Gravity and Coulomb's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measuring Gravity
Physics Measuring Gravity Sir Isaac Newton told us how important gravity is, but left some gaps in the story. Today scientists are measuring the gravitational forces on individual atoms in an effort to plug those gaps. This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmoslessons.com Introduction: Measuring Gravity Over 300 years ago the famous English physicist, Sir Isaac Newton, had the incredible insight that gravity, which we’re so familiar with on Earth, is the same force that holds the solar system together. Suddenly the orbits of the planets made sense, but a mystery still remained. To calculate the gravitational attraction between two objects Newton needed to know the overall strength of gravity. This is set by the universal gravitational constant “G” – commonly known as “big G” – and Newton wasn't able to calculate it. Part of the problem is that gravity is very weak – compare the electric force, which is 1040 times stronger. That’s a bigger di혯erence than between the size of an atom and the whole universe! Newton's work began a story to discover the value of G that continues to the present day. For around a century little progress was made. Then British scientist Henry Cavendish got a measurement from an experiment using 160 kg lead balls. It was astoundingly accurate. Since then scientists have continued in their attempts to measure G. Even today, despite all of our technological advances (we live in an age where we can manipulate individual electrons and measure things that take trillionths of a second), di혯erent experiments produce signicantly di혯erent results. -
Metric System Units of Length
Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 . -
Modern Physics Unit 15: Nuclear Structure and Decay Lecture 15.1: Nuclear Characteristics
Modern Physics Unit 15: Nuclear Structure and Decay Lecture 15.1: Nuclear Characteristics Ron Reifenberger Professor of Physics Purdue University 1 Nucleons - the basic building blocks of the nucleus Also written as: 7 3 Li ~10-15 m Examples: A X=Chemical Element Z X Z = number of protons = atomic number 12 A = atomic mass number = Z+N 6 C N= A-Z = number of neutrons 35 17 Cl 2 What is the size of a nucleus? Three possibilities • Range of nuclear force? • Mass radius? • Charge radius? It turns out that for nuclear matter Nuclear force radius ≈ mass radius ≈ charge radius defines nuclear force range defines nuclear surface 3 Nuclear Charge Density The size of the lighter nuclei can be approximated by modeling the nuclear charge density ρ (C/m3): t ≈ 4.4a; a=0.54 fm 90% 10% Usually infer the best values for ρo, R and a for a given nucleus from scattering experiments 4 Nuclear mass density Scattering experiments indicate the nucleus is roughly spherical with a radius given by 1 3 −15 R = RRooA ; =1.07 × 10meters= 1.07 fm = 1.07 fermis A=atomic mass number What is the nuclear mass density of the most common isotope of iron? 56 26 Fe⇒= A56; Z = 26, N = 30 m Am⋅⋅3 Am 33A ⋅ m m ρ = nuc p= p= pp = o 1 33 VR4 3 3 3 44ππA R nuc π R 4(π RAo ) o o 3 3×× 1.66 10−27 kg = 3.2× 1017kg / m 3 4×× 3.14 (1.07 × 10−15m ) 3 The mass density is constant, independent of A! 5 Nuclear mass density for 27Al, 97Mo, 238U (from scattering experiments) (kg/m3) ρo heavy mass nucleus light mass nucleus middle mass nucleus 6 Typical Densities Material Density Helium 0.18 kg/m3 Air (dry) 1.2 kg/m3 Styrofoam ~100 kg/m3 Water 1000 kg/m3 Iron 7870 kg/m3 Lead 11,340 kg/m3 17 3 Nuclear Matter ~10 kg/m 7 Isotopes - same chemical element but different mass (J.J. -
Units and Magnitudes (Lecture Notes)
physics 8.701 topic 2 Frank Wilczek Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second part is a quasi-philosophical discussion of deep issues around unit systems, including a comparison of atomic, particle ("strong") and Planck units. For a more extended, profound treatment of the second part issues, see arxiv.org/pdf/0708.4361v1.pdf . Because special relativity and quantum mechanics permeate modern particle physics, it is useful to employ units so that c = ħ = 1. In other words, we report velocities as multiples the speed of light c, and actions (or equivalently angular momenta) as multiples of the rationalized Planck's constant ħ, which is the original Planck constant h divided by 2π. 27 August 2013 physics 8.701 topic 2 Frank Wilczek In classical physics one usually keeps separate units for mass, length and time. I invite you to think about why! (I'll give you my take on it later.) To bring out the "dimensional" features of particle physics units without excess baggage, it is helpful to keep track of powers of mass M, length L, and time T without regard to magnitudes, in the form When these are both set equal to 1, the M, L, T system collapses to just one independent dimension. So we can - and usually do - consider everything as having the units of some power of mass. Thus for energy we have while for momentum 27 August 2013 physics 8.701 topic 2 Frank Wilczek and for length so that energy and momentum have the units of mass, while length has the units of inverse mass. -
Cavendish Weighs the Earth, 1797
CAVENDISH WEIGHS THE EARTH Newton's law of gravitation tells us that any two bodies attract each other{not just the Earth and an apple, or the Earth and the Moon, but also two apples! We don't feel the attraction between two apples if we hold one in each hand, as we do the attraction of two magnets, but according to Newton's law, the two apples should attract each other. If that is really true, it might perhaps be possible to directly observe the force of attraction between two objects in a laboratory. The \great moment" when that was done came on August 5, 1797, in a garden shed in suburban London. The experimenter was Lord Henry Cavendish. Cavendish had inherited a fortune, and was therefore free to follow his inclinations, which turned out to be scientific. In addition to the famous experiment described here, he was also the discoverer of “inflammable air", now known as hydrogen. In those days, science in England was often pursued by private citizens of means, who communicated through the Royal Society. Although Cavendish studied at Cambridge for three years, the universities were not yet centers of scientific research. Let us turn now to a calculation. How much should the force of gravity between two apples actually amount to? Since the attraction between two objects is proportional to the product of their masses, the attraction between the apples should be the weight of an apple times the ratio of the mass of an apple to the mass of the Earth. The weight of an apple is, according to Newton, the force of attraction between the apple and the Earth: GMm W = R2 where G is the \gravitational constant", M the mass of the Earth, m the mass of an apple, and R the radius of the Earth. -
