The Decline of the Vulnerable Yeheb Cordeauxia Edulis, an Economically Important Dryland Shrub of Ethiopia

Total Page:16

File Type:pdf, Size:1020Kb

The Decline of the Vulnerable Yeheb Cordeauxia Edulis, an Economically Important Dryland Shrub of Ethiopia The decline of the Vulnerable yeheb Cordeauxia edulis, an economically important dryland shrub of Ethiopia M USSA Y USUF,ZEWGE T EKLEHAIMANOT and D ERIBE G URMU Abstract Cordeauxia edulis (Leguminosae: Caesalpinioideae), long time where individual stems cannot survive for a long commonly called yeheb, is a small tree/shrub species endemic period or establishment of new shrubs by seedlings is to Ethiopia and Somalia. The tree produces nuts that are difficult because of the harsh climate and edaphic consumed as a staple food by pastoralists and are sold in local conditions, and grazing pressure. Thus, assessment of the markets. Recent reports indicate that C. edulis has vanished size class distribution of stems within clumps can be used to from many locations where it was noted by earlier travellers determine whether or not the population of a shrub species and, as a result, it is currently categorized as Vulnerable on the is in decline. An even distribution of size classes indicates IUCN Red List. To assess the current status of the species we that the species is in a condition of stable self-maintenance. studied it around 10 villages in Boh district in the Somali A greater number of stems of clumps in higher size classes Regional State of Ethiopia, where the only known remnant compared to lower size classes reflects a decline in self- stands of C. edulis in Ethiopia are found. The results show that maintenance ability. If such a trend continues a population these populations of C. edulis are declining and natural could go extinct locally (Fujiki & Kikuzawa, 2006). regeneration is negligible. We recommend that yeheb should Assessment of regeneration status from the population becategorizedasEndangeredontheIUCNRedList,basedon dynamics of seedlings is a further means by which the status criteria A1d, because we estimate that there has been at least a of the population of a plant species can be determined. A 70% reduction in population size from overexploitation. The population structure characterized by the presence of a major constraints to natural regeneration and imbalance in the sufficient number of seedlings indicates satisfactory regen- population structure are over-harvesting of immature nuts, eration or a stable population whereas an inadequate excessive browsing of shoots and leaves by livestock and number of seedlings indicates poor regeneration or a excessive cutting of wood for fuel and construction. We declining population (Swaine et al., 1990). recommend that conservation measures for the species focus Cordeauxia edulis Hemsley, locally called yeheb, is a on sustainable harvesting of mature nuts, raising awareness small evergreen multi-stemmed tree or shrub (Ali, 1988, among local people, preservation and monitoring of remnant cited in Liew, 2003) of the legume subfamily populations and introduction of the species in ecologically Caesalpinioideae, endemic to eastern Ethiopia and central suitable sites. Somalia. It is drought hardy and a source of food for both animals and humans (NAS, 1979). The tree produces nuts Keywords Caesalpinioideae, Cordeauxia edulis, Ethiopia, that are collected and consumed as a staple food by nuts, population density, regeneration, size class distri- pastoralists and sold in local markets to provide household bution income. Because of high demand and competition, the fruits of C. edulis are usually collected prematurely (Kazmi, 1979). Yeheb foliage is a preferred browse for camels and goats, Introduction which are the dominant livestock in the region, and is 2010 clump of a shrub species always consists of stems of heavily browsed throughout the year (Yusuf, ). The ff wood of yeheb is also a preferred building material because Adi erent ages and sizes as old stems are replaced 2010 with newly sprouted stems. In drylands this allows it is termite resistant (Yusuf, ). C. edulis is the only species in the genus (Bally, 1966) and is dominant or co- multi-stemmed shrub species to maintain themselves for a dominant in the deciduous Acacia–Commiphora bushland vegetation of the Somali–Masai floristic zone (White, 1983). 