Siliacat® TEMPO: an Effective and Recyclable Oxidizing Catalyst

Total Page:16

File Type:pdf, Size:1020Kb

Siliacat® TEMPO: an Effective and Recyclable Oxidizing Catalyst SiliaCat® TEMPO: An Effective and Recyclable Oxidizing Catalyst Annie Michauda, Valerica Pandarusa, Lynda Tremblaya, Rosaria Ciriminnab, Mario Pagliarob, and François Bélanda* a SiliCycle®Inc. (www.silicycle.com), 2500 Parc-Technologique Blvd, Quebec City (Quebec), Canada, G1P 4S6 b Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via Ugo La Malfa 153, 90146 Palermo, Italy (*[email protected]) Reusability Minimal leaching and the robustness of the organoceramic matrix allows it to be recycled several times for further uses. Introduction Homogeneous vs. Heterogeneous Over the years, chemists have developed various oxidizing agents such Compared to homogeneous TEMPOs, SiliaCat TEMPO provides as pyridinium chlorochromate (PCC), MnO , Dess-Martin 2 significantly superior yields in basic conditions and comparable at periodinane, or Swern oxidation conditions. Although these reagents neutral pH. provide aldehydes with limited over-oxidation to carboxylic acids, they carry drawbacks such as hazardous and specific handling and Reusabilitya Time (min) Conversion (%) unwanted toxicity from residual metal contamination. 1st 30 100 2nd 30 100 We have developed a silica-based version of the 2,2,6,6- … … … Tetramethylpiperidin-1-oxyl (TEMPO) nitroxyl radicals as an 8th 30 / 60 95 / 100 alternative reagent for such type of transformations. 9th 30 / 60 97 / 100 pH SiliaCat TEMPO 4-MeO-TEMPO 4-Oxo-TEMPO th 7.5 91% 99% 45% 10 30 / 60 90 / 100 a 9.0 98% 55% (40%) 73% SiliaCat TEMPO [1] is a heterogeneous catalysts made from a leach- a SiliaCat TEMPO is recycled by post-reaction filtration, DCM washes and air drying. a resistant organoceramic matrix that surpasses its homogeneous Data in parenthesis indicate conversion to carboxylic acid. analogs in terms of reactivity and ability to reuse. It is also superior to Influence of Catalyst and Temperature other supported TEMPO reagents, as it does not require activation Substrate Scope prior to use. SiliaCat TEMPO features include: Although KBr is not required for the reaction, it plays a significant role on SiliaCat TEMPO is efficient with different substrates and can be used kinetics of the reaction. The reaction can still go to completion without •Ease of handling and purification with a phase transfer agent (entry 4). When an electron-rich benzylic KBr but requires longer time (entry 2 vs 1) and/or more SiliaCat TEMPO •High Reactivity & TON alcohol cannot be oxidized successfully with NaOCl, conditions (entry 3). Oxidation can also be performed at room temperature without •No swelling, solvent independency, mechanical and thermal involving I in toluene, at room temperature [2] will lead to the desired KBr. 2 stability, and ease of scalability product (entry 8 vs 3, entries 9-10). •Leach-resistant & reusable. •Air stable, inert conditions not needed SiliaCat TEMPO Properties KBr Temperature Time Conversion Entry SiliaCat TEMPO (mol %) o (equiv) ( C) (min) (%) Substrate SiliaCat TEMPO Time Conversion Organically modified silica made from hydrolysis and co- Entry 1 0.1 0.1 0 60 95 (R) (mol %) (min) (%) polycondensation 60 80 1 3-NO2 0.4 90 100 2 0.1 0 0 210 100 2 4-NO 0.4 90 98 Loading: 0.8-0.9 mmol/g 2 3 0.2 0 0 105 96 3 4-MeO 0.4 90 36 Surface: 300-650 m2/g 60 76 a 4 4-MeO 0.4 60 79 Particle size: 60-250 microns 4 0.2 0 22 90 87 4 4-Cl 0.4 90 95 Pore size : 25-70 Å SiliaCat DPP-Pd [R723-100] 6 3-phenyl-1-propanol 0.4 60 97 Influence of Solvents, pH and NaOCl 7 1-phenyl-1-propanol 0.4 180 95 b Catalytic Performance and Leaching 8 4-MeO 8.2 16h 99 b Reactions can be carried out at pH 7.5 or pH 9.0 in DCM, water or EtOAc. 