Magnetic Resonance Imaging in Degenerative J Neurol Neurosurg Psychiatry: First Published As 10.1136/Jnnp.57.1.51 on 1 January 1994

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Resonance Imaging in Degenerative J Neurol Neurosurg Psychiatry: First Published As 10.1136/Jnnp.57.1.51 on 1 January 1994 J7ournal ofNeurology, Neurosurgery, and Psychiatry 1994;57:51-57 51 Magnetic resonance imaging in degenerative J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.1.51 on 1 January 1994. Downloaded from ataxic disorders I E C Ormerod, A E Harding, D H Miller, G Johnson, D MacManus, E P G H du Boulay, B E Kendall, I F Moseley, W I McDonald Abstract orders is difficult; early attempts were based MRI of the brain was performed in 53 exclusively on pathological findings, but it has patients with a variety of degenerative been suggested that disease categories can be ataxias and related disorders and 96 con- more usefully defined using clinical and trol subjects. Atrophy of intracranial genetic criteria.' Autopsy data are relatively structures was not seen in patients with scarce and a reliable method for definition of the pure type of hereditary spastic para- involved structures during life could con- plegia, or in early cases of Friedreich's tribute to classification and more precise ataxia. In advanced Friedreich's ataxia diagnosis. Computerised tomography has a there was atrophy of the vermis and limited role to play in this respect, as images medulla. The MRI features of early onset of posterior fossa structures are usually of rel- cerebellar ataxia with retained reflexes atively poor quality compared with those of were variable, and suggest heterogeneity. the cerebral hemispheres. Magnetic reso- In autosomal dominant cerebellar atax- nance imaging provides superior images of ias, most patients had cerebellar and the brainstem and cerebellum,26 and has brainstem atrophy, probably reflecting been used to study small series of patients the pathological process of olivoponto- with degenerative ataxic disorders with useful of the distribution of in the Institute ofNeurology, cerebellar atrophy; there was no clearly definition atrophy London, UK defined group with both clinical and brain.79 In larger series it has been suggested NMR Research Group imaging features of isolated cerebellar that MRI offers a useful adjunct to clinical I E C Ormerod features for diagnostic and prognostic pur- D H Miller involvement. The MRI abnormalities in G Johnson idiopathic late onset cerebellar ataxia poses.'01' We report on 53 patients with a D MacManus were predoinantly those of cerebellar variety of degenerative ataxias studied by W I McDonald and brainstem atrophy or pure cerebel- MRI, comparing the findings in different dis- University lar atrophy. The clinical and imagig ease groups, and also with those seen in 96 Department of Clinical Neurology features of brainstem abnormalities were control subjects. I E C Ormerod discordant in several patients. Pure cere- A E Harding bellar atrophy was associated with slower D H Miller G Johnson progression of disability. Cerebral atro- Subjects in the late onset atax- CONTROLS D MacManus phy was common http://jnnp.bmj.com/ W I McDonald ias. Cerebral white matter lesions, MRI was performed in 96 control subjects Department of although usually few in number, were aged 18-73 years (table 1). Sixty-four were Neuroradiology, more aged less than 50 years and 32 were 50 years National Hospital for observed in significantly patients Neurology and than controls, particularly those aged or over. Seventy-six of these were normal vol- Neurosurgery, over 50 years. unteers from the Salvation Army or from the London, UK staff of the National Hospital who were not E P G H du Boulay B E Kendall (7 Neurol Neurosurg Psychiatry 1994;57:5 1-57) examined clinically but who had no previous I F Moseley neurological history. The remainder (20) on September 29, 2021 by guest. Protected copyright. Correspondence to: were neurological control subjects who were Professor A E Harding, investigated at the National Hospital for dis- University Department of The degenerative ataxias are a heterogeneous Clinical Neurology, Institute group of disorders, many of which are geneti- orders of peripheral nerves or the spinal cord ofNeurology, Queen that are not associated with brain pathology. Square, London WC1N cally determined. Their clinical features are 3BG, UK. diverse, with variable degrees of cerebral These patients had no signs attributable to Received 4 December 1992 hemisphere, brainstem, spinal cord, and neurological dysfunction above the foramen and in revised form magnum. 16 March 1993. peripheral nerve dysfunction in addition to Accepted 15 April 1993 cerebellar ataxia. Classification of these dis- PATIENTS Of the 53 patients with ataxia (table 1), 30 were aged under 50 years and 23 were aged Table 1 Control subjects andpatients studied 50 years or more. They were subdivided into Age range Disease duration range six categories on clinical grounds (table 1). Disease category Number (years) (mean) (years) (mean) There were six patients with Friedreich's Controls 96 18-73 (41) N/A ataxia"2 and six with early onset cerebellar Friedreich's ataxia 6 13-38 (23) 9-25 (15) Early onset ataxia/retained reflexes 6 17-42 (28) 1-27 (14) ataxia with retained reflexes. 13 Fourteen Autosomal dominant cerebellar ataxia 14 22-66 (49) 2-25 (16) patients had autosomal dominant cerebellar Idiopathic late onset cerebellar ataia with other features 10 39-73 (61) 3-14 (7) ataxia (ADCA; table 2); seven had additional pure 10 38-64 (51) 2-30 (10) features such as supranuclear ophthalmople- Hereditary spastic paraplegia 7 13-39 (27) 2-33 (14) gia, pseudobulbar palsy, and mild dementia 52 Ormerod, Harding, Miller, J'ohnson, MacManus, du Boulay, Kendall, Moseley, McDonald Table 2 Clinical and imagingfeatures ofpatients with autosomal dominant cerebellar ataxia J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.1.51 on 1 January 1994. Downloaded from Atrophy Age Duration No. (years) (years) Type Features CH Vermis Medulla Pons Midbrain Cerebrum WML 1 55 11 I B,N - + + - - + + + 2 48 6 I SNO + + + + ++ - 3 61 20 I SNO,D - + + - - - - + 4* 61 15 I SNO +++ + ++ ++ + + + + + + + + 5* 60 25 I SNO + + + + ++ ++ + +- + + + 6 34 6 I SNO,D,B + + + + + + + ++ - - - 7 51 7 I D ++ +++ +++++ ++ ++ - 8 29 3 II R - + + + + + + + + + ++ - 9 56 20 II R + + + + + + + + + + + + ++ _ 10 66 3 III - + + + +++ - + + + + 11 61 5 III - + + + + + + + - - + 12 34 8 D,My,N - - - - - + + + 13 53 25 with ET - - ++ - - - ++ - 14 20 2 withdeafness - +++ - + - *Siblings. B = bulbar dysfunction; SNO = supranuclear ophthalmoplegia; D = dementia; N = neuropathy; R = retinopathy; M = myoclonus; ET = essential type of tremor; CH = cerebellar hemispheres; WML = white matter lesions. +, ++, +++ = mild, moderate, and severe atrophy, respectively. (ADCA type I), two had maculopathy published criteria.' For patients with ILOCA, (ADCA type II), three a later onset pure cere- disability was assessed on a four point scale: bellar syndrome (ADCA type III),14 and three (1) mild ataxia, able to work; (2) unable to more unusual dominant ataxias, including a work, able to walk and perform activities of syndrome of ataxia, dementia, and daily living; (3) as (2), but unable to walk myoclonus exhibiting paternal transmission. unassisted or chairbound; (4) chairbound, Ten patients had idiopathic late onset cere- dependent on others for activities of daily bellar ataxia (table 3)15 with other clinical fea- living. A severity score related to disease tures such as supranuclear ophthalmoplegia, duration was obtained by dividing disability peripheral neuropathy, mild dementia, optic score by disease duration in years and multi- atrophy, and parkinsonism (ILOCA/O). All plying by 100. presented with ataxia and this remained the predominant feature. Only one had clinical or Methods investigative evidence of autonomic