Measuring Vibration Using Sound Level Meter Nor140
Application Note Measuring vibration using sound level meter Nor140 This technical note describes the use of the sound level meter Nor140 for measurement of acceleration levels. The normal microphone is then substituted by an accelerometer. The note also describes calibration and the relation between the level in decibel and the acceleration in linear units. AN Vibration Ed2Rev0 English 03.08 AN Vibration Ed2Rev0 English 03.08 Introduction Accelerometer Most sound level meters and sound analysers can be used for Many types of acceleration sensitive sensors exist. For vibration measurements, even if they do not provide absolute connection to Nor140 sound level meter the easiest is to (linear) units in the display. To simplify the description, this ap- apply an ICP® or CCP type. This type of transducers has low plication note describes the use of the handheld sound level output impedance and may be supplied through a coaxial meter Norsonic Nor140. However, the described principles able. Nor1270 (Sens. 10 mV/ms-2; 23 g) and Nor1271 (Sens. also apply to other types of sound level meters. 1,0 mV/ms-2; 3,5 g) are recommended. Connect the accelero- Although several transducer principles are commercially meter through the BNC/Lemo cable Nor1438 and the BNC to available, this application note will deal with the accelerometer microdot adaptor Nor1466. You also need a BNC-BNC female only, simply because it is the transducer type most commonly connector. See the figure below. encountered when measuring vibration levels. As the name Alternatively, a charge sensitive accelerometer may be suggests, the accelerometer measures the acceleration it is used and coupled to the normal microphone preamplifier exposed to and provides an output signal proportional to the Nor1209 through the adapter with BNC input Nor1447/2 and instant acceleration. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Probing Gravity at Short Distances Using Time Lens
Probing Short Distance Gravity using Temporal Lensing Mir Faizal1;2;3, Hrishikesh Patel4 1Department of Physics and Astronomy, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada 2Irving K. Barber School of Arts and Sciences, University of British Columbia Okanagan Campus, Kelowna, V1V1V7, Canada 3Canadian Quantum Research Center, 204-3002, 32 Ave, Vernon, BC, V1T 2L7, Canada 4Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, V6T 1Z1, Canada Abstract It is known that probing gravity in the submillimeter-micrometer range is difficult due to the relative weakness of the gravitational force. We intend to overcome this challenge by using extreme temporal precision to monitor transient events in a gravitational field. We propose a compressed ultrafast photography system called T-CUP to serve this purpose. We show that the T-CUP's precision of 10 trillion frames per second can allow us to better resolve gravity at short distances. We also show the feasibility of the setup in measuring Yukawa and power-law corrections to gravity which have substantial theoretical motivation. 1 Introduction General Relativity (GR) has been tested at large distances, and it has been arXiv:2003.02924v2 [gr-qc] 29 Jun 2021 realized that we need a more comprehensive model of gravity that aligns with our measurements of gravity at long distances and short distances. Several ad- vances have been made in trying to understand gravity at long distances since the advent of multi-messenger astronomy [1, 2]. However, it is possible to relate the large distance corrections to the short distance corrections. In fact, several theories like MOND [3, 4] have been proposed to explain the large distance corrections to gravitational dynamics due to small accelerations. -
S.I. and Cgs Units
Some Notes on SI vs. cgs Units by Jason Harlow Last updated Feb. 8, 2011 by Jason Harlow. Introduction Within “The Metric System”, there are actually two separate self-consistent systems. One is the Systme International or SI system, which uses Metres, Kilograms and Seconds for length, mass and time. For this reason it is sometimes called the MKS system. The other system uses centimetres, grams and seconds for length, mass and time. It is most often called the cgs system, and sometimes it is called the Gaussian system or the electrostatic system. Each system has its own set of derived units for force, energy, electric current, etc. Surprisingly, there are important differences in the basic equations of electrodynamics depending on which system you are using! Important textbooks such as Classical Electrodynamics 3e by J.D. Jackson ©1998 by Wiley and Classical Electrodynamics 2e by Hans C. Ohanian ©2006 by Jones & Bartlett use the cgs system in all their presentation and derivations of basic electric and magnetic equations. I think many theorists prefer this system because the equations look “cleaner”. Introduction to Electrodynamics 3e by David J. Griffiths ©1999 by Benjamin Cummings uses the SI system. Here are some examples of units you may encounter, the relevant facts about them, and how they relate to the SI and cgs systems: Force The SI unit for force comes from Newton’s 2nd law, F = ma, and is the Newton or N. 1 N = 1 kg·m/s2. The cgs unit for force comes from the same equation and is called the dyne, or dyn. -
The International Bureau of Weights and Measures 1875-1975
The International Bureau of Weights and Measures 1875-1975 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ""EAU of NBS SPECIAL PUBLICATION 420 Aerial view of the Pavilion de Breteuil and the immediate environs. To the east, