-8 Includes bibliographical references. 1. Nuclear energy — Security measures — Terminology. I. International Atomic Energy Agency. II. Series. VICL 02-02399 FOREWORD IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/1) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/1 (Rev.1)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992–1997, the Board’s approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding, definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA Safeguards Glossary 2001 Edition appears as a publication in the International Nuclear Verification Series. Other publications appearing in this series are as follows: IAEA/NVS/1 Safeguards Techniques and Equipment (1997) IAEA/NVS/2 The Evolution of IAEA Safeguards (1998). NOTE ON THE IAEA DOCUMENTS REFERRED TO IN THE GLOSSARY [ST] Statute of the International Atomic Energy Agency, 1956. [9] INFCIRC/9/Rev. 2. Agreement on the Privileges and Immunities of the IAEA, 1967. [39] GC(V)/INF/39. The Agency’s Inspectorate, 1961. [66] INFCIRC/66/Rev. 2. The Agency’s Safeguards System (1965, as Provisionally Extended in 1966 and 1968), 1968. [140] INFCIRC/140. Treaty on the Non-Proliferation of Nuclear Weapons, 1970. [153] INFCIRC/153 (Corrected). The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons, 1972. [179] GOV/INF/179. The Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean, 1967 (Tlatelolco Treaty). [207] INFCIRC/207. Notification to the Agency of Exports and Imports of Nuclear Material (USSR, UK, USA), 1974. [209] INFCIRC/209/Rev. 2. Communications of 15 November 1999 Received from Member States Regarding the Export of Nuclear Material and of Certain Categories of Equipment and Other Material, 2000. [225] INFCIRC/225/Rev. 4 (Corrected). The Physical Protection of Nuclear Material and Nuclear Facilities, 1999. [254] INFCIRC/254/Rev. 4/Part 1. Communications Received from Certain Member States Regarding Guidelines for the Export of Nuclear Material, Equipment and Technology, 2000; INFCIRC/254/Rev. 4/Part 2. Communications Received from Certain Member States Regarding Guidelines for Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology, 2000. [267] INFCIRC/267. The Revised Guiding Principles and General Operating Rules to Govern the Provision of Technical Assistance by the Agency, 1979. [274] INFCIRC/274/Rev. 1. Convention on the Physical Protection of Nuclear Material, 1980. [322] INFCIRC/322. Communication Received from the Resident Representative of Italy on Behalf of the European Community, 1985. [331] INFCIRC/331/Add. 1. South Pacific Nuclear Free Zone Treaty, 1987 (Rarotonga Treaty). [395] INFCIRC/395. Agreement between the Republic of Argentina and the Federative Republic of Brazil for the Exclusively Peaceful Use of Nuclear Energy, 1992 (Guadalajara Declaration). [411] INFCIRC/411. Amendments to the Treaty for the Prohibition of Nuclear Weapons in Latin America, 1993. [512] INFCIRC/512. The Text of the Cairo Declaration Adopted on the Occasion of the Signing of the African Nuclear-Weapon-Free Zone Treaty, 1996 (Treaty of Pelindaba). [540] INFCIRC/540 (Corrected). Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards, 1997. [548] INFCIRC/548. Communication Received from the Permanent Mission of Thailand Regarding the Treaty on the Southeast Asia Nuclear Weapon-Free Zone, 1998 (Treaty of Bangkok). [549] INFCIRC/549. Communication Received from Certain Member States Concerning Their Policies Regarding the Management of Plutonium, 1998. [SCT] IAEA/SG/SCT/5. Statistical Concepts and Techniques for IAEA Safeguards, Fifth Edition, 1998. [STR-327] International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Material, 2000, Safeguards Technical Report. [IAEA/NVS/1] Safeguards Techniques and Equipment, 1997. [IAEA/NVS/2] The Evolution of IAEA Safeguards, 1998. CONTENTS 1. LEGAL INSTRUMENTS AND OTHER DOCUMENTS RELATED TO IAEA SAFEGUARDS 1 2. IAEA SAFEGUARDS: PURPOSE, OBJECTIVES AND SCOPE 11 3. SAFEGUARDS APPROACHES, CONCEPTS AND MEASURES 16 4. NUCLEAR AND NON-NUCLEAR MATERIAL 25 5. NUCLEAR AND NUCLEAR RELATED ACTIVITIES AND INSTALLATIONS 31 6. NUCLEAR MATERIAL ACCOUNTANCY 37 7. NUCLEAR MATERIAL MEASUREMENT TECHNIQUES AND EQUIPMENT 48 8. CONTAINMENT, SURVEILLANCE AND MONITORING 54 9. ENVIRONMENTAL SAMPLING 59 10. STATISTICAL CONCEPTS AND TECHNIQUES FOR NUCLEAR MATERIAL VERIFICATION 62 11. VISITS, INSPECTIONS AND COMPLEMENTARY ACCESS 69 12. SAFEGUARDS INFORMATION AND EVALUATION 76 13. REPORTING ON SAFEGUARDS IMPLEMENTATION 82 TRANSLATIONS OF TERMS 85 INDEX 173 1. LEGAL INSTRUMENTS AND OTHER DOCUMENTS RELATED TO IAEA SAFEGUARDS Safeguards applied by the International Atomic Energy Agency (IAEA) are an important element of the global nuclear non-proliferation regime. This section provides information on legal instruments and other documents in the area of nuclear non-proliferation that establish the bases of the IAEA safeguards system or are otherwise closely linked to the application of IAEA safeguards.
Recommended publications
  • A US Strategy for Sustainable Energy Security
    A US Strategy for Sustainable Energy Security David Koranyi Foreword by Chuck Hagel A US Strategy for Sustainable Energy Security Atlantic Council Strategy Paper No. 2 © 2016 The Atlantic Council of the United States. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from the Atlantic Council, except in the case of brief quotations in news articles, critical articles, or reviews. Please direct inquiries to: Atlantic Council 1030 15th Street, NW, 12th Floor Washington, DC 20005 ISBN: 978-1-61977-953-2 Cover art credit: The Metropolitan Museum of Art. The Mill of Montmartre by Georges Michel, ca. 1820. This report is written and published in accordance with the Atlantic Council Policy on Intellectual Independence. The authors are solely responsible for its analysis and recommendations. The Atlantic Council, its partners, and funders do not determine, nor do they necessarily endorse or advocate for, any of this report’s particular conclusions. March 2016 Atlantic Council Strategy Papers Editorial Board Executive Editors Mr. Frederick Kempe Dr. Alexander V. Mirtchev Editor-in-Chief Mr. Barry Pavel Managing Editor Dr. Daniel Chiu Table of Contents Foreword ......................................................................i Executive Summary ...................................................iii Introduction .................................................................1 The Need for a US Sustainable Energy Strategy .................. 2 Ten Key Trends Affecting US Energy Security ...................... 3 A US Strategy for Sustainable Energy Security........ 17 Pillar 1. Accelerate the Energy Sector Transition and Solidify the American Innovative Advantage ..................... 22 Pillar 2. Lead on Global Climate Action and Sustain Robust Energy Diplomacy Capabilities ................. 26 Pillar 3. Promote a Liberalized and Rules-based Global Energy Trade System and Build a Functioning Global Energy and Climate Governance Network .............
    [Show full text]
  • The Nuclear Safeguards Regulations 20
    Draft Regulations laid before Parliament under sections 113(2)(a) and (aa) of the Energy Act 2013 and section 2(5) of the Nuclear Safeguards Act 2018, for approval by resolution of each House of Parliament. DRAFT STATUTORY INSTRUMENTS 20-- No. ENERGY The Nuclear Safeguards Regulations 20-- Made - - - - *** Coming into force - - *** The Secretary of State, in exercise of the powers conferred by sections 74(3), 75, 76, 76A(1)(a) and (b), 76A(2), 76A(3), 76A(6), 113(7), of and paragraphs 2 to 16 of Schedule 2 to the Energy Act 2013(a) and by sections 2(1) and (3) of the Nuclear Safeguards Act 2018, makes the following Regulations: In accordance with section 113(2)(a) and (aa) of the Energy Act and with section 2(5) of the Nuclear Safeguards Act 2018, a draft of these Regulations has been laid before Parliament and approved by a resolution of each House of Parliament. CHAPTER I INTRODUCTION Citation and commencement 1.—(1) These Regulations may be cited as the Nuclear Safeguards Regulations 20--. (2) Subject to paragraph (3), these Regulations come into force on **** 20--. (3) Regulations [ ] come into force on [ ]. Interpretation 2. In these Regulations— “Additional Protocol” means the Protocol dated [ ], entered into between the United Kingdom and the Agency which is additional to the Agreement with the Agency; “adjustment” means an entry made in an accounting record or a report, which is required by these Regulations, and which shows a shipper/receiver difference or material unaccounted for; “Agency” means the International Atomic Energy Agency; (a) 2013 c.32.
    [Show full text]
  • Contribution of Renewables to Energy Security
    INTERNATIONAL ENERGY AGENCY AGENCE INTERNATIONALE DE L’ENERGIE CONTRIBUTION OF RENEWABLES TO ENERGY SECURITY IEA INFORMATION PAPER S AMANTHA ÖLZ, R ALPH SIMS AND N ICOLAI KIRCHNER I NTERNATIONAL E NERGY A GENCY © OECD/IEA, April 2007 Table of contents Acknowledgements............................................................................................................... 3 Foreword .............................................................................................................................. 5 Executive Summary.............................................................................................................. 7 1. Risks to energy security ............................................................................................... 13 1.1 Risks for developing countries............................................................................. 15 1.2 Policy responses to energy security risks ............................................................ 15 1.3 Energy security implications of renewable energy technologies........................... 16 2. Current energy use by market segment........................................................................ 19 2.1. Electricity production ........................................................................................... 19 2.2. Heat .................................................................................................................... 21 2.3. Transport............................................................................................................
    [Show full text]
  • Rulemaking for Enhanced Security of Special Nuclear Material
    Rulemaking for Enhanced Security of Special Nuclear Material RIN number: 3150-AJ41 NRC Docket ID: NRC-2014-0118 Regulatory Basis Document January 2015 Table of Contents 1. Introduction and Background .............................................................................................. 1 2. Existing Regulatory Framework .......................................................................................... 3 2.1 Regulatory History ............................................................................................................. 3 2.2 Existing Regulatory Requirements .................................................................................... 8 3. Regulatory Problem .......................................................................................................... 13 3.1 Generic Applicability of Security Orders .......................................................................... 13 3.2 Risk Insights .................................................................................................................... 16 3.3 Consistency and Clarity .................................................................................................. 27 3.4 Use of a Risk-Informed and Performance-Based Structure. ........................................... 29 4. Basis for Requested Changes ........................................................................................... 30 4.1 Material Categorization and Attractiveness ..................................................................... 30 4.2
    [Show full text]
  • Energy Security and the Energy Transition: a Classic Framework for a New Challenge
    REPORT 11.25.19 Energy Security and the Energy Transition: A Classic Framework for a New Challenge Mark Finley, Fellow in Energy and Global Oil their political leaders during the oil shocks of SUMMARY the 1970s. While these considerations have Policymakers in the US and around the world historically been motivated by consumers are grappling with how to understand the worried about access to uninterrupted security implications of an energy system supplies of oil, producing countries can in transition—and if they aren’t, they equally raise concerns about shocks to— should be. Recent attacks on Saudi facilities and the security of—demand. show that oil supply remains vulnerable In addition to geopolitical risk, the to disruption. New energy forms can help reliability of energy supplies has recently reduce vulnerability to oil supply outages, been threatened by factors ranging from but they also have the potential to introduce weather events (the frequency and intensity new vulnerabilities and risks. The US and its of which are exacerbated by climate allies have spent the past 50 years building a change) to terrorist activities, industrial robust domestic and international response accidents, and cyberattacks. The recent system to mitigate risks to oil supplies, but attack on Saudi oil facilities and resulting disruption of oil supplies,1 hurricanes on similar arrangements for other energy forms Policymakers are remain limited. This paper offers a framework the Gulf Coast (which disrupted oil and gas for assessing energy security based on an production and distribution, as well as the grappling with the evaluation of vulnerability, risk, and offsets; electrical grid), and high winds in California security implications this approach has been a useful tool for that caused widespread power outages of an energy system in assessing oil security for the past 50 years, have brought energy security once again transition—and if they into the global headlines.
    [Show full text]
  • Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
    Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation.