9 3-MeO 7.8 16h 96 b SiliaCat TEMPO was investigated in the Montanari-Anelli conditions. The amount of bleach used is important to limit over-oxidations to the 10 piperonyl alcohol 10 20h 100 The catalytic cycle involves regeneration of the oxidative species with corresponding carboxylic acid (entry 5). a 0.05 equiv of Aliquat 336 were used as phase transfer agent b Reaction conditions: I (1.8eq), NaHCO , pH 8, Toluene, 22oC NaOCl (commercial bleach) in presence of KBr as co-catalyst to form 2 3 (aq) - the stronger anion OBr . Conclusion SiliaCat TEMPO is an effective oxidizing catalyst with unique SiliaCat TEMPO NaOCl Time Yield Entry (aq) Solvent pH advantages such as high activity, robustness, leach-resistant properties (mol %) (equiv) (min) (%) and selectivity toward the oxidation of alcohols to aldehydes and SiliaCat TEMPO Time (h) Conversion (%) Si (ppm) 1 0.2 2.5 DCM 9.0 60 98 ketones. 60 94 (mol %) 2 0.2 2.5 DCM 7.5 0.1 1 95 - 90 98 [1] A. Michaud, G. Gingras, M. Morin, F. Béland, R. Ciriminna, D. 0.02 2 96 - 60 87 Avini, M. Pagliaro, Org. Process Res. Dev.11 (2007) 766. 3 0.2 2.5 H2O 7.5 0.02 3 100 2 90 88 0.01 2 83 3 60 83 4 0.7 1.20 H O 9.0 [2] A. R. Miller, S. R. Hoerrner, Org. Lett. 5 (2003) 285. 0.01 3 95 1.6 2 150 89 0.01 4 97 1.5 60 60 (19)a 5 0.8 5.0 H2O 9.0 a 18h 7 (89) 60 95 SiliaCat TEMPO can be used with as little 0.01 mol% to provide the 6 0.2 1.25 EtOAc 9.0 desired aldehyde in short reaction times. ICP analysis confirms that 90 96 the material is leach-resistant ([Si] ≤ 3ppm). a Data in parenthesis indicate conversion to carboxylic acid. .
Recommended publications
  • Oxidation of Secondary Alcohols to Ketones
    Oxidation of secondary alcohols to ketones The oxidation of secondary alcohols to ketones is an important oxidation reaction in organic chemistry. Where a secondary alcohol is oxidised, it is converted to a ketone. The hydrogen from the hydroxyl group is lost along with the hydrogen bonded to the second carbon. The remaining oxygen then forms double bonds with the carbon. This leaves a ketone, as R1–COR2. Ketones cannot normally be oxidised any further because this would involve breaking a C–C bond, which requires too much energy.[1] The reaction can occur using a variety of oxidants. Contents Potassium dichromate PCC (Pyridinium chlorochromate) Dess–Martin oxidation Swern oxidation Oppenauer oxidation Fétizon oxidation See also References Potassium dichromate A secondary alcohol can be oxidised into a ketone using acidified potassium dichromate and heating under 2− 3+ reflux. The orange-red dichromate ion, Cr2O7 , is reduced to the green Cr ion. This reaction was once used in an alcohol breath test. PCC (Pyridinium chlorochromate) PCC, when used in an organic solvent, can be used to oxidise a secondary alcohol into a ketone. It has the advantage of doing so selectively without the tendency to over-oxidise. Dess–Martin oxidation The Dess–Martin periodinane is a mild oxidant for the conversion of alcohols to aldehydes or ketones.[2] The reaction is performed under standard conditions, at room temperature, most often in dichloromethane. The reaction takes between half an hour and two hours to complete. The product is then separated from the spent periodinane.[3] Swern oxidation Swern oxidation oxidises secondary alcohols into ketones using oxalyl chloride and dimethylsulfoxide.
    [Show full text]
  • Alcohol Oxidation
    Alcohol oxidation Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and The indirect oxidation of aldehyde hydrates primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R- CH(OH)2) by reaction with water. The oxidation of a primary alcohol at the aldehyde level is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed. Contents Oxidation to aldehydes Oxidation to ketones Oxidation to carboxylic acids Diol oxidation References Oxidation to aldehydes Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are further oxidized to carboxylic acids. Conditions required for making aldehydes are heat and distillation. In aldehyde formation, the temperature of the reaction should be kept above the boiling point of the aldehyde and below the boiling point of the alcohol. Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include: Oxidation of alcohols to aldehydes and ketones Chromium-based reagents, such as Collins reagent (CrO3·Py2), PDC or PCC. Sulfonium species known as "activated DMSO" which can result from reaction of DMSO with electrophiles, such as oxalyl chloride (Swern oxidation), a carbodiimide (Pfitzner-Moffatt oxidation) or the complex SO3·Py (Parikh-Doering oxidation). Hypervalent iodine compounds, such as Dess-Martin periodinane or 2-Iodoxybenzoic acid. Catalytic TPAP in presence of excess of NMO (Ley oxidation). Catalytic TEMPO in presence of excess bleach (NaOCl) (Oxoammonium-catalyzed oxidation).
    [Show full text]
  • 20 More About Oxidation–Reduction Reactions
    More About 20 Oxidation–Reduction Reactions OOC n important group of organic reactions consists of those that O A involve the transfer of electrons C from one molecule to another. Organic chemists H OH use these reactions—called oxidation–reduction reactions or redox reactions—to synthesize a large O variety of compounds. Redox reactions are also important C in biological systems because many of these reactions produce HH energy. You have seen a number of oxidation and reduction reactions in other chapters, but discussing them as a group will give you the opportunity to CH3OH compare them. In an oxidation–reduction reaction, one compound loses electrons and one com- pound gains electrons. The compound that loses electrons is oxidized, and the one that gains electrons is reduced. One way to remember the difference between oxidation and reduction is with the phrase “LEO the lion says GER”: Loss of Electrons is Oxi- dation; Gain of Electrons is Reduction. The following is an example of an oxidation–reduction reaction involving inorganic reagents: Cu+ + Fe3+ ¡ Cu2+ + Fe2+ In this reaction,Cu+ loses an electron, so Cu+ is oxidized. Fe3+ gains an electron, so Fe3+ is reduced. The reaction demonstrates two important points about oxidation– reduction reactions. First, oxidation is always coupled with reduction. In other words, a compound cannot gain electrons (be reduced) unless another compound in the reaction simultaneously loses electrons (is oxidized). Second, the compound that is oxidized (Cu+) is called the reducing agent because it loses the electrons that are used to reduce the other compound (Fe3+). Similarly, the compound that is reduced (Fe3+) is called the oxidizing agent because it gains the electrons given up by the other compound (Cu+) when it is oxidized.
    [Show full text]
  • Asymmetric Total Synthesis of Congeners of Hydramycin, an Anthraquinone-Type Antitumor Agent
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2011 Asymmetric Total Synthesis of Congeners of Hydramycin, an Anthraquinone-Type Antitumor Agent Costyl Ngnouomeuchi Njiojob [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Heterocyclic Compounds Commons, Organic Chemicals Commons, and the Polycyclic Compounds Commons Recommended Citation Njiojob, Costyl Ngnouomeuchi, "Asymmetric Total Synthesis of Congeners of Hydramycin, an Anthraquinone-Type Antitumor Agent. " PhD diss., University of Tennessee, 2011. https://trace.tennessee.edu/utk_graddiss/1210 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Costyl Ngnouomeuchi Njiojob entitled "Asymmetric Total Synthesis of Congeners of Hydramycin, an Anthraquinone-Type Antitumor Agent." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. David C. Baker, Major Professor We have read this dissertation and recommend its acceptance: Shawn Campagna, Ben Xue, Elizabeth Howell Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asymmetric Total Synthesis of Congeners of Hydramycin, an Anthraquinone-Type Antitumor Agent A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Costyl Ngnouomeuchi Njiojob December 2011 DEDICATION This dissertation is dedicated to my Parents Francois Ngnouomeuchi and Lydie T.