failure MAGNETIC RESONANCE IMAGING and thus fulfilled the criteria for a diagnosis of All subjects were examined on a Picker 0 5 T multiple system atrophy'6. Ten had pure MR imaging system. Multi-slice, contiguous ILOCA (ILOCA/P)-that is, no neurological 5 mm thick axial T2-weighted spin echo (SE dysfunction other than a cerebellar syn- 2000/60) images were taken throughout the drome'5. The last group consisted of seven brain, to optimise the detection of white mat- patients with hereditary spastic paraplegia, ter lesions. Axial inversion recovery (IR either with the pure form (five cases) or with 2000/40/500) images were performed in most additional clinical features.'7 subjects to facilitate assessment of cerebral Each patient was examined by one of the atrophy. Tl-weighted (IR 2000/500/40 or SE http://jnnp.bmj.com/ authors (IECO or AEH). The case notes of 500/40) sagittal images were obtained in most all patients were individually reviewed by control subjects and all patients, to assess the AEH for the purpose of diagnostic classifica- degree of atrophy of the posterior fossa struc- tion, which was made according to previously tures. Table 3 Clinical and imagingfeatures ofidiopathic late onset cerebellar ataxia on September 29, 2021 by guest. Protected copyright. Atrophy Age Duration Disability No. (years) (years) score Features CH Vermis Medulla Pons Midbrain Cerebrum WML ILOCA (0) 15 62 6 33 P,A + + 16 66 14 21 D ++ - + ++ 17 57 4 50 D,SNO + + 18 68 4 50 D + + + + 19 73 8 25 OA + ++ 20 64 3 67 p + + 21 64 6 33 SNO + + + ++ ++++ 22 62 7 28 N + +++ + ++ + + 23 39 9 22 N _- 24 54 9 22 N + + _- ILOCA (P) 25 41 3 33 + + 26 38 2 100 _ +++ - ++ + 27 64 4 11 28 62 30 67 _ +++ 29 56 2 150 ++ ++ ++ ++ 30 39 8 12 ++ ++ 31 41 5 22 - ++ 32 60 11 27 _ +++ 33 56 6 50 - ++ 34 56 27 11 ++ Abbreviations as in table 2, plus P = parkinsonism; A = autonomic failure; OA = optic atrophy. ILOCA(O) = idiopathic late onset cerebellar ataxia with other neurological dysfunctions; ILOCA(P) = ataxia alone. MRI in degenerative ataxic disorders 53 Table 4 Frequency ofcerebral white matter lesions mild atrophy were over the age of 50 years, J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.57.1.51 on 1 January 1994.
Recommended publications
  • Effect of Rtms Over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in Subjects with Treatment Refractory Schizophrenia
    Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Protocol Document Date: August 23, 2013 NCT02242578 Effect of rTMS over the Medial Cerebellum on Positive and Negative Symptoms and Cognitive Dysmetria in subjects with treatment refractory Schizophrenia Robert J. Buchanan, M.D. Zoltan Nadasdy, Ph.D. James Underhill, Psy.D. Seton Brain and Spine Institute UT Austin Department of Psychology and The Neuroscience Institute. Hypotheses: 1) Cerebellar stimulation will cause activation of thalamic and frontal cortical networks associated with attentional processes. These attentional processes are a component of the “distracted” affect of schizophrenia (part of both positive and negative symptoms). 2) Cerebellar stimulation will cause activation of the reticular activating system (RAS), and this will allow the “mutism”, which is a negative symptom, to be partially improved. Purpose of Study, Anticipated Benefits The etiology of negative symptoms in schizophrenia which includes social withdrawal, affective flattening, poor motivation, and apathy is poorly understood. Symptomatic treatment of these negative symptoms with medications and psychotherapy are almost non-existent, whereas treatment of the positive symptoms (hallucinations and delusions) has been more effective with psychotropic medications. New methods of treating negative symptoms are needed. Background and Significance There is increasing evidence from neuropsychological and imaging studies that cerebellar function is relevant not only to motor coordination, but equally to cognition and behavior (M. Rapoport et al 2000).
    [Show full text]
  • The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2
    667 The Cerebellum in Sagittal Plane-Anatomic-MR Correlation: 2. The Cerebellar Hemispheres Gary A. Press 1 Thin (5-mm) sagittal high-field (1 .5-T) MR images of the cerebellar hemispheres James Murakami2 display (1) the superior, middle, and inferior cerebellar peduncles; (2) the primary white­ Eric Courchesne2 matter branches to the hemispheric lobules including the central, anterior, and posterior Dean P. Berthoty1 quadrangular, superior and inferior semilunar, gracile, biventer, tonsil, and flocculus; Marjorie Grafe3 and (3) several finer secondary white-matter branches to individual folia within the lobules. Surface features of the hemispheres including the deeper fissures (e.g., hori­ Clayton A. Wiley3 1 zontal, posterolateral, inferior posterior, and inferior anterior) and shallower sulci are John R. Hesselink best delineated on T1-weighted (short TRfshort TE) and T2-weighted (long TR/Iong TE) sequences, which provide greatest contrast between CSF and parenchyma. Correlation of MR studies of three brain specimens and 11 normal volunteers with microtome sections of the anatomic specimens provides criteria for identifying confidently these structures on routine clinical MR. MR should be useful in identifying, localizing, and quantifying cerebellar disease in patients with clinical deficits. The major anatomic structures of the cerebellar vermis are described in a companion article [1). This communication discusses the topographic relationships of the cerebellar hemispheres as seen in the sagittal plane and correlates microtome sections with MR images. Materials, Subjects, and Methods The preparation of the anatomic specimens, MR equipment, specimen and normal volunteer scanning protocols, methods of identifying specific anatomic structures, and system of This article appears in the JulyI August 1989 issue of AJNR and the October 1989 issue of anatomic nomenclature are described in our companion article [1].
    [Show full text]
  • Molar Tooth Sign of the Midbrain-Hindbrain Junction
    American Journal of Medical Genetics 125A:125–134 (2004) Molar Tooth Sign of the Midbrain–Hindbrain Junction: Occurrence in Multiple Distinct Syndromes Joseph G. Gleeson,1* Lesley C. Keeler,1 Melissa A. Parisi,2 Sarah E. Marsh,1 Phillip F. Chance,2 Ian A. Glass,2 John M. Graham Jr,3 Bernard L. Maria,4 A. James Barkovich,5 and William B. Dobyns6** 1Division of Pediatric Neurology, Department of Neurosciences, University of California, San Diego, California 2Division of Genetics and Development, Children’s Hospital and Regional Medical Center, University of Washington, Washington 3Medical Genetics Birth Defects Center, Ahmanson Department of Pediatrics, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California 4Department of Child Health, University of Missouri, Missouri 5Departments of Radiology, Pediatrics, Neurology, Neurosurgery, University of California, San Francisco, California 6Department of Human Genetics, University of Chicago, Illinois The Molar Tooth Sign (MTS) is defined by patients with these variants of the MTS will an abnormally deep interpeduncular fossa; be essential for localization and identifica- elongated, thick, and mal-oriented superior tion of mutant genes. ß 2003 Wiley-Liss, Inc. cerebellar peduncles; and absent or hypo- plastic cerebellar vermis that together give KEY WORDS: Joubert; molar tooth; Va´ r- the appearance of a ‘‘molar tooth’’ on axial adi–Papp; OFD-VI; COACH; brain MRI through the junction of the mid- Senior–Lo¨ ken; Dekaban– brain and hindbrain (isthmus region). It was Arima; cerebellar vermis; first described in Joubert syndrome (JS) hypotonia; ataxia; oculomo- where it is present in the vast majority of tor apraxia; kidney cysts; patients with this diagnosis.