1930 MUSSA YUSUF Somali Region Pastoral Agropastoral Research Institute, Jigjiga, Since the s it has declined over most of its original range Ethiopia and has disappeared from many locations where it was ZEWGE TEKLEHAIMANOT (Corresponding author) School of the Environment, noted by earlier travellers (Bally, 1966). Natural Resources and Geography, Bangor University, UK. The species is threatened by several factors, including E-mail [email protected] drought, grazing and over-harvesting of nuts (Bally, 1966; DERIBE GURMU Forestry Research Centre, Ethiopian Agricultural Research 1979 1998 Organisation, Addis Ababa, Ethiopia NAS, ; Walter & Gillett, ). Although it is categorized as Vulnerable on the IUCN Red List its status Received 17 January 2011. Revision requested 11 February 2011. Accepted 15 March 2011. has not been assessed since 1998, and requires updating © 2013 Fauna & Flora International, Oryx, 47(1), 54–58 doi:10.1017/S0030605311000664 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.219, on 02 Oct 2021 at 05:02:18, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0030605311000664 A Vulnerable Ethiopian shrub 55 (WCMC, 1998). Because of its high nutritional value and number and direction in all 10 populations. The transect line economic importance attempts to grow the species have started from the edge of the village settlement in a direction been made in Kenya, Tanzania and Israel (Nerd et al., 1994), best representing all target areas, including areas close to the Sudan, Yemen, India, Australia and the USA (Veitmeyer, settlement and those further away. According to Brink 1985;FAO,1988). The seeds appear to germinate well (up to (2006) and Ali (1988, cited in Liew, 2003) proximity to a 80% germination) but establishing the seedlings in the field village is one of the factors that influences the density of has been less successful. Thus, the species is still confined to yeheb. its natural range in Somalia and Ethiopia. As there are no In the early stages of growth yeheb is reported to be published reports of field assessments of the status of the single-stemmed whereas mature plants are multi-stemmed, species a study of the population structure and regeneration with most of the stems arising from the base of the plant status of yeheb was therefore undertaken during 2007–2008 near the ground (Ali, 1988, cited in Liew, 2003). Each in Boh District of the Somali region of Ethiopia. separate clump of stems thus constitutes an individual adult plant. Therefore, within each quadrat all clumps of yeheb $ 2 Study area with stems per clump, and single-stemmed individuals, were counted. The number of stems in each clump was Boh district, in the Somali Regional State, is the only place recorded along with the basal diameter of each. Other where yeheb now occurs in Ethiopia. Over 85% of the species of trees and shrubs growing with yeheb in each human population of Boh is pastoralist and dependent upon quadrat were identified and the number of individuals of livestock. The area is arid, with a total annual rainfall of each species counted. 150–250 mm that falls in two rainy seasons of varying Frequencies and densities by basal diameter classes were reliability; the two pronounced dry seasons are each of at computed and skewness coefficients calculated to examine least 5 months duration. The south-west monsoon brings the size distribution. An analysis of variance was used to the main rains in March/April to May/June; the north-east examine variation between populations and Tukey’s test was monsoon brings rain in October–November. The area is used to make pairwise comparison between means to test frost free with a mean annual temperature of 28 °C. Altitude the hypothesis that there are no differences in density and −1 is 300–1,000 m. The mean monthly wind speed is 2–3 km h size class between populations. except during the south-west monsoon, when it is 4–5 −1 km h . Mean annual potential evapotranspiration is Results 1,700–2,600 mm (Drechsel & Zech, 1988; Yusuf, 2010). A total of 67 clumps of yeheb were enumerated in the 10 67 −1 Methods populations, giving a mean density of clumps ha (range 30–110; Table 1). The ANOVA indicated there was no Members of the agropastoral extension staff of the Somali significant difference in the density of clumps between Regional State and knowledgeable villagers and clan leaders populations. A total of 1,059 stems were enumerated in the 10 were contacted to make enquiries about the occurrence of populations. The mean number of stems per clump was yeheb in the region. All responses confirmed that the species 16 ± SE 1.62. The ANOVA indicated that the mean stem basal is only found in Boh district, the region where Captain diameter (Table 1)differed significantly between populations. Cordeaux obtained botanical specimens in July 1907 (Bally, The majority of stems were of intermediate basal diameter; 1966). Following this confirmation we made a preliminary the skewness coefficient of the distribution was −0.43.One reconnaissance to identify the locations of the stands of single-stemmed plant was found in one quadrat in each of yeheb. Of the 72 villages in the district yeheb was found only four of the 10 populations (Maned, Gambare, Mirafadle and in 10 (a village is the smallest administrative unit after Dudun) and none in the other six populations. district and includes the settled area and the surrounding A total of 16 other tree and shrub species were found environment), in an area from approximately 46.6°E 7.0°N growing with yeheb in the 100 quadrats (Table 2). Acacia to 47.2°E 7.4°N. We conducted this study in all 10 of these tortilis and Boswellia neglecta were the most common villages.
Recommended publications
  • Plant Common Name Scientific Name Description of Plant Picture of Plant
    Plant common name Description of Plant Picture of Plant Scientific name Strangler Fig The Strangler Fig begins life as a small vine-like plant Ficus thonningii that climbs the nearest large tree and then thickens, produces a branching set of buttressing aerial roots, and strangles its host tree. An easy way to tell the difference between Strangle Figs and other common figs is that the bottom half of the Strangler is gnarled and twisted where it used to be attached to its host, the upper half smooth. A common tree on kopjes and along rivers in Serengeti; two massive Fig trees near Serengeti; the "Tree Where Man was Born" in southern Loliondo, and the "Ancestor Tree" near Endulin, in Ngorongoro are significant for the local Maasai peoples. Wild Date Palm Palms are monocotyledons, the veins in their leaves Phoenix reclinata are parallel and unbranched, and are thus relatives of grasses, lilies, bananas and orchids. The wild Date Palm is the most common of the native palm trees, occurring along rivers and in swamps. The fruits are edible, though horrible tasting, while the thick, sugary sap is made into Palm wine. The tree offers a pleasant, softly rustling, fragrant-smelling shade; the sort of shade you will need to rest in if you try the wine. Candelabra The Candelabra tree is a common tree in the western Euphorbia and Northern parts of Serengeti. Like all Euphorbias, Euphorbia the Candelabra breaks easily and is full of white, candelabrum extremely toxic latex. One drop of this latex can blind or burn the skin.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Pulses in Ethiopia, Their Taxonomy and Agricultural Significance E.Westphal
    Pulses in Ethiopia, their taxonomy andagricultura l significance E.Westphal JN08201,579 E.Westpha l Pulses in Ethiopia, their taxonomy and agricultural significance Proefschrift terverkrijgin g van degraa dva n doctori nd elandbouwwetenschappen , opgeza gva n derecto r magnificus, prof.dr .ir .H .A . Leniger, hoogleraar ind etechnologie , inne t openbaar teverdedige n opvrijda g 15 maart 1974 desnamiddag st evie ruu r ind eaul ava nd eLandbouwhogeschoo lt eWageninge n Centrefor AgriculturalPublishing and Documentation Wageningen- 8February 1974 46° 48° TOWNS AND VILLAGES DEBRE BIRHAN 56 MAJI DEBRE SINA 57 BUTAJIRA KARA KORE 58 HOSAINA KOMBOLCHA 59 DE8RE ZEIT (BISHUFTU) BATI 60 MOJO TENDAHO 61 MAKI SERDO 62 ADAMI TULU 8 ASSAB 63 SHASHAMANE 9 WOLDYA 64 SODDO 10 KOBO 66 BULKI 11 ALAMATA 66 BAKO 12 LALIBELA 67 GIDOLE 13 SOKOTA 68 GIARSO 14 MAICHEW 69 YABELO 15 ENDA MEDHANE ALEM 70 BURJI 16 ABIYAOI 71 AGERE MARIAM 17 AXUM 72 FISHA GENET 16 ADUA 73 YIRGA CHAFFE 19 ADIGRAT 74 DILA 20 SENAFE 75 WONDO 21 ADI KAYEH 76 YIRGA ALEM 22 ADI UGRI 77 AGERE SELAM 23 DEKEMHARE 78 KEBRE MENGIST (ADOLA) 24 MASSAWA 79 NEGELLI 25 KEREN 80 MEGA 26 AGOROAT 81 MOYALE 27 BARENIU 82 DOLO 28 TESENEY 83 EL KERE 29 OM HAJER 84 GINIR 30 DEBAREK 85 ADABA 31 METEMA 86 DODOLA 32 GORGORA 87 BEKOJI 33 ADDIS ZEMEN 88 TICHO 34 DEBRE TABOR 89 NAZRET (ADAMA 35 BAHAR DAR 90 METAHARA 36 DANGLA 91 AWASH 37 INJIBARA 92 MIESO 38 GUBA 93 ASBE TEFERI 39 BURE 94 BEDESSA 40 DEMBECHA 95 GELEMSO 41 FICHE 96 HIRNA 42 AGERE HIWET (AMB3) 97 KOBBO 43 BAKO (SHOA) 98 DIRE DAWA 44 GIMBI 99 ALEMAYA
    [Show full text]
  • Herb Other Names Re Co Rde D Me Dicinal Us E Re
    RECORDED USE RECORDED USE MEDICINAL US AROMATHERA IN COSMETICS IN RECORDED RECORDED FOOD USE FOOD IN Y E P HERB OTHER NAMES COMMENTS Parts Used Medicinally Abelmoschus moschatus Hibiscus abelmoschus, Ambrette, Musk mallow, Muskseed No No Yes Yes Abies alba European silver fir, silver fir, Abies pectinata Yes No Yes Yes Leaves & resin Abies balsamea Balm of Gilead, balsam fir Yes No Yes Yes Leaves, bark resin & oil Abies canadensis Hemlock spruce, Tsuga, Pinus bark Yes No No No Bark Abies sibirica Fir needle, Siberian fir Yes No Yes Yes Young shoots This species not used in aromatherapy but Abies Sibirica, Abies alba Miller, Siberian Silver Fir Abies spectabilis Abies webbiana, Himalayan silver fir Yes No No No Essential Oil are. Leaves Aqueous bark extract which is often concentrated and dried to produce a flavouring. Distilled with Extract, bark, wood, Acacia catechu Black wattle, Black catechu Yes Yes No No vodka to make Blavod (black vodka). flowering tops and gum Acacia farnesiana Cassie, Prickly Moses Yes Yes Yes Yes Ripe seeds pressed for cooking oil Bark, flowers Source of Gum Arabic (E414) and Guar Gum (E412), controlled miscellaneous food additive. Used Acacia senegal Guar gum, Gum arabic No Yes No Yes in foods as suspending and emulsifying agent. Acanthopanax senticosus Kan jang Yes No No No Kan Jang is a combination of Andrographis Paniculata and Acanthopanax Senticosus. Flavouring source including essential oil. Contains natural toxin thujone/thuyone whose levels in flavourings are limited by EU (Council Directive 88/388/EEC) and GB (SI 1992 No.1971) legislation. There are several chemotypes of Yarrow Essential Oil, which is steam distilled from the dried herb.
    [Show full text]
  • An Expanded Nuclear Phylogenomic PCR Toolkit for Sapindales1
    Applications in Plant Sciences 2016 4(12): 1600078 Applications in Plant Sciences PRIMER NOTE AN EXPANDED NUCLEAR PHYLOGENOMIC PCR TOOLKIT FOR SAPINDALES1 ELIZABETH S. COLLIns2,4, MORGAN R. GOSTEL3, AND ANDREA WEEKS2 2George Mason University, 4400 University Drive, MSN 3E1, Fairfax, Virginia 22030-4444 USA; and 3Department of Botany, National Museum of Natural History, Smithsonian Institution, MRC 166, P.O. Box 37012, Washington, D.C. 20013-7012 USA • Premise of the study: We tested PCR amplification of 91 low-copy nuclear gene loci in taxa from Sapindales using primers developed for Bursera simaruba (Burseraceae). • Methods and Results: Cross-amplification of these markers among 10 taxa tested was related to their phylogenetic distance from B. simaruba. On average, each Sapindalean taxon yielded product for 53 gene regions (range: 16–90). Arabidopsis thaliana (Brassicales), by contrast, yielded product for two. Single representatives of Anacardiaceae and Rutacaeae yielded 34 and 26 products, respectively. Twenty-six primer pairs worked for all Burseraceae species tested if highly divergent Aucoumea klaineana is excluded, and eight of these amplified product in every Sapindalean taxon. • Conclusions: Our study demonstrates that customized primers for Bursera can amplify product in a range of Sapindalean taxa. This collection of primer pairs, therefore, is a valuable addition to the toolkit for nuclear phylogenomic analyses of Sapindales and warrants further investigation. Key words: Anacardiaceae; Burseraceae; low-copy nuclear genes; microfluidic PCR; Rutaceae. Low-copy nuclear gene regions offer increased phyloge- PCR-based target enrichment, a method that allows simultane- netic utility for species- and population-level studies of plants ous and cost-effective amplification of multiple loci (Blow, as compared to chloroplast and nuclear ribosomal markers 2009; Uribe-Convers et al., 2016).
    [Show full text]
  • Methodology for Rapid Isolation of Moringin: Potential Anticancer
    A tica nal eu yt c ic a a m A Habtemariam S, Pharm Anal Acta 2017, 8:8 r a c t h a DOI: 10.4172/2153-2435.1000558 P Pharmaceutica Analytica Acta ISSN: 2153-2435 Research Article Open Access Methodology for Rapid Isolation of Moringin: Potential Anticancer Compound from the Seeds of Moringa stenopetala Solomon Habtemariam* Pharmacognosy Research Laboratories and Herbal Analysis Services UK, Medway Campus, University of Greenwich, UK *Corresponding author: Solomon Habtemariam, Director of Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom, Tel: +44-(0)208-331-8302/8414; E-mail: [email protected] Received date: Jul 18, 2017; Accepted date: August 29, 2017; Published date: August 31, 2017 Copyright: © 2017 Habtemariam S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The seeds of Moringa stenopetala which are known to be rich sources of glucosinolates, primarily glucomoringin, have been shown to have limited anticancer effects when tested in vitro. In the present study, however, the water extract of the seeds obtained following defatting by hexane displayed potent cytotoxic activity against HepG2 (IC50, 6.28 ± 0.55 µg/ml) and the SH-SY5Y human neuroblastoma (IC50, 9.81 ± 1.30 µg/ml) cells. The methanol extract displayed a weak cytotoxic activity against the HepG2 human hepatocellular cancer cells when tested upto 500 µg/ml, while extraction with hexane yielded the non-cytotoxic fixed oil which fatty acid composition was primarily oleic acid (75%).
    [Show full text]
  • The Importance of Moringa
    The Importance of Moringa “Ecosystem-based Adaptation to enhance Pastoralist Resilience by Conserving Buska Massif Mountain Forest” Project Period: April 2014 – December 31, 2014 “Moringa Production Builds Resilience and Reduces Agricultural Disaster Risk in South Omo Zone” Project Period: June 2014 – December 31, 2015 “EASIER: Enhancing the Ability to Scale Initiatives that Enable Resilience” Project Period: January – December 31, 2016 South Omo Zone Malnutrition: high Food Security: 85% of Dasenech are PSNP recipients Maternal/child mortality: high Average rainfall: < 400 mm per annum Environment: Arid, sandy, shrinking grazing grounds Conflict: Escalating: between tribes and between tribes & GoE Literacy: Adult literacy in Dasenech <1% GoE infrastructure: Weak with poor linkage to communities Life in South Omo Requires a Fine Balance The land is harsh and arid Water is scarce The children are beautiful The young people posture . Men have little to do And, the women work Global Team for Local Initiatives (GTLI) mission is to build resilience in South Omo Zone Woreda Population Health Environment Livelihood Hamer 39,495 25,229 2,772 Dasenech 10,918 37,257 21,930 501 BenaTsemay 10,579 12,456 - - Nyangatom 13,159 - - Total 21,497 102,367 47,159 3,273 Moringa: the Tree of Life Continuous source of: • Food – Humans – Animals • Nutrition • Medicine • Water Purification • Economic Opportunities Drought-resistant Grows fast • Soil Conservation Produces for 60-100 years and • Fertilizer available for continuous harvest • Biogas Water stored
    [Show full text]
  • The Monophyly of Bursera and Its Impact for Divergence Times of Burseraceae
    TAXON 61 (2) • April 2012: 333–343 Becerra & al. • Monophyly of Bursera The monophyly of Bursera and its impact for divergence times of Burseraceae Judith X. Becerra,1 Kogi Noge,2 Sarai Olivier1 & D. Lawrence Venable3 1 Department of Biosphere 2, University of Arizona, Tucson, Arizona 85721, U.S.A. 2 Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan 3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A. Author for correspondence: Judith X. Becerra, [email protected] Abstract Bursera is one of the most diverse and abundant groups of trees and shrubs of the Mexican tropical dry forests. Its interaction with its specialist herbivores in the chrysomelid genus Blepharida, is one of the best-studied coevolutionary systems. Prior studies based on molecular phylogenies concluded that Bursera is a monophyletic genus. Recently, however, other molecular analyses have suggested that the genus might be paraphyletic, with the closely related Commiphora, nested within Bursera. If this is correct, then interpretations of coevolution results would have to be revised. Whether Bursera is or is not monophyletic also has implications for the age of Burseraceae, since previous dates were based on calibrations using Bursera fossils assuming that Bursera was paraphyletic. We performed a phylogenetic analysis of 76 species and varieties of Bursera, 51 species of Commiphora, and 13 outgroups using nuclear DNA data. We also reconstructed a phylogeny of the Burseraceae using 59 members of the family, 9 outgroups and nuclear and chloroplast sequence data. These analyses strongly confirm previous conclusions that this genus is monophyletic.
    [Show full text]
  • Mekonnen Et Al. 199
    Journal of Agricultural Biotechnology and Sustainable Development Vol. 3(10), pp. 198-204, December 2011 Available online at http://www.academicjournals.org/JABSD DOI: 10.5897/JABSD10.030 ©2011 Academic Journals Full Length Research Paper Effects of nitrogen and phosphorus fertilizers and cotyledon removal on establishment and growth of yeheb nut bush ( Cordeauxia edulis Hemsl.) outside its natural habitat Bertukan Mekonnen 1*, Kebede Woldetsadik 1, Tamado Tana 1 and Asha Yahya 2 1Department of Plant Sciences, Haramaya University, P. O. Box: 138, Dire Dawa, Ethiopia. 2Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Sweden. Accepted 13 September, 2011 Yeheb nut bush ( Cordeauxia edulis ) is a multipurpose but endangered shrub native to arid south- Eastern Ethiopia and Central Somalia. Establishment of this species was studied in two sets of experiments during 2005 to 2007. In the first set of experiment, field establishment was conducted at Dire Dawa, Ethiopia, which is located 725 km north west of the natural habitat (Bokh). Nitrogen at 0, 46 and 92 level and phosphorus at 0, 4 and 8 kg ha -1 were applied 84 days after transplanting. Application of 92 N/8 P kg ha -1 increased seedling height by 134%; 46 N/4 P kg ha - 1 increased leaf area by 152% and dry weight of seedlings increased by 309% at 46/8 kg ha -1 NP compared to the unfertilized plants. Nitrogen and phosphorus fertilizers significantly altered soil as well as plant tissue N and P contents. Leaf and root N was significantly highest at 46 and 92 N kg ha -1, respectively while leaf P was maximised at 8P kg ha -1.
