bioRxiv preprint doi: https://doi.org/10.1101/401828; this version posted September 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Enabling tools for Toxoplasma glycobiology Elisabet Gas-Pascual1,2,*, H. Travis Ichikawa1,5,*, M. Osman Sheikh3, M. Isabella Serji1,6, Bowen Deng1,2, Msano Mandalasi1,2, Giulia Bandini4, John Samuelson4, Lance Wells1,3, and Christopher M. West1,2,7 1Department of Biochemistry & Molecular Biology, 2Center for Tropical and Emerging Global Diseases, 3Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA 4Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, 72 East Concord Street, Boston, MA 02118 USA 5 current address: New Materials Institute, University of Georgia, Athens, GA 30602 USA 6 current address: George Washington University School of Public Health, Washington, D.C. 20009 USA 7 to whom requests for information or materials should be sent at Dept. of Biochemistry & Molecular Biology, 120 E. Green St., Davison Life Sciences – B129, University of Georgia, Athens GA 30602 USA, telephone +1-706-542-4259, email
[email protected] * These authors contributed equally to this project Keywords: CRISPR/Cas, glycomics, Toxoplasma gondii, glycosyltransferase, glycobiology, mass spectrometry, parasitology Abbreviations: AAL, Aleuria aurantia