    [Show full text]
  • Probable Olivopontocerebellar Degeneration)
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.34.1.14 on 1 February 1971. Downloaded from J. Neurol. Neurosurg. Psychiat., 1971, 34, 14-19 L-Dopa in Parkinsonism associated with cerebellar dysfunction (probable olivopontocerebellar degeneration) HAROLD L. KLAWANS, JR. AND EARL ZEITLIN From the Department of Neurology, Rush Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA SUMMARY Two patients with combined cerebellar and Parkinsonian features consistent with olivopontocerebellar degeneration were treated with long term oral L-dopa. Both patients showed improvement of the Parkinsonian symptoms but the cerebellar symptoms were unchanged. It is suggested that the Parkinsonian manifestations of this syndrome are related to loss of dopamine in the striatum secondary to lesions of the substantia nigra. It is suggested that other patients with be a trial with similar disorders should given L-dopa. guest. Protected by copyright. Olivopontocerebellar degeneration was first defined familial form of degeneration with onset between by Dejerine and Thomas (1900). They described the ages of 20 to 30, while they had described a two patients who developed progressive cerebellar sporadic form with onset at a later age. Since the dysfunction. In both instances the onset was in original description of this disease, other investi- middle age, beginning in the legs and later involving gators have described hereditary forms of olivo- the arms. The post-mortem examination of the pontocerebellar degeneration. Keiller (1926) brains or these patients revealed atrophy of the described four cases of olivopontocerebellar de- cerebellar cortex, bulbar olives, and pontine gray generation who had positive hereditary histories. matter with degeneration of the middle and inferior Three of these cases were verified on post-mortem cerebellar peduncles.
    [Show full text]
  • Comprehensive Systematic Review: Treatment of Cerebellar Motor Dysfunction and Ataxia
    Comprehensive systematic review: Treatment of cerebellar motor dysfunction and ataxia Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology Theresa A. Zesiewicz, MD1; George Wilmot, MD2; Sheng-Han Kuo, MD3; Susan Perlman, MD4; Patricia E. Greenstein, MB, BCh5; Sarah H. Ying, MD6; Tetsuo Ashizawa, MD7; S.H. Subramony, MD8; Jeremy D. Schmahmann, MD9; K.P. Figueroa10; Hidehiro Mizusawa, MD11; Ludger Schöls, MD12; Jessica D. Shaw, MPH1; Richard M. Dubinsky, MD, MPH13; Melissa J. Armstrong, MD, MSc8; Gary S. Gronseth, MD13; Kelly L. Sullivan, PhD14 1) Department of Neurology, University of South Florida, Tampa 2) Department of Neurology, Emory University, Atlanta, GA 3) Department of Neurology, Columbia University, New York, NY 4) Department of Neurology, University of California, Los Angeles 5) Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 6) Shire, Lexington, MA, and the Johns Hopkins University School of Medicine, Baltimore, MD 7) Department of Neurology, Houston Methodist Research Institute, TX 8) Department of Neurology, University of Florida College of Medicine, Gainesville 9) Department of Neurology, Massachusetts General Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 10) Department of Neurology, University of Utah, Salt Lake City 11) National Center of Neurology and Psychiatry, Tokyo, Japan 12) Department of Neurology and Hertie-Institute for Clinical Brain Research, Tübingen, Germany 13) Department of Neurology, University of Kansas Medical Center, Kansas City 14) Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro Address correspondence and reprint requests to American Academy of Neurology: [email protected] Title character count: 71 Abstract word count: 254 Manuscript word count: 7,891 Approved by the Guideline Development, Dissemination, and Implementation Subcommittee on October 22, 2016; by the Practice Committee on October 2, 2017; and by the AAN Institute Board of Directors on December 5, 2017.