    [Show full text]
  • Nuclear Regulatory Commission § 70.5
    Nuclear Regulatory Commission § 70.5 section 51 of the act, determines to be intermediates, which are unsuitable for special nuclear material, but does not use in their present form, but all or include source material; or (2) any ma- part of which will be used after further terial artificially enriched by any of processing. the foregoing but does not include Strategic special nuclear material source material; means uranium-235 (contained in ura- Special nuclear material of low strategic nium enriched to 20 percent or more in significance means: the U235 isotope), uranium-233, or pluto- (1) Less than an amount of special nium. nuclear material of moderate strategic Transient shipment means a shipment significance as defined in paragraph (1) of nuclear material, originating and of the definition of strategic nuclear terminating in foreign countries, on a material of moderate strategic signifi- vessel or aircraft which stops at a cance in this section, but more than 15 United States port. grams of uranium-235 (contained in Unacceptable performance deficiencies uranium enriched to 20 percent or more mean deficiencies in the items relied in U-235 isotope) or 15 grams of ura- on for safety or the management meas- nium-233 or 15 grams of plutonium or ures that need to be corrected to en- the combination of 15 grams when com- sure an adequate level of protection as puted by the equation, grams = (grams defined in 10 CFR 70.61(b), (c), or (d). contained U-235) + (grams plutonium) + United States, when used in a geo- (grams U-233); or graphical sense, includes Puerto Rico (2) Less than 10,000 grams but more and all territories and possessions of than 1,000 grams of uranium-235 (con- the United States.
    [Show full text]
  • Energy Security Assessment Framework to Support Energy Policy Decisions
    Energy security assessment framework to support energy policy decisions Juozas Augutis, Ričardas Krikštolaitis, Linas Martišauskas Lithuanian Energy Institute, Kaunas, Lithuania Vytautas Magnus University, Kaunas, Lithuania EU Conference on modelling for policy support Brussels (Belgium), 26-27 November 2019 Presentation outline • Energy security definition • Methodology framework • Results of Lithuanian energy system 2 Energy security definition Energy Security Energy system Energy supply Energy price resilience to reliability acceptability disruptions Energy security* – the ability of the energy system: • to uninterruptedly supply energy to consumers under acceptable prices, • to resist potential disruptions arising due to technical, natural, economic, socio- political and geopolitical threats. *Vytautas Magnus University and Lithuanian Energy Institute, Energy Security Research Centre, 2013–2019 3 Methodology framework for the energy security analysis Threats • Identification and analysis of threats to energy security Disruptions • Formation of internal and external disruptions to energy system Energy system modelling • Model for energy system development implemented in OSeMOSYS tool • Energy system modelling with stochastic disruption scenarios or pathways Consequence analysis • Disruption consequences: energy cost increase and unsupplied energy Energy security metric Methodological approach • Energy security coefficient – quantitative level of energy security 4 Threats to energy security • A threat to energy security is defined as any potential danger that exists within or outside the energy system and that has a potential to result in some kind of disruption of that system. Category Threats • technical problems or accidents in the energy production, resource extractions and transportation, Technical energy transmission infrastructure and processing enterprises, • attacks on supply infrastructure. • extreme temperature, wind, rainfall and other extreme meteorological phenomena or natural Natural disasters.
