China's Fissile Material Production and Stockpile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region
sustainability Article Spatiotemporal Changes and the Driving Forces of Sloping Farmland Areas in the Sichuan Region Meijia Xiao 1 , Qingwen Zhang 1,*, Liqin Qu 2, Hafiz Athar Hussain 1 , Yuequn Dong 1 and Li Zheng 1 1 Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; [email protected] (M.X.); [email protected] (H.A.H.); [email protected] (Y.D.); [email protected] (L.Z.) 2 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82106031 Received: 12 December 2018; Accepted: 31 January 2019; Published: 11 February 2019 Abstract: Sloping farmland is an essential type of the farmland resource in China. In the Sichuan province, livelihood security and social development are particularly sensitive to changes in the sloping farmland, due to the region’s large portion of hilly territory and its over-dense population. In this study, we focused on spatiotemporal change of the sloping farmland and its driving forces in the Sichuan province. Sloping farmland areas were extracted from geographic data from digital elevation model (DEM) and land use maps, and the driving forces of the spatiotemporal change were analyzed using a principal component analysis (PCA). The results indicated that, from 2000 to 2015, sloping farmland decreased by 3263 km2 in the Sichuan province. The area of gently sloping farmland (<10◦) decreased dramatically by 1467 km2, especially in the capital city, Chengdu, and its surrounding areas. -
2.20 Gansu Province
2.20 Gansu Province Gansu Provincial Prison Enterprise Group, affiliated with Gansu Provincial Prison Administration Bureau,1 has 18 prison enterprises Legal representative of the prison company: Liu Yan, general manager of Gansu Prison Enterprise Group2 His official positions in the prison system: Deputy director of Gansu Provincial Prison Administration Bureau No. Company Name of the Legal Person Legal Registered Business Scope Company Notes on the Prison Name Prison, to which and representative/ Title Capital Address the Company Shareholder(s) Belongs 1 Gansu Gansu Provincial Gansu Liu Yan 803 million Wholesale and retail of machinery 222 Jingning The Gansu Provincial Prison Provincial Prison Provincial Deputy director of yuan and equipment (excluding sedans), Road, Administration Bureau is Gansu Province’s Prison Administration Prison Gansu Provincial building materials, chemical Chengguan functional department that manages the Enterprise Bureau Administration Prison products, agricultural and sideline District, prisons in the entire province. It is in charge Group Bureau Administration products (excluding grain Lanzhou City of the works of these prisons. It is at the Bureau; general wholesale); wholesale and retail of deputy department level, and is managed by manager of Gansu daily necessities the Justice Department of Gansu Province.4 Prison Enterprise Group3 2 Gansu Dingxi Prison of Gansu Qiao Zhanying 16 million Manufacturing and sale of high-rise 1 Jiaoyu Dingxi Prison of Gansu Province6 was Dingqi Gansu Province Provincial Member of the yuan and long-span buildings, bridges, Avenue, established in May 1952. Its original name Steel Prison Communist Party marine engineering steel structures, An’ding was the Gansu Provincial Fourth Labor Structure Enterprise Committee and large boiler steel frames, District, Dingxi Reform Detachment. -
The Nuclear Safeguards Regulations 20
Draft Regulations laid before Parliament under sections 113(2)(a) and (aa) of the Energy Act 2013 and section 2(5) of the Nuclear Safeguards Act 2018, for approval by resolution of each House of Parliament. DRAFT STATUTORY INSTRUMENTS 20-- No. ENERGY The Nuclear Safeguards Regulations 20-- Made - - - - *** Coming into force - - *** The Secretary of State, in exercise of the powers conferred by sections 74(3), 75, 76, 76A(1)(a) and (b), 76A(2), 76A(3), 76A(6), 113(7), of and paragraphs 2 to 16 of Schedule 2 to the Energy Act 2013(a) and by sections 2(1) and (3) of the Nuclear Safeguards Act 2018, makes the following Regulations: In accordance with section 113(2)(a) and (aa) of the Energy Act and with section 2(5) of the Nuclear Safeguards Act 2018, a draft of these Regulations has been laid before Parliament and approved by a resolution of each House of Parliament. CHAPTER I INTRODUCTION Citation and commencement 1.—(1) These Regulations may be cited as the Nuclear Safeguards Regulations 20--. (2) Subject to paragraph (3), these Regulations come into force on **** 20--. (3) Regulations [ ] come into force on [ ]. Interpretation 2. In these Regulations— “Additional Protocol” means the Protocol dated [ ], entered into between the United Kingdom and the Agency which is additional to the Agreement with the Agency; “adjustment” means an entry made in an accounting record or a report, which is required by these Regulations, and which shows a shipper/receiver difference or material unaccounted for; “Agency” means the International Atomic Energy Agency; (a) 2013 c.32. -
Lithofacies Palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China