    [Show full text]
  • Oxidation States of Carbon Oxidation and Reduction in Biology
    Oxidation States of Carbon • Addition of H (or “H-”) Reduction 2 • Loss of O2 or O H R H H carboxylic aldehyde alcohol alkane acid (or ketone) • Loss of H 2 Oxidation • Addition of O2 or O + Neither oxidation nor reduction: Addition or loss of H , H2O, or HX Oxidation and Reduction in Biology • Addition of H (or “H-”) Reduction 2 • Loss of O2 or O + h, in plants H OH carbon dioxide e.gg,g., glucose H O 4 C-O bonds per C HO 1 C-O bond per C 0 C-H bond per C HO OH 1 C-H bond per C H OH H H +O+ O2, in animals • Loss of H 2 Oxidation • Addition of O2 or O + Neither oxidation nor reduction: Addition or loss of H , H2O, or HX Biological Oxidation Gone Wrong component of glue alcohol 2 NAD+ dehydrogenase 2 NADH gamma-hydroxybutyrate (GHB, an intoxicant/ date rape drug) Dr. Kevin Carpenter, biochemical geneticist (specialist in pediatric metabolic disorders), Children’s Hospital at Westmead (Sydney), Australia. Behind him: The Agilent GC/MS New York Times, Nov. 8, 2007 used to analyze the Aqua Dots. “Sleuthing for Danger in Toy Beads” Hydrides as Reducing Agents Lithium aluminum hydride (LiAlH4) is a strong reducing agent. It will reduce any C=O containing functional group to an alcohol. + 2. H3O 1. LiAlH4 (or just H2O) carboxylic acid primary alcohol andthd then ano ther equivalent adds, unavoidably. One Reduced by LiAlH : equivalent of 4 H- adds, aldehyde ketone carboxylic ester acyl halide amide acid Hydrides as Reducing Agents Sodium borohydride (NaBH4) is a mild reducing agent.
    [Show full text]
  • 215 F12-Notes-Ch 13
    Chem 215 F12-Notes – Dr. Masato Koreeda - Page 1 of 13 Date: September 10, 2012 Chapter 13. Alcohols, Diols, and Ethers Overview: Chemistry and reactions of sp3 oxygen groups, particularly oxidation of an alcohol, ether formation, and reactions of oxirane (epoxide) groups. I. What are alcohols, phenols, and ethers? IUPAC names Common names Alcohols (R-OH) Primary alcohols CH3OH methanol methyl alcohol (1°-alcohols) CH3CH2OH ethanol ethyl alcohol pKa ~16-17 CH3CH2CH2OH 1-propanol n-propyl alcohol H3C C CH2OH 2-methyl-1-propanol isobutyl alcohol H3C H H3C C CH2OH 2,2-dimethyl-1-propanol neopentyl alcohol H3C CH3 H C Secondary alcohols 3 C OH 2-propanol isopropyl alcohol (2°-alcohols) H3C H pKa ~17-18 H C-CH 3 2 C OH 2-butanol sec-butyl alcohol H3C H Tertiary alcohols H3C C OH 2-methyl-2-propanol tert-butyl alcohol (3°-alcohols) H3C CH pKa ~19 3 Phenols (Ph-OH) pKa ~10-12 diethyl ether Ethers (R-O-R') CH3CH2-O-CH2CH3 Ph-O-CH=CH2 phenyl vinyl ether RO-: alkoxy CH3O methoxy CH3CH2O ethoxy ArO-: aryloxy PhO phenoxy II. Oxidation Oxidation – historical use of the term: (1) oxide (oxyd/oxyde) – the ‘acid’ form of an element; e.g., S + air → oxide of S (acid of sulfur) (2) oxidation or oxidize – to make such an acid, to make the oxide (3) oxygen – Lavoisier: substance in the air that makes acids; “the bringer of acids” = “oxygen” (4) oxidation or oxidize – to increase the % oxygen in a substance (reduction: to reduce the % oxygen) More modern definition: oxidation or oxidize – loss of electrons (coupled with reduction as gain of electrons) Note: The loss of electrons (oxidation) by one atom or compound must be matched by the gain of electrons (reduction) by another.