    [Show full text]
  • The Electronuclear Conversion of Fertile to Fissile Material
    UCRL-52144 THE ELECTRONUCLEAR CONVERSION OF FERTILE TO FISSILE MATERIAL C. M. Van Atta J. D. Lee H. Heckrotto October 11, 1976 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 II\M LAWRENCE lUg LIVERMORE k^tf LABORATORY UnrmsilyotCatftxna/lJvofmofe s$ PC DISTRIBUTION OF THIS DOCUMENmmT IS UMUMWTED NOTICE Thii npoit WM prepared w u account of wot* •pomond by UM Uiilttd Stalwi GovcmiMM. Nittim Uw United Stain nor the United Statn Energy tUwardi it Development AdrnWrtrtUon, not «y of thei* employee!, nor any of their contricton, •ubcontrecton, or their employe*!, makti any warranty, expreai « Implied, or muMi any toga) liability oc reeponafctUty for the accuracy, completenni or uMfulntat of uy Information, apperatui, product or proem dlecloead, or repreienl. that tu UM would not *nfrkig» prrrtt*)}MWiwd r%hl». NOTICE Reference to a oompmy or product rum don not imply approval or nconm ndatjon of the product by the Untnrtity of California or the US. Energy Research A Devetopnient Administration to the uchvton of others that may be suitable. Printed In the United Stitei or America Available from National Technical Information Service U.S. Department of Commerce 528S Port Royal Road Springfield, VA 22161 Price: Printed Copy S : Microfiche $2.25 DMimtic P»t» Ranflt PHca *•#» Rtnft MM 001-025 $ 3.50 326-350 10.00 026-050 4.00 351-375 10.50 051-075 4.50 376-400 10.75 076-100 5.00 401-425 11.00 101-125 5.50 426-450 31.75 126-150 6.00 451-475 12.00 151-175 6.75 476-500 12.50 176-200 7.50 501-525 12.75 201-225 7.75 526-550 13.00 526-250 8.00 551-575 13.50 251-275 9.00 576-600 I3.7S 276-300 9.25 601 -up 301-325 9.75 *Ml J2.50 fot «ch iddltlOMl 100 pip tacmitMt from 601 ID 1,000 flfcK IM 54.50 for eicli iMUknal I0O plfe feenmMI om 1,000 p*o.
    [Show full text]
  • 611130 Outgoing Amendment No. 52 to Curium US LLC to License No
    NRCFORM374 PAGE 1 OF 5 PAGES U.S. NUCLEAR REGULATORY COMMISSION Amendment No. 52 MATERIALS LICENSE Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and Title 10, Code of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 70 and 71, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations, and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below. Licensee In accordance with letter dated 4. Expiration Date: July 31, 2022 Janua~22...2.0J», 1. Curium US LLC ~~t\ Kt:G t----------..iii-,..iii-,--1 5. Docket No.: 030-10801 2. 2703 Wagner Place 3. license No.: 24-04206-05f\A[() Reference No.: Maryland Heights, MO 63043 is amended in Its entirety to re~ as follows: i!" 1 ~i\il'W, 6. Byproduct, source, 7. Chemical ahttor physical form 8. Maximum amount that lice~e·~ 9. Authorized use and/or special nuclear may possess at any one tfmel material this license A.
    [Show full text]
  • Nrc Regulatory Issue Summary 2005-23 Clarification of the Physical Presence Requirement During Gamma Stereotactic Radiosurgery Treatments
    UNITED STATES NUCLEAR REGULATORY COMMISSION OFFICE OF NUCLEAR MATERIAL SAFETY AND SAFEGUARDS WASHINGTON, D.C. 20555 October 7, 2005 NRC REGULATORY ISSUE SUMMARY 2005-23 CLARIFICATION OF THE PHYSICAL PRESENCE REQUIREMENT DURING GAMMA STEREOTACTIC RADIOSURGERY TREATMENTS ADDRESSEES All gamma stereotactic radiosurgery (GSR) licensees. INTENT The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory issue summary (RIS) to clarify the definition of the term “physically present,” as used in 10 CFR 35.615(f)(3). No specific action or written response is required. BACKGROUND In March 2005, during a licensing visit to a GSR facility, the NRC staff observed that the authorized medical physicist (AMP) did not remain physically present throughout one of the GSR treatments, as required by 10 CFR 35.615(f)(3). Instead, during the treatment, the AMP walked to the other end of the GSR suite and entered a treatment planning room located more than 30.5 meters (100 feet) away from the GSR treatment console. While discussing this incident with the licensee, the NRC staff recognized that the licensee was misinterpreting the physical presence requirement for GSR treatments. Based on the licensee’s interpretation of the regulations, the licensee considered any location within the GSR suite, including the treatment planning room, to be within hearing distance of normal voice from the GSR treatment console. The licensee believed that, within the contiguous boundary of its GSR suite, the human voice has sufficient volume, without electronic amplification, to alert the AMP of an emergency at essentially any location within its suite and the AMP could respond in a timely manner.
    [Show full text]
  • Advanced Reactors with Innovative Fuels
    Nuclear Science Advanced Reactors with Innovative Fuels Workshop Proceedings Villigen, Switzerland 21-23 October 1998 NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. OECD PROCEEDINGS Proceedings of the Workshop on Advanced Reactors with Innovative Fuels hosted by Villigen, Switzerland 21-23 October 1998 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]