Journal of Palaeogeography 2014, 3(4): 384-409 DOI: 10.3724/SP.J.1261.2014.00063 Lithofacies palaeogeography and sedimentology Lithofacies palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China Jin-Xiong Luo*, You-Bin He, Rui Wang School of Geosciences, Yangtze University, Wuhan 430100, China Abstract The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the “single factor analysis and multifactor comprehensive mapping” method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and lime- stone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thin- bedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography. -
World Bank Document
INTEGRATED SAFEGUARDS DATA SHEET CONCEPT STAGE Report No.: AC3902 Public Disclosure Authorized Date ISDS Prepared/Updated: 10/30/2008 I. BASIC INFORMATION A. Basic Project Data Country: China Project ID: P114107 Project Name: Wenchuan Earthquake Recovery Task Team Leader: Mara K. Warwick Estimated Appraisal Date: November 13, Estimated Board Date: December 16, 2008 2008 Managing Unit: EASCS Lending Instrument: Emergency Recovery Public Disclosure Authorized Loan Sector: General water, sanitation and flood protection sector (44%);Roads and highways (39%);Health (13%);General education sector (4%) Theme: Natural disaster management (P);Pollution management and environmental health (S);Access to urban services and housing (S) IBRD Amount (US$m.): 710.00 IDA Amount (US$m.): 0.00 GEF Amount (US$m.): 0.00 PCF Amount (US$m.): 0.00 Other financing amounts by source: Borrower 30.00 30.00 Public Disclosure Authorized B. Project Objectives [from section 2 of PCN] To restore essential infrastructure, health, and education services to at least pre-earthquake levels and reduce vulnerability to seismic and flood hazards in project areas. C. Project Description [from section 3 of PCN] The proposed emergency recovery loan (ERL) will span Sichuan and Gansu provinces and will be processed using a programmatic approach, which will include the following key areas: (a) identification, selection, and appraisal of individual investment projects, including technical standards; (b) safeguards; (c) procurement; (d) financial management; and (e) monitoring and evaluation. During preparation, frameworks will be developed to guide the selection, appraisal and implementation of the individual investments during project implementation. Public Disclosure Authorized The components of the ERL cover three main sectors: infrastructure, health and education. -
Challenges and Countermeasures of Tourism
International Conference on Social Science and Technology Education (ICSSTE 2015) Challenges and Countermeasures of Regional Tourism Cooperation Development Strategy of Sichuan-Shanxi-Gansu Golden Triangle Area,Western China Qin Jianxiong1 Zhang Minmin1 1 College of tourism and historic culture, Southwest University For Natianalities, Chengdu, 610041 Abstract visitors can explore in this line up and down five SSGGTA triangle of three provinces , dependent thousand years of culture, enjoy the mystery of Qinba [1] landscape, folk customs are similar, for the first time landscape . These tourism resources in Chongqing, since the 2002 held in Bazhong of SSGGTA triangle area Chengdu, Xi'an, Lanzhou, Wuhan five source among SSGGTA triangle tourism cooperation zone is composed tourism cooperation will be signed in SSGGTA triangle of Sichuan Bazhong, Guangyuan, Dazhou and Shanxi tourism, build "Golden Triangle" cooperation agreement, Hanzhoung, Ankang three provinces and five to 2005 has successively held 3 annual meeting. The goal municipalities, carry out cooperation in the past 3 years, of cooperation is through the sincere cooperation of the three provinces and five municipalities in the propaganda, three provinces, the formation of regional tourism build mutual interaction, line group, strategic planning collaboration regular contact system, the characteristics of consensus interaction and so on has made significant tourism products, the formation of regional joint progress, regional cooperation has been fully affirmed the promotion,a barrier free Tourism Zone, to realize the two provincial government and support. Sichuan North Sichuan area has been the focus of tourism development sustainable development of Shanxi tourism in Golden in the province, tourism development, Shanxi will also Triangle. -
Gansu Cultural and Natural Heritage Protection
PROJECT INFORMATION DOCUMENT (PID) APPRAISAL STAGE Report No.: AB3065 CN-Gansu Cultural and Natural Heritage Protection and Project Name Development Public Disclosure Authorized Region EAST ASIA AND PACIFIC Sector Other social services (57%); General transportation sector (30%); General water, sanitation and flood protection sector (10%); Solid waste management (3%) Project ID P091949 Borrower(s) PEOPLE’S REPUBLIC OF CHINA Implementing Agency Gansu Provincial Government Gansu Provincial Development and Reform Commission 319 Houlou, No. 1 Building Zhongyang Guangchang, Chengguan District Gansu Public Disclosure Authorized China 730030 Tel: +86 931 846 4760 Fax: +86 931 848 4190 [email protected] Environment Category [X] A [ ] B [ ] C [ ] FI [ ] TBD (to be determined) Date PID Prepared July 25, 2007 Date of Appraisal June 20, 2007 Authorization Date of Board Approval TBD 1. Country and Sector Background Public Disclosure Authorized 1. Gansu Province, with its capital of Lanzhou and a total population of 26 million, is located in northwestern China. The economy has traditionally been based on agricultural production, mining of the province’s abundant mineral reserves, and heavy industrial development. Poor infrastructure and Gansu’s distance from the coast, have largely kept it isolated from the rapid development experienced by other provinces in China over the last two decades. As a result, Gansu is the second poorest province in the country, measured by per- capita GDP. Moreover, the province contains some of the country’s poorest communities, as listed on the Government’s national poverty register. 2. A major element of Gansu’s poverty alleviation and economic restructuring strategy is the development of a sustainable tourism industry. -
Nuclear Power: "Made in China"
Nuclear Power: “Made in China” Andrew C. Kadak, Ph.D. Professor of the Practice Department of Nuclear Science and Engineering Massachusetts Institute of Technology Introduction There is no doubt that China has become a world economic power. Its low wages, high production capability, and constantly improving quality of goods place it among the world’s fastest growing economies. In the United States, it is hard to find a product not “Made in China.” In order to support such dramatic growth in production, China requires an enormous amount of energy, not only to fuel its factories but also to provide electricity and energy for its huge population. At the moment, on a per capita basis, China’s electricity consumption is still only 946 kilowatt-hours (kwhrs) per year, compared to 9,000 kwhrs per year for the developed world and 13,000 kwhrs per year for the United States.1 However, China’s recent electricity growth rate was estimated to be 15 percent per year, with a long-term growth rate of about 4.3 percent for the next 15 years.2 This is almost triple the estimates for most Western economies. China has embarked upon an ambitious program of expansion of its electricity sector, largely due to the move towards the new socialist market economy. As part of China’s 10th Five-Year Plan (2001-2005), a key part of energy policy is to “guarantee energy security, optimize energy mix, improve energy efficiency, protect ecological environment . .”3 China’s new leaders are also increasingly concerned about the environmental impact of its present infrastructure. -
Section 2: Emerging Technologies and Military-Civil Fusion: Artificial Intelli
SECTION 2: EMERGING TECHNOLOGIES AND MILITARY-CIVIL FUSION: ARTIFICIAL INTELLI- GENCE, NEW MATERIALS, AND NEW ENERGY Key Findings • China’s government has implemented a whole-of-society strat- egy to attain leadership in artificial intelligence (AI), new and advanced materials, and new energy technologies (e.g., energy storage and nuclear power). It is prioritizing these areas be- cause they underpin advances in many other technologies and could lead to substantial scientific breakthroughs, economic dis- ruption, enduring economic benefits, and rapid changes in mili- tary capabilities and tactics. • The Chinese government’s military-civil fusion policy aims to spur innovation and economic growth through an array of pol- icies and other government-supported mechanisms, including venture capital (VC) funds, while leveraging the fruits of civil- ian innovation for China’s defense sector. The breadth and opac- ity of military-civil fusion increase the chances civilian academ- ic collaboration and business partnerships between the United States and China could aid China’s military development. • China’s robust manufacturing base and government support for translating research breakthroughs into applications allow it to commercialize new technologies more quickly than the Unit- ed States and at a fraction of the cost. These advantages may enable China to outpace the United States in commercializing discoveries initially made in U.S. labs and funded by U.S. insti- tutions for both mass market and military use. • Artificial intelligence: Chinese firms and research institutes are advancing uses of AI that could undermine U.S. economic lead- ership and provide an asymmetrical advantage in warfare. Chi- nese military strategists see AI as a breakout technology that could enable China to rapidly modernize its military, surpassing overall U.S. -
Since the Reform and Opening Up1 1
Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS020) p.6378 Research of Acceleration Urbanization Impacts on Resources and Environment in Sichuan Province Caimo,Teng National Bureau of Statistics of China, Survey Organizations of Sichuan No.31, the East Route, Qingjiang Road Chengdu, China, 610072 E-mail: [email protected] Since the reform and opening up, the rapid development of economic society and the rise ceaselessly of urbanization in Sichuan play an important role for material civilization and spiritual civilization, but also bring influence for resources and environment, this paper give an in-depth analysis about this. Ⅰ. The Main Characteristics of the Urbanization Development in Sichuan The reflection of urbanization in essence is from the industry cluster to population cluster., we tend to divided the process of urbanization into four stages, 1949-1978 is the first stage, 1978 – 1990 is the second stage, 1990 -2000 is the third stage, After the year of 2000 is the fourth stage. In view the particularities of the first phase, this paper researches mainly after three stages. 1. The level of the urbanization enhances unceasingly. With the reform and opening-up and the rapid development of social economy, the urbanization in Sichuan has significant achievements. The average annual growth of the level of urbanization is 0.8 percent in the twelve years of the second stage. The average annual growth in the third stage and the four stages is individually 0.5 and 1.3 percentage. The average annual growth of urbanization in the fourth stage is faster respectively 0.5 and 0.8 percent than the previous two stages which reflects obviously the rapid rise of the urbanization after the fourth stage in Sichuan. -
Field Investigation on Industrial Buildings in Mianyang District and Some
th The 14 World Conference on Earthquake Engineering October 12-17, 2008, Beijing, China Field Investigation on Industrial Buildings in Mianyang District and Some Advices on Post-earthquake Rehabilitation and Seismic Design 1 2 HU Kongguo and WANG Yanke 1 Senior Engineer, Structure Evaluation &Strengthening Div.,China Electronics Engineering Design Institute, Beijing, China 2 Engineer, Structure Evaluation &Strengthening Div., China Electronics Engineering Design Institute, Beijing ,China Email:[email protected],[email protected] ABSTRACT : The 5.12 Wenchuan Earthquake has caused a huge loss to the lives of Sichuan people and their properties. Immediately after the earthquake, the Ministry of Industry and Information Technology of the People’s Republic of China sent an earthquake loss investigation team to arrive at the five regions heavily hit by the earthquake, namely Chengdu, Deyang, Mianyang, Guangyuan and Yaan, etc., to investigate the damages to industrial buildings and equipment as well as the loss of human lives. This paper only deals with the damages to the industrial buildings caused by this earthquake, which also includes the post-quake reinforcement and retrofitting proposals as well as advices on the seismic design of industrial buildings to be built in this region in the future. KEYWORDS: Field Damage Investigation; Industrial Buildings; Post-earthquake Rehabilitation 1. OVERVIEW OF DAMAGE TO INDUSTRIAL BUILDINGS IN MIANYANG CITY CAUSED BY THE EARTHQUKE With a jurisdiction over two districts, one city and six counties and a total area of 20,000km2 and a population of 5.29 million, Mianyang City features six major industrial sectors such as electronics and information, metallurgy, automobile and auto part, building material, bio-pharmacy and foodstuff as well as textile, etc. -
Validation Report Title for Three Gorges New Energy Jiuquan Co., Ltd Guazhou 100Mw Solar Power Project
VALIDATION REPORT: VCS Version 3 VALIDATION REPORT TITLE FOR THREE GORGES NEW ENERGY JIUQUAN CO., LTD GUAZHOU 100MW SOLAR POWER PROJECT Document Prepared By TÜV NORD CERT GmbH Project Title Three Gorges New Energy Jiuquan Co., Ltd Guazhou 100MW Solar Power Project Version 01 Report ID 8000447954 - 15/077 Report Title VCS Validation Report for Three Gorges New Energy Jiuquan Co., Ltd Guazhou 100MW Solar Power Project Client Climate Bridge Ltd. Pages 42 Date of Issue 01-06-2015 Prepared By TÜV NORD CERT GmbH Contact TÜV NORD CERT GmbH JI/CDM Certification Program Langemarckstraße, 20 45141 Essen, Germany Phone: +49-201-825-3335 Fax: +49-201-825-3290 www.tuev-nord.de www.global-warming.de Approved By Stefan Winter Work Carried Zhao Xuejiao (TL) Out By Li Yongjun (TR) v3.3 1 VALIDATION REPORT: VCS Version 3 Summary: Climate Bridge Ltd. has commissioned the TÜV NORD JI/CDM Certification Program to carry out the Verified Carbon Standard (VCS) validation of the project, Three Gorges New Energy Jiuquan Co., Ltd Guazhou 100MW Solar Power Project (PL1444) with regard to the relevant requirements of VCS standard version 3.5. The proposed VCS project activity consistent of a newly built grid-connected photovoltaic power plant with installed capacity of 100MWp which is located in Solar Power Industry Zone, Guazhou County, Jingyuan City, Gansu Province of P. R. China. The approved CDM methodology ACM0002 is applied to quantify the GHG removals achieved by this project. The calculation of the project emission removals is carried out in a transparent and conservative manner, so that the calculated emission removals of 1,262,062 tCO2e are most likely to be achieved within the first 10-year crediting period (from 2013-12-30 to 2023-12-29).