    [Show full text]
  • Efforts Towards the Total Synthesis of Azaspiracid-3 DISSERTATION
    Efforts towards the Total Synthesis of Azaspiracid-3 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Zhigao Zhang Graduate Program in Chemistry The Ohio State University 2013 Dissertation Committee: Dr. Craig J. Forsyth, Advisor Dr. Jon R. Parquette Dr Anita E. Mattson Copyright by Zhigao Zhang 2013 Abstract Azaspiracid, a structurally complex marine toxin isolated from the mussel Mytilus edulis in Killary Harbor, Ireland, represents a new class of marine metabolites unrelated to any previous known agent of diarrhetic shellfish posioning. As such, the natural product has spurred considerable interest among organic community. The thesis details the study towards the total synthesis of azaspiracid-3. The C1-C21 domain and C22-C40 domain have been synthesized, which aims to assemble the molecule through Yamaguchi esterification. The ABCD domain involved an efficient NHK coupling reaction between C1-C12 segment and C13-C22 segment. The trioxadispiroketal skeleton was constructed under the influence of acid catalysis. The EFGHI domain highlighted a chelate controlled Mukaiyama aldol reaction to produce C22-C40 linear precursor, and a DIHMA process to assemble the bridged ketal. With the recognition of bridged ketal and spiroaminal functionality in the FGHI domain, the gold-catalysis to achieve these moieties has been proposed. A novel gold- catalyzed spiroaminal formation has been systemically developed. The gold-catalyzed ketallization was then successfully implemented to construct the bridged ketal, while an inevitable elimination could not deliver the desired spiroaminal under gold conditions. A NHK reaction to couple the C1-C21 and C22-C40 domains has also been proposed.
    [Show full text]
  • Synthesis of Benzaldehyde by Swern Oxidation of Benzyl Alcohol in a Continuous flow Microreactor System
    Turkish Journal of Chemistry Turk J Chem (2018) 42: 75 { 85 http://journals.tubitak.gov.tr/chem/ ⃝c TUB¨ ITAK_ Research Article doi:10.3906/kim-1704-42 Synthesis of benzaldehyde by Swern oxidation of benzyl alcohol in a continuous flow microreactor system Lin ZHU1;2, Xiaohui XU1;2, Fuping ZHENG1;2;∗ 1Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China 2Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, P.R. China Received: 22.04.2017 • Accepted/Published Online: 29.08.2017 • Final Version: 08.02.2018 Abstract: Preparation of benzaldehyde by Swern oxidation of benzyl alcohol was carried out in a continuous flow microreactor system. Dimethyl sulfoxide (Me 2 SO) was used as oxidizing agent and oxalyl chloride or p-toluenesulfonyl (p-TsCl) chloride was used as the activating agent. Benzyl alcohol was oxidized to benzaldehyde by the Me 2 SO- activating agent mixture in the continuous flow microreactor system. The optimized reaction conditions of the Swern oxidation were as follows: oxalyl chloride was used as the activating agent; the mole ratio of Me 2 SO, oxalyl chloride, ◦ and benzyl alcohol was 4:2:1; the flow rate of Me 2 SO was 1.5 mL/min; the reaction temperature was 15 C; length of delay loop was 1.5 m; a Caterpillar Split-Recombine Micro Mixer was used; and all of the experiments were completed at atmospheric pressure. The yield of benzaldehyde can reach 84.7% with selectivity of 98.5%. Due to the small reactor volume and short residence times, the Swern oxidation of benzyl alcohol in a continuous flow microreactor system can be operated at nearly room temperature (5{19 ◦ C) instead of {70 ◦ C in a batch reaction, with residence time of reactants in microreactors in milliseconds instead of several hours in a batch reaction.
    [Show full text]
  • 17. Oxidation and Reduction Reactions 18
    (11,12/94)(4,5/97)(02,3/07)(01/08) Neuman Chapter 17 Chapter 17 Oxidation and Reduction from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids **************************************************************************************
    [Show full text]
  • Chem 634 Dr. Fox Literature References, Week 2
    Chem 634 Dr. Fox Literature References, Week 2 • Stereochemistry of 1,2 additions to cyclic ketones: Review Ashby, E. C.; Laemmle, J. T. Stereochemistry of Organometallic Compound Addition to Ketones. Chem. Rev. 1975, 75, 521. • Intermediacy of aldehyde hydrates in the CrO3 oxidation to carboxylic acids in aqueous media: Rocek, J.; Ng, C.-S. Chromium(IV) oxidation of aliphatic aldehydes. J. Am. Chem. Soc. 1974, 96, 1522-1529. • Dess Martin Reagent: Dess, D. B.; Martin, J. C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc. 1991, 113, 7277–7287. preparation: Robert E. Ireland, L. L. An improved procedure for the preparation of the Dess-Martin periodinane. J. Org. Chem. 1993, 58, 2899-2899. • Swern oxidation Marx, M.; Tidwell, T. T. Reactivity-selectivity in the Swern oxidation of alcohols using dimethyl sulfoxide-oxalyl chloride. J. Org. Chem. 1984, 49, 788-793. Tidwell, T. T. Oxidation of alcohols to carbonyl compounds via alkoxysulfonium ylides: The Moffatt, Swern and related reactions. Org. React. (N.Y.) 1990, 39, 297. • Allylic alcohol oxidation with MnO2 Sondheimer, F.; Amendolla, C.; Rosenkranz, G. Steroids. L.1 The Oxidation of Steroidal Allylic Alcohols with Manganese Dioxide. A Novel Synthesis of Testosterone. J. Am. Chem. Soc. 1953, 75, 5930-5932. GRITTER, R. J.; WALLACE, T. J. The Manganese Dioxide Oxidation of Allylic Alcohols. J. Org. Chem. 1959, 24, 1051–1056. • Oppenauer Oxidation (Meerwein-Ponndorf-Verley Reduction) de Graauw, C. F.; Peters, J. A.; Vanbekkum, H.; Huskens, J.