    [Show full text]
  • Trees of Somalia
    Trees of Somalia A Field Guide for Development Workers Desmond Mahony Oxfam Research Paper 3 Oxfam (UK and Ireland) © Oxfam (UK and Ireland) 1990 First published 1990 Revised 1991 Reprinted 1994 A catalogue record for this publication is available from the British Library ISBN 0 85598 109 1 Published by Oxfam (UK and Ireland), 274 Banbury Road, Oxford 0X2 7DZ, UK, in conjunction with the Henry Doubleday Research Association, Ryton-on-Dunsmore, Coventry CV8 3LG, UK Typeset by DTP Solutions, Bullingdon Road, Oxford Printed on environment-friendly paper by Oxfam Print Unit This book converted to digital file in 2010 Contents Acknowledgements IV Introduction Chapter 1. Names, Climatic zones and uses 3 Chapter 2. Tree descriptions 11 Chapter 3. References 189 Chapter 4. Appendix 191 Tables Table 1. Botanical tree names 3 Table 2. Somali tree names 4 Table 3. Somali tree names with regional v< 5 Table 4. Climatic zones 7 Table 5. Trees in order of drought tolerance 8 Table 6. Tree uses 9 Figures Figure 1. Climatic zones (based on altitude a Figure 2. Somali road and settlement map Vll IV Acknowledgements The author would like to acknowledge the assistance provided by the following organisations and individuals: Oxfam UK for funding me to compile these notes; the Henry Doubleday Research Association (UK) for funding the publication costs; the UK ODA forestry personnel for their encouragement and advice; Peter Kuchar and Richard Holt of NRA CRDP of Somalia for encouragement and essential information; Dr Wickens and staff of SEPESAL at Kew Gardens for information, advice and assistance; staff at Kew Herbarium, especially Gwilym Lewis, for practical advice on drawing, and Jan Gillet for his knowledge of Kew*s Botanical Collections and Somalian flora.
    [Show full text]
  • Conservation of Commiphora Wightii, an Endangered Medicinal Shrub, Through Propagation and Planting, and Education Awareness
    Conservation Evidence (2010) 7, 27-31 www.ConservationEvidence.com Conservation of Commiphora wightii , an endangered medicinal shrub, through propagation and planting, and education awareness programs in the Aravali Hills of Rajasthan, India Vineet Soni School of Life Sciences, Jaipur National University, Jaipur, India Corresponding author e-mail: [email protected] SUMMARY In the Aravali hills of Rajasthan (northwest India), community-based approaches were followed to conserve Commiphora wightii , an endangered medicinal plant. Efforts were made to increase the effectiveness of wildlife conservation projects in the rural and tribal area of Aravali by promoting community participation through a C.wightii propagation and planting scheme, and education programs. Local communities participated and responded very positively to the initiatives. Approximately 3,500, 3- month old Commiphora plantlets (each about 30 cm tall) propagated via cuttings, were planted out into their natural habitat. BACKGROUND Threats to these resources are directly linked to activities such as uncontrolled harvesting (over- Pressures from urbanization, mass tourism and exploitation, premature harvesting etc.), over- intensive agriculture have pushed more and grazing, burning, shifting cultivation, and other more plant species towards extinction. The activities leading to deforestation and habitat problem is particularly acute in some arid destruction. Several local tribes of the Aravali regions, such as the Aravali hills of Rajasthan hills area lead a nomadic life. Both humans and (northwest India), which supports numerous livestock cause destruction of vegetation during plant species endemic to the region. Many serve their movements. Goats and cows are the as sources of food, fuel, fibre, timber and integral components of this production system, medicine, and function as an integral part of but may prevent natural regeneration, local agricultural production systems.
    [Show full text]
  • Commiphora Molmol Engler, Gummi-Resina
    12 July 2011 EMA/HMPC/96910/2010 Committee on Herbal Medicinal Products (HMPC) Assessment report on Commiphora molmol Engler, gummi-resina Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC as amended (traditional use) Final Herbal substance(s) (binomial scientific name of Commiphora molmol Engler, gummi-resina the plant, including plant part) Herbal preparation(s) Tincture (ratio of herbal substance to extraction solvent 1:5), extraction solvent ethanol 90 % (V/V) Pharmaceutical forms Liquid dosage forms for oromucosal or cutaneous use Rapporteur Per Claeson 7 Westferry Circus ● Canary Wharf ● London E14 4HB ● United Kingdom Telephone +44 (0)20 7418 8400 Facsimile +44 (0)20 7523 7051 E-mail [email protected] Website www.ema.europa.eu An agency of the European Union © European Medicines Agency, 2011. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ...................................................................................................................2 1. Introduction.......................................................................................................................3 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof . 3 1.2. Information about products on the market in the Member States .............................. 3 1.3. Search and assessment methodology.................................................................... 5 2. Historical data on medicinal use ........................................................................................5
    [Show full text]