    [Show full text]
  • Evidence for Genetically Distinct Direct and Indirect Spinocerebellar Pathways Mediating
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.254607; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Manuscript Title: Evidence for genetically distinct direct and indirect spinocerebellar pathways mediating 2 proprioception. 3 Abbreviated Title: Direct and indirect spinocerebellar pathways. 4 Author names and affiliations: 5 Iliodora V. Pop1, Felipe Espinosa1, Megan Goyal1, Bishakha Mona1, Mark A. Landy1, Osita W. Ogujiofor1, 6 Kevin M. Dean2, Channabasavaiah B. Gurumurthy3, 4, Helen C. Lai1 7 1 Dept. of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390 8 2 Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390 9 3 Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE 68198 10 4 Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of 11 Nebraska Medical Center, Omaha, NE 68198 12 Corresponding author: Helen C. Lai, [email protected]. 13 Number of Pages: 42 Number of words for Abstract: 246 14 Number of Figures: 8 Number of words for Introduction: 1155 15 Number of Tables: 0 Number of words for Discussion: 2366 16 Number of Multimedia: 6 Number of 3D Models: 0 17 Acknowledgments: This work was supported by R01MH120131 and R34NS121873 to K.M.D., 18 R35HG010719 and R21GM129559 to C.B.G., and R01NS100741 to H.C.L. We thank Lin Gan for the 19 Atoh1Cre/+ knock-in mouse, Martyn Goulding for the Cdx2::FLPo mouse, Mark Behlke and Sarah Jacobi 20 from Integrated DNA Technologies for providing pre-production megamers, Rebecca Seal for the Vglut1 21 ISH probe, Qiufu Ma for the Vglut2 ISH probe, Thomas Jessell for the Gdnf ISH probe, Heankel Cantu 22 Oliveros and Wei Xu for the LentiFugE-Cre virus, Christine Ochoa for technical assistance, Neuroscience 23 Microscopy Facility which is supported by the UTSW Neuroscience Dept.
    [Show full text]
  • Cerebellar-Lesions.Pdf
    Cerebellar Lesions Author: Lisa Heusel-Gillig, PT, DPT, NCS Fact Sheet Many individuals present to emergency rooms with acute symptoms of vertigo and imbalance. Others seek consultation from physicians with gradual imbalance and dizziness. In either case, determining the presence of cerebellar involvement with or without peripheral vestibular hypofunction has important treatment implications. Cerebellar or Brainstem Stroke Patients presenting to the emergency room with vertigo and imbalance should be tested for a cerebellar or brainstem stroke. However, a lesion may not always be apparent on a CT scan. If the history and other clinical findings are not consistent with benign paroxysmal positional vertigo (BPPV), peripheral vestibular neuritis, or vestibular migraine, a stroke should be considered. One way to differentiate between a stroke and a peripheral problem is the inability of the individual to Produced by coordinate his legs to walk. Anterior Inferior Cerebellar Artery (AICA) Stroke If the cerebellar stroke is related to a blockage or hemorrhage of the anterior inferior cerebellar artery (AICA), there is a possibility that the labyrinthine artery could be affected. The labyrinthine artery supplies the peripheral vestibular apparatus. In this case, patients would also have both hearing loss and peripheral vestibular hypofunction on the same side of the stroke. These patients should be A Special Interest referred to a clinic that specializes in both vestibular function testing and treating Group of patients with central and peripheral vestibular involvement. Cerebellar Atrophy or Degeneration Cerebellar degeneration is a progressive disease, which presents with an ataxic gait and imbalance.1 Subtypes may also affect both central and peripheral pathways and cause abnormalities in the vestibular ocular reflex (VOR) as well as oculomotor deficits.2,3 Studies have shown there is a high risk of falls with injuries with this 4 Contact us: population and fall prevention therapy is strongly suggested.