    [Show full text]
  • Development of Green and of Polymer-Supported
    DEVELOPMENT OF GREEN AND OF POLYMER-SUPPORTED OXIDIZING AGENTS FOR OXIDATION OF ALCOHOLS by SYED JAVED ALI, M.Tech., B.Tech. A THESIS IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved David Birney Chairperson of the Committee Satomi Niwayama Accepted John Borrelli Dean of the Graduate School May, 2006 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my mentor, Dr. David Birney, for his ever-inspiring scientific guidance, for his constant encouragement and support and for his unfathomable patience. I hold him in very high esteem for being such an excellent teacher and a wonderful human being. Words would only depreciate my admiration and my gratitude for all that he has done. I would like to thank Dr. Satomi Niwayama for agreeing to be my thesis committee member and for her valuable comments on my work. My thanks are also due to Dr. Pramod Chopade for helping me understand some of the chemistry, Ms. Paramakalyani Martinelango for being a great friend and for help with this manuscript. I thank my very best friend, Pradip, and Anwesa for their moral support and always being there for me. I would like to thank my parents for their love, sacrifice and continued prayers and blessings, and my friends back home who I know genuinely care for my well-being. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………………….ii LIST OF SCHEMES……………………………………………………………………...v LIST OF TABLES………………………………………………………………………..vi LIST OF FIGURES……………………………………………………………………...vii
    [Show full text]
  • Chem. Pharm. Bull. 53(5) 457—470 (2005) 457 Review
    May 2005 Chem. Pharm. Bull. 53(5) 457—470 (2005) 457 Review Development of a Novel Synthetic Method for Ring Construction Using Organometallic Complexes and Its Application to the Total Syntheses of Natural Products1) Miwako MORI Health Sciences University of Hokkaido; Tobetsu, Hokkaido 061–0293, Japan. Received December 2, 2004 Organometallic complexes are useful tools in synthetic organic chemistry. We investigated a novel synthetic method for ring construction using organometallic complexes and synthesized natural products and biologically active substances using these methods. Metalacycles formed from an early transition metal and diene, enyne, and diyne are stable under the reaction conditions and they are easily converted into compounds with functional groups by the addition of various agents. We have developed a novel synthetic method of heterocycles from enyne ؎ ؎ ؊ and diene using Cp2ZrBu2. The total syntheses of ( )-dendrobine, ( )-mecembrane, and ( )-mecembrine were achieved using this procedure. To synthesize these natural products as a chiral form, a novel palladium-catalyzed asymmetric allylic amination was developed, and chiral 2-arylcyclohexenylamine derivatives were synthesized. -From these compounds, the total syntheses of (؊)-mesembrane, (؊)-mesembrine, (؉)-crinamine, (؊)-haeman -thidine, and (؉)-pretazetine were achieved. By further development of this procedure, a chiral 2-siloxymethylcy clohexenylamine derivative could be synthesized and the novel synthesis of indole derivatives was developed from .this compound. From this indole derivative, (؊)-tsubifoline and (؊)-strychnine were synthesized Key words organometallic complex; palladium catalyst; natural product synthesis; strychnine; mesembrine; zirconocene Organometallic complexes are useful tools in synthetic or- forded the cyclized compound 3 (Chart 1). ganic chemistry. In particular, they play an important role in Negishi et al.
    [Show full text]