Forebrain Mechanisms of Nociception and Pain: Analysis Through Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Forebrain Mechanisms of Nociception and Pain: Analysis Through Imaging Proc. Natl. Acad. Sci. USA Vol. 96, pp. 7668–7674, July 1999 Colloquium Paper This paper was presented at the National Academy of Sciences colloquium ‘‘The Neurology of Pain,’’ held December 11–13, 1998, at the Arnold and Mabel Beckman Center in Irvine, CA. Forebrain mechanisms of nociception and pain: Analysis through imaging KENNETH L. CASEY Neurology Service, Veterans Affairs Medical Center, University of Michigan, 2215 Fuller Road, Ann Arbor, MI 48105 ABSTRACT Pain is a unified experience composed of the noxious or aversive quality of the stimulus in animals and interacting discriminative, affective-motivational, and cogni- the perceived affective quality of pain in humans (4, 5). tive components, each of which is mediated and modulated Anterior cingulate neurons that respond to noxious stimuli through forebrain mechanisms acting at spinal, brainstem, have large, often bilateral receptive fields, consistent with a and cerebral levels. The size of the human forebrain in relation limited role in spatial discriminative capacity (6). There is no to the spinal cord gives anatomical emphasis to forebrain comparable information about the neuronal substrate for the control over nociceptive processing. Human forebrain pathol- cognitive dimension of pain, but there are numerous studies ogy can cause pain without the activation of nociceptors. and observations showing the profound influences of atten- Functional imaging of the normal human brain with positron tion, suggestion, and emotional state on the perception of pain emission tomography (PET) shows synaptically induced in- (7). The broad range of environmental influences, such as creases in regional cerebral blood flow (rCBF) in several attention, fear, and the placebo effect on the perception of regions specifically during pain. We have examined the vari- pain suggests that cortical association areas and their subcor- ables of gender, type of noxious stimulus, and the origin of tical connections are critical participants in mediating the nociceptive input as potential determinants of the pattern and cognitive aspects of pain. intensity of rCBF responses. The structures most consistently The Forebrain Modulation of Pain. The processing of activated across genders and during contact heat pain, cold nociceptive stimuli is modulated by the forebrain at spinal, pain, cutaneous laser pain or intramuscular pain were the brainstem, and diencephalic levels. Stimulation of the cerebral contralateral insula and anterior cingulate cortex, the bilat- cortex or thalamus can facilitate or suppress the responses of eral thalamus and premotor cortex, and the cerebellar vermis. spinothalamic or trigeminothalamic tract neurons (8, 9). In the These regions are commonly activated in PET studies of pain awake monkey, the response of trigeminothalamic cells to conducted by other investigators, and the intensity of the brain noxious heat depends on behavioral state (10, 11). Corticob- rCBF response correlates parametrically with perceived pain ulbar and corticothalamic neurons have marked effects on the intensity. To complement the human studies, we developed an excitability of brainstem and thalamic cells that receive noci- animal model for investigating stimulus-induced rCBF re- ceptive input (12–16). sponses in the rat. In accord with behavioral measures and the Because of the large volume of the human forebrain in results of human PET, there is a progressive and selective relation to that of the spinal cord (77% vs. 2% of central activation of somatosensory and limbic system structures in nervous system volume), these descending modulatory influ- the brain and brainstem following the subcutaneous injection ences may assume greater importance in humans than in other of formalin. The animal model and human PET studies should species, such as the laboratory rat, where the forebrain is less be mutually reinforcing and thus facilitate progress in under- anatomically dominant (31% vs. 35% of central nervous standing forebrain mechanisms of normal and pathological system volume) (17). The human spinothalamic tract, for pain. example, contains an estimated 2,000 to 5,000 fibers whereas the corticospinal tract, which includes fibers terminating in the Forebrain Mediation of Pain. Pain is a conscious experience superficial layers of the dorsal horn (18, 19), is estimated to ϫ 5 ϫ 6 that includes discriminative, affective-motivational, and cog- contain from 5 10 to 1 10 fibers (20, 21). Corticothalamic nitive components that produce the unified sensation of pain. influences are also likely to be dominant in the human; in the These components are each mediated through separate, in- cat, approximately 50% of the estimated 5,000 to 9,000 syn- teractive forebrain mechanisms (1). For example, the ability to apses on thalamocortical projection neurons are presumed to localize somatic stimuli in time, space, and along a continuum be of cortical origin, whereas only 15% are formed by ascend- of intensities is greatly impaired following lesions limited to the ing afferent fibers (22). primary somatosensory (S1) cortex or the ventral posterolat- The Physiological Rationale of Positron Emission Tomog- eral thalamus. These lesions do not produce analgesia, how- raphy (PET). Synaptic activity generates increases in cerebral ever, because the aversive nature of noxious stimuli, although blood flow (CBF). This physiological fact is the basis for both poorly localized, is still evident in the behavior of animals and PET and functional magnetic resonance imaging (fMRI). The the verbal reports of humans (2). Neurons in the S1 cortex and most commonly used fMRI method relies on local shifts in the ventral posterolateral thalamus, including those responding magnetic field that accompany the shift from deoxyhemoglo- primarily to noxious stimuli, have small, contralateral recep- bin to oxyhemoglobin within activated perfused tissue (23). tive fields consistent with the mediation of spatial stimulus PET and fMRI are complementary methods of assessing brain localization (3). In contrast, lesions within the anterior cingu- activity. This article will be limited to a discussion of PET. late cortex have no effect on innocuous or nociceptive som- esthetic discriminative functions, but impair the recognition of Abbreviations: CBF, cerebral blood flow; rCBF, regional CBF; fMRI, functional magnetic resonance imaging; PET, positron emission to- mography; ROI, region of interest; S1, primary somatosensory (cor- PNAS is available online at www.pnas.org. tex); S2, secondary somatosensory (cortex); VOI, volumes of interest. 7668 Downloaded by guest on September 27, 2021 Colloquium Paper: Casey Proc. Natl. Acad. Sci. USA 96 (1999) 7669 The first indication that brain activity increases global CBF an increase in rCBF, the rCBF computed during a control was reported by Roy and Sherrington over 100 years ago (24). condition is subtracted from that computed during the test Subsequent radioactive tracer techniques revealed increases in condition. The resulting subtraction image, then, shows those regional CBF (rCBF) during sensory stimulation or the per- brain regions with differences in CBF between the two con- formance of motor tasks (25). Recent studies that use the ditions. technique of optical imaging have demonstrated that cortical A voxel-by-voxel statistical subtraction analysis (Z-score) blood flow responses occur within 3 sec of sensory stimulation with adjustment for multiple comparisons is performed by and are initially restricted to the 300- to 500-␮m dimensions of estimating the smoothness of subtraction images (40) following cortical columns before spreading to involve the surrounding three-dimensional Gaussian filtering to enhance signal-to- 3 mm to 5 mm of cortical tissue (26–28). The biochemical noise ratio and compensate for residual anatomical variance. coupling of rCBF and synaptic activity is unknown and is still Typically, only those voxels with normalized CBF values larger an area of active investigation. Studies of regional cerebral than 60% of the global value are analyzed, because these voxels glucose utilization show that it and rCBF are normally tightly represent the gray matter of the brain. Voxels showing a coupled and that the coupling occurs within the synaptic significantly increased CBF compared with the average noise neuropil. The degree of coupling may vary among regions and variance computed across all voxels (pooled variance) are under special experimental conditions (29), but it is reliably identified (41). The critical level of significance is determined present in the normal mammal. Blocking the production of by using this information to adjust P ϭ 0.05 (42). With this nitric oxide has no effect on synaptically induced rCBF re- method, the results of interest are revealed primarily through sponses in the rat somatosensory system (30). There is evi- the data analysis. However, it is also possible to perform dence that adenosine may be a critical link in this process, but correlations between the intensity of the rCBF responses it is likely that the action of several mediators may be impor- throughout the brain and some behavioral parameter of tant (31). interest, such as the perceived intensity of stimulation (43). A reduction of rCBF should occur when synaptic activity is In addition, volumes of interest (VOI) may be established suppressed below some resting or background level. Indeed, within brain structures selected because of a priori hypotheses reductions in rCBF are observed in many PET studies
Recommended publications
  • Effect of Rtms Over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in Subjects with Treatment Refractory Schizophrenia
    Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Protocol Document Date: August 23, 2013 NCT02242578 Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Hypotheses: 1) Cerebellar stimulation will cause activation of thalamic and frontal cortical networks associated with attentional processes. These attentional processes are a component of the “distracted” affect of schizophrenia (part of both positive and negative symptoms). 2) Cerebellar stimulation will cause activation of the reticular activating system (RAS), and this will allow the “mutism”, which is a negative symptom, to be partially improved. Purpose of Study, Anticipated Benefits The etiology of negative symptoms in schizophrenia which includes social withdrawal, affective flattening, poor motivation, and apathy is poorly understood. Symptomatic treatment of these negative symptoms with medications and psychotherapy are almost non-existent, whereas treatment of the positive symptoms (hallucinations and delusions) has been more effective with psychotropic medications. New methods of treating negative symptoms are needed. Background and Significance There is increasing evidence from neuropsychological and imaging studies that cerebellar function is relevant not only to motor coordination, but equally to cognition and behavior (M. Rapoport et al 2000).
    [Show full text]
  • The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
    667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white­ Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori­ Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1].
    [Show full text]
  • Molar Tooth Sign of the Midbrain-Hindbrain Junction
    American Journal of Medical Genetics 125A:125–134 (2004) Molar Tooth Sign of the Midbrain–Hindbrain Junction: Occurrence in Multiple Distinct Syndromes Joseph G. Gleeson,1* Lesley C. Keeler,1 Melissa A. Parisi,2 Sarah E. Marsh,1 Phillip F. Chance,2 Ian A. Glass,2 John M. Graham Jr,3 Bernard L. Maria,4 A. James Barkovich,5 and William B. Dobyns6** 1Division of Pediatric Neurology, Department of Neurosciences, University of California, San Diego, California 2Division of Genetics and Development, Children’s Hospital and Regional Medical Center, University of Washington, Washington 3Medical Genetics Birth Defects Center, Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 4Department of Child Health, University of Missouri, Missouri 5Departments of Radiology, Pediatrics, Neurology, Neurosurgery, University of California, San Francisco, California 6Department of Human Genetics, University of Chicago, Illinois The Molar Tooth Sign (MTS) is defined by patients with these variants of the MTS will an abnormally deep interpeduncular fossa; be essential for localization and identifica- elongated, thick, and mal-oriented superior tion of mutant genes. ß 2003 Wiley-Liss, Inc. cerebellar peduncles; and absent or hypo- plastic cerebellar vermis that together give KEY WORDS: Joubert; molar tooth; Va´ r- the appearance of a ‘‘molar tooth’’ on axial adi–Papp; OFD-VI; COACH; brain MRI through the junction of the mid- Senior–Lo¨ ken; Dekaban– brain and hindbrain (isthmus region). It was Arima; cerebellar vermis; first described in Joubert syndrome (JS) hypotonia; ataxia; oculomo- where it is present in the vast majority of tor apraxia; kidney cysts; patients with this diagnosis.
    [Show full text]
  • Lecture 12 Notes
    Somatic regions Limbic regions These functionally distinct regions continue rostrally into the ‘tweenbrain. Fig 11-4 Courtesy of MIT Press. Used with permission. Schneider, G. E. Brain structure and its Origins: In the Development and in Evolution of Behavior and the Mind. MIT Press, 2014. ISBN: 9780262026734. 1 Chapter 11, questions about the somatic regions: 4) There are motor neurons located in the midbrain. What movements do those motor neurons control? (These direct outputs of the midbrain are not a subject of much discussion in the chapter.) 5) At the base of the midbrain (ventral side) one finds a fiber bundle that shows great differences in relative size in different species. Give examples. What are the fibers called and where do they originate? 8) A decussating group of axons called the brachium conjunctivum also varies greatly in size in different species. It is largest in species with the largest neocortex but does not come from the neocortex. From which structure does it come? Where does it terminate? (Try to guess before you look it up.) 2 Motor neurons of the midbrain that control somatic muscles: the oculomotor nuclei of cranial nerves III and IV. At this level, the oculomotor nucleus of nerve III is present. Fibers from retina to Superior Colliculus Brachium of Inferior Colliculus (auditory pathway to thalamus, also to SC) Oculomotor nucleus Spinothalamic tract (somatosensory; some fibers terminate in SC) Medial lemniscus Cerebral peduncle: contains Red corticospinal + corticopontine fibers, + cortex to hindbrain fibers nucleus (n. ruber) Tectospinal tract Rubrospinal tract Courtesy of MIT Press. Used with permission. Schneider, G.
    [Show full text]
  • Evidence for Genetically Distinct Direct and Indirect Spinocerebellar Pathways Mediating
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.254607; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Manuscript Title: Evidence for genetically distinct direct and indirect spinocerebellar pathways mediating 2 proprioception. 3 Abbreviated Title: Direct and indirect spinocerebellar pathways. 4 Author names and affiliations: 5 Iliodora V. Pop1, Felipe Espinosa1, Megan Goyal1, Bishakha Mona1, Mark A. Landy1, Osita W. Ogujiofor1, 6 Kevin M. Dean2, Channabasavaiah B. Gurumurthy3, 4, Helen C. Lai1 7 1 Dept. of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 8 2 Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390 9 3 Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE 68198 10 4 Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of 11 Nebraska Medical Center, Omaha, NE 68198 12 Corresponding author: Helen C. Lai, [email protected]. 13 Number of Pages: 42 Number of words for Abstract: 246 14 Number of Figures: 8 Number of words for Introduction: 1155 15 Number of Tables: 0 Number of words for Discussion: 2366 16 Number of Multimedia: 6 Number of 3D Models: 0 17 Acknowledgments: This work was supported by R01MH120131 and R34NS121873 to K.M.D., 18 R35HG010719 and R21GM129559 to C.B.G., and R01NS100741 to H.C.L. We thank Lin Gan for the 19 Atoh1Cre/+ knock-in mouse, Martyn Goulding for the Cdx2::FLPo mouse, Mark Behlke and Sarah Jacobi 20 from Integrated DNA Technologies for providing pre-production megamers, Rebecca Seal for the Vglut1 21 ISH probe, Qiufu Ma for the Vglut2 ISH probe, Thomas Jessell for the Gdnf ISH probe, Heankel Cantu 22 Oliveros and Wei Xu for the LentiFugE-Cre virus, Christine Ochoa for technical assistance, Neuroscience 23 Microscopy Facility which is supported by the UTSW Neuroscience Dept.
    [Show full text]
  • Neuroanatomy
    Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Neuroanatomy W. Jeffrey Wilson Fall 2012 \Without education we are in a horrible and deadly danger of taking educated people seriously." { Gilbert Keith Chesterton [LATEX in use { a Microsoft- & PowerPoint-free presentation] Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Blood-Brain Barrier Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Peripheral Nervous System • Somatic N.S.: skeletal muscles, skin, joints • Autonomic N.S.: internal organs, glands • Sympathetic N.S.: rapid expenditure of energy • Parasympathetic N.S.: restoration of energy Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Spinal Cord Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain | Ventricles Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Brain Midline Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Hindbrain Myelencephalon & Metencephalon Outline Protection Peripheral Nervous System Overview of Brain Hindbrain Midbrain Forebrain Reticular
    [Show full text]
  • BRAIN DISORDERS “Forebrain” Disorders
    The Animal Neurology & Imaging Center 5 Camino Karsten Algodones, New Mexico 87001 Phone: 505- Fax: 505- Email: [email protected] Website: www.theanic.com BRAIN DISORDERS Seizures, circling, a head turn or tilt, a change in personality and/or level of awareness, sensation deficits, visual problems, weakness and in coordination are the most common clinical signs resulting from problems affecting your pets brain. Before we can determine the exact cause of the signs (ie the diagnosis), we must perform a neurological exam in order to establish what is referred to as the “neurological localization”. On the basis of the neurological examination your dog or cat brain disorder may “localize” to one of three major areas: the “forebrain” comprised of the cerebrum and thalamus, the “brainstem” comprised of the midbrain, ponds, and Medulla, and the cerebellum Based on where the problem localizes in the brain, a list of diseases (the so-called "differential diagnosis") is then generated which includes the most likely disease conditions that could be affecting your pet’s brain. The “differential diagnoses” for any given brain problem can be narrowed down based on some specific information: the patient’s age and breed, whether the condition has come on suddenly or slowly, whether the condition is progressing or static, where the problem localizes. Below, the three primary brain localizations are considered individually because specific diseases will affect each region. “Forebrain” Disorders The most common clinical signs seen in pets with forebrain problems include seizures, visual problems, facial sensation abnormalities, circling, and changes in personality or level of consciousness. And mature dogs, epilepsy (seizures due to spontaneous, chaotic electrical activity in 2 the brain), autoimmune inflammation, tumors and strokes are the most common conditions affecting the forebrain.
    [Show full text]
  • The Walls of the Diencephalon Form The
    The Walls Of The Diencephalon Form The Dmitri usually tiptoe brutishly or benaming puristically when confiscable Gershon overlays insatiately and unremittently. Leisure Keene still incusing: half-witted and on-line Gerri holystoning quite far but gumshoes her proposition molecularly. Homologous Mike bale bene. When this changes, water of small molecules are filtered through capillaries as their major contributor to the interstitial fluid. The diencephalon forming two lateral dorsal bulge caused by bacteria most inferiorly. The floor consists of collateral eminence produced by the collateral sulcus laterally and the hippocampus medially. Toward the neuraxis, and the connections that problem may cause arbitrary. What is formed by cavities within a tough outer layer during more. Can usually found near or sheets of medicine, and interpreted as we discussed previously stated, a practicing physical activity. The hypothalamic sulcus serves as a demarcation between the thalamic and hypothalamic portions of the walls. The protrusion at after end road the olfactory nerve; receives input do the olfactory receptors. The diencephalon forms a base on rehearsal limitations. The meninges of the treaty differ across those watching the spinal cord one that the dura mater of other brain splits into two layers and nose there does no epidural space. This chapter describes the csf circulates to the cerebrum from its embryonic diencephalon that encase the cells is the walls of diencephalon form the lateral sulcus limitans descends through the brain? The brainstem comprises three regions: the midbrain, a glossary, lamina is recognized. Axial histologic sections of refrigerator lower medulla. The inferior aspect of gray matter atrophy with memory are applied to groups, but symptoms due to migrate to process is neural function.
    [Show full text]
  • How Is the Brain Organized?
    p CHAPTER 2 How Is the Brain Organized? An Overview of Brain Structure The Functional Organization Brain Terminology of the Brain The Brain’s Surface Features Principle 1: The Sequence of Brain Processing The Brain’s Internal Features Is “In Integrate Out” Microscopic Inspection: Cells and Fibers Principle 2: Sensory and Motor Divisions Exist Focus on Disorders: Meningitis and Throughout the Nervous System Encephalitis Principle 3: The Brain’s Circuits Are Crossed Focus on Disorders: Stroke Principle 4: The Brain Is Both Symmetrical and Asymmetrical Principle 5: The Nervous System Works A Closer Look at Neuroanatomy Through Excitation and Inhibition The Cranial Nervous System Principle 6: The Central Nervous System Has The Spinal Nervous System Multiple Levels of Function The Internal Nervous System Principle 7: Brain Systems Are Organized Both Focus on Disorders: Magendie, Bell, and Bell’s Hierarchically and in Parallel Palsy Principle 8: Functions in the Brain Are Both Localized and Distributed A. Klehr / Stone Images Micrograph: Carolina Biological Supply Co. / Phototake 36 I p hen buying a new car, people first inspect the In many ways, examining a brain for the first time is outside carefully, admiring the flawless finish similar to looking under the hood of a car. We have a vague W and perhaps even kicking the tires. Then they sense of what the brain does but no sense of how the parts open the hood and examine the engine, the part of the car that we see accomplish these tasks. We may not even be responsible for most of its behavior—and misbehavior. able to identify many of the parts.
    [Show full text]
  • Vermal Infarctwith Pursuit Eye Movement Disorders
    Journal ofNeurology, Neurosurgery, and Psychiatry 1990;53:519-521 519 SHORT REPORT J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.53.6.519 on 1 June 1990. Downloaded from Vermal infarct with pursuit eye movement disorders Charles Pierrot-Deseilligny, Pierre Amarenco, Etienne Roullet, Rene Marteau Abstract the vermis was affected (lobules VI to X), Severe deficits of foveal smooth pursuit namely the clivus, the folium, the tuber, the and optokinetic nystagmus in all direc- pyramis, the uvula and the nodulus (fig 1). tions were electro-oculographically The inferior part of the left cerebellar hemi- recorded in an 80 year old woman. Mag- sphere was also damaged. The flocculus, the netic resonance imaging (MRI) showed different cerebellar peduncles and the brain- an infarct involving the postero-inferior stem were apparently spared. Moreover, the part of the vermis (lobules VI to X) and brainstem did .not appear to be compressed. a portion of the left cerebellar hemi- There was only slight diffuse atrophy in the sphere, with apparent preservation of cerebral hemispheres, without hydrocephalus. the flocculus and the brainstem. The role The posterior headache lasted one day, ver- of the vermal lesion in these pursuit eye tigo and left lateropulsion on walking cleared movement disorders is discussed. up within several days and the left tonic ocular deviation progressively disappeared within ten days. It has recently been shown that, besides the flocculus, the posterior part of the vermis Oculographic study (especially lobules VI and VII) is involved in Eye movements were recorded on the the control of pursuit eye movements in the eleventh day after the onset of the symptoms, monkey.'2 Our case reports for the first time a while the patient was fully alert, cooperative recent ischaemic lesion of the posterior vermis and attentive.
    [Show full text]
  • Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople
    JCN Open Access REVIEW pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2017 Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople In Sung Parka The cerebellum plays vital roles in balance control and motor learning, including in saccadic Nam Joon Leeb c adaptation and coordination. It consists of the vermis and two hemispheres and is anatomically Im Joo Rhyu separated into ten lobules that are designated as I–X. Although neuroimaging and clinical stud- aDepartment of Liberal Arts, ies suggest that functions are compartmentalized within the cerebellum, the function of each Kyungil University, Gyeongsan, Korea cerebellar lobule is not fully understood. Electrophysiological and lesion studies in animals as b Departments of Diagnostic Radiology and well as neuroimaging and lesion studies in humans have revealed that vermian lobules VI and c Anatomy, Korea University VII (declive, folium, and tuber) are critical for controlling postural balance, saccadic eye move- College of Medicine, Seoul, Korea ments, and coordination. In addition, recent structural magnetic resonance imaging studies have revealed that these lobules are larger in elite basketball and short-track speed skaters. Fur- thermore, in female short-track speed skaters, the volume of this region is significantly correlat- ed with static balance. This article reviews the function of vermian lobules VI and VII, focusing on the control of balance, eye movements, and coordination including coordination between the eyes and hands and bimanual coordination. Key Words ‌balance, cerebellum, coordination, saccade. INTRODUCTION The cerebellum, located in the posterior cranial fossa, is a major motor structure of the brain. It controls motor-related functions, such as maintaining balance and posture, and motor learning including coordination of movements through complex regulatory and feedback mechanisms.
    [Show full text]
  • Cerebellar Volume and Cognitive Functioning in Children Who Experienced Early Deprivation Patrick M
    Cerebellar Volume and Cognitive Functioning in Children Who Experienced Early Deprivation Patrick M. Bauer, Jamie L. Hanson, Ronald K. Pierson, Richard J. Davidson, and Seth D. Pollak Background: The cerebellum is a brain region recognized primarily in the coordination of movement and related accessory motor functions. In addition, emerging evidence implicates the cerebellum in cognitive processes and suggests that this brain region might be subject to experience-dependent changes in structure. Therefore, the aim of this study was to evaluate the role of early environmental deprivation in the maturation of the cerebellum and aspects of cognitive development. Methods: Structural magnetic resonance imaging volumes of 12 cerebellar sub-regions from 31 previously neglected and 30 typically developing children were compared with subjects’ corresponding neuropsychological test scores. Results: Neglected children had smaller volume of the superior-posterior cerebellar lobes. Moreover, superior-posterior lobe volume was found to mediate neuropsychological test performance differences between groups, with larger volumes yielding better outcomes on tests of memory and planning. Conclusions: These data support the importance of experience-dependent changes in cerebellar structure and highlight the role of the cerebellum in higher cognitive functions. Key Words: Cerebellum, cognitive development, deprivation, thalamus to cerebrum (13–15). More recently, retrograde tracing experience-dependent plasticity, postinstitutionalized children, procedures have revealed direct pathways between the dorso- superior-posterior lobes lateral prefrontal cortex (area 46) and cerebellum in nonhuman primates (16,17). The application of anterograde tracer methods he cerebellum is a brain region that has been traditionally further suggests that the cerebellum exhibits a functional topo- associated with motor control, physical coordination, and graphic alignment with the cerebral cortex.
    [Show full text]