    [Show full text]
  • DEMENTIA in Cerebellar Volume in Genetic FTD
    RESEARCH HIGHLIGHTS Nature Reviews Neurology | Published online 11 Mar 2016; doi:10.1038/nrneurol.2016.28 DEMENTIA in cerebellar volume in genetic FTD. “We decided to investigate the volume of cerebellar subregions to Cerebellar atrophy has determine whether specific areas are associated with mutations in the key FTD genes,” explains Rohrer. disease-specific patterns Using MRI, the team determined the volumes of cerebellar subregions Distinct patterns of cerebellar question that remained was whether in 44 patients with mutations in atrophy relate to wider patterns of cerebellar changes were associated C9orf72, MAPT or GRN. GRN Patterns of disease-specific brain network degen- with cortical changes, or just occurred mutations were not associated with cerebellar eration, according to two recent concomitantly,” says Hornberger. cerebellar atrophy, whereas C9orf72 atrophy studies. The findings reveal details The team used MRI to visu- mutations were specifically associated of cerebellar atrophy in Alzheimer alize cerebellar degeneration in with atrophy in lobule VIIa–Crus I, differed disease (AD) and frontotemporal 217 patients with AD or one of and MAPT mutations were specif- between AD dementia (FTD), with implications three FTD subtypes: behavioural ically associated with atrophy in and bvFTD for future research and therapy. variant FTD, nonfluent variant pri- the vermis. Cerebellar degeneration has mary progressive aphasia (nfvPPA), “C9orf72‑associated atrophy largely been disregarded in demen- and semantic variant PPA (svPPA). reflects degeneration of a cortico- tia owing to its association with They then compared the atrophy thalamo-cerebellar network impor- movement disorders. However, the maps with an atlas of cerebral and tant in cognition, and the vermis cerebellum is involved in cognition cerebellar connectivity.
    [Show full text]
  • Anti-GAD Antibodies and Periodic Alternating Nystagmus
    OBSERVATION Anti-GAD Antibodies and Periodic Alternating Nystagmus Caroline Tilikete, MD; Alain Vighetto, MD; Paul Trouillas, MD; Jérome Honnorat, MD Background: Autoantibodies directed against glu- Intervention: Baclofen, a GABAergic medication, was tamic acid decarboxylase (GAD-Ab) have recently been given to the patient. described in a few patients with progressive cerebellar ataxia, suggesting an autoimmune physiopathologic Main Outcome Measures: Eye movement recording mechanism. of spontaneous nystagmus and postrotatory vestibular responses. Objective: To determine the exact role of GAD-Ab and ␥-aminobutyric acid (GABA)–ergic neurotransmission in Results: Baclofen was effective in suppressing PAN and the pathogenesis of cerebellar ataxia. improving postrotatory vestibular responses but not for improving cerebellar ataxia. Design: Case report. Conclusion: The presence of PAN and the response to Setting: University neurological hospital. baclofen provide a unique opportunity to suggest a direct role of GAD-Ab in cerebellar dysfunction in this Patient: We report the case of a patient with subacute patient. cerebellar ataxia associated with GAD-Ab showing pe- riodic alternating nystagmus (PAN). Arch Neurol. 2005;62:1300-1303 LUTAMIC ACID DECARBOX- ebellar ataxia associated with periodic al- ylase (GAD) is a major ternating nystagmus (PAN). Precise enzyme of the nervous knowledge of the physiopathologic mecha- system that catalyzes the nism of this nystagmus and its response conversion of glutamate to treatment may help to better under-
    [Show full text]
  • A Clinical-Based Diagnostic Approach to Cerebellar Atrophy in Children
    applied sciences Article A Clinical-Based Diagnostic Approach to Cerebellar Atrophy in Children Claudia Ciaccio 1,* , Chiara Pantaleoni 1, Franco Taroni 2 , Daniela Di Bella 2, Stefania Magri 2 , Eleonora Lamantea 2 , Daniele Ghezzi 2,3 , Enza Maria Valente 4,5 , Vincenzo Nigro 6 and Stefano D’Arrigo 1 1 Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; [email protected] (C.P.); [email protected] (S.D.) 2 Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; [email protected] (F.T.); [email protected] (D.D.B.); [email protected] (S.M.); [email protected] (E.L.); [email protected] (D.G.) 3 Department of Pathophysiology and Transplantation, University of Milan, 20122 Milano, Italy 4 Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; [email protected] 5 Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy 6 Telethon Institute of Genetics and Medicine, 80078 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-2394-2217 Featured Application: The study proposes a possible approach to pediatric ataxias with cerebellar atrophy, in order to optimize the diagnostic process and reach molecular confirmation. Abstract: Background: Cerebellar atrophy is a neuroradiological definition that categorizes condi- tions heterogeneous for clinical findings, disease course, and genetic defect. Most of the papers proposing a diagnostic workup for pediatric ataxias are based on neuroradiology or on the literature Citation: Ciaccio, C.; Pantaleoni, C.; and experimental knowledge, with a poor participation of clinics in the process of disease definition.
    [Show full text]
  • Vermal Infarctwith Pursuit Eye Movement Disorders
    Journal ofNeurology, Neurosurgery, and Psychiatry 1990;53:519-521 519 SHORT REPORT J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.53.6.519 on 1 June 1990. Downloaded from Vermal infarct with pursuit eye movement disorders Charles Pierrot-Deseilligny, Pierre Amarenco, Etienne Roullet, Rene Marteau Abstract the vermis was affected (lobules VI to X), Severe deficits of foveal smooth pursuit namely the clivus, the folium, the tuber, the and optokinetic nystagmus in all direc- pyramis, the uvula and the nodulus (fig 1). tions were electro-oculographically The inferior part of the left cerebellar hemi- recorded in an 80 year old woman. Mag- sphere was also damaged. The flocculus, the netic resonance imaging (MRI) showed different cerebellar peduncles and the brain- an infarct involving the postero-inferior stem were apparently spared. Moreover, the part of the vermis (lobules VI to X) and brainstem did .not appear to be compressed. a portion of the left cerebellar hemi- There was only slight diffuse atrophy in the sphere, with apparent preservation of cerebral hemispheres, without hydrocephalus. the flocculus and the brainstem. The role The posterior headache lasted one day, ver- of the vermal lesion in these pursuit eye tigo and left lateropulsion on walking cleared movement disorders is discussed. up within several days and the left tonic ocular deviation progressively disappeared within ten days. It has recently been shown that, besides the flocculus, the posterior part of the vermis Oculographic study (especially lobules VI and VII) is involved in Eye movements were recorded on the the control of pursuit eye movements in the eleventh day after the onset of the symptoms, monkey.'2 Our case reports for the first time a while the patient was fully alert, cooperative recent ischaemic lesion of the posterior vermis and attentive.
    [Show full text]
  • Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople
    JCN Open Access REVIEW pISSN 1738-6586 / eISSN 2005-5013 / J Clin Neurol 2017 Roles of the Declive, Folium, and Tuber Cerebellar Vermian Lobules in Sportspeople In Sung Parka The cerebellum plays vital roles in balance control and motor learning, including in saccadic Nam Joon Leeb c adaptation and coordination. It consists of the vermis and two hemispheres and is anatomically Im Joo Rhyu separated into ten lobules that are designated as I–X. Although neuroimaging and clinical stud- aDepartment of Liberal Arts, ies suggest that functions are compartmentalized within the cerebellum, the function of each Kyungil University, Gyeongsan, Korea cerebellar lobule is not fully understood. Electrophysiological and lesion studies in animals as b Departments of Diagnostic Radiology and well as neuroimaging and lesion studies in humans have revealed that vermian lobules VI and c Anatomy, Korea University VII (declive, folium, and tuber) are critical for controlling postural balance, saccadic eye move- College of Medicine, Seoul, Korea ments, and coordination. In addition, recent structural magnetic resonance imaging studies have revealed that these lobules are larger in elite basketball and short-track speed skaters. Fur- thermore, in female short-track speed skaters, the volume of this region is significantly correlat- ed with static balance. This article reviews the function of vermian lobules VI and VII, focusing on the control of balance, eye movements, and coordination including coordination between the eyes and hands and bimanual coordination. Key Words ‌balance, cerebellum, coordination, saccade. INTRODUCTION The cerebellum, located in the posterior cranial fossa, is a major motor structure of the brain. It controls motor-related functions, such as maintaining balance and posture, and motor learning including coordination of movements through complex regulatory and feedback mechanisms.
    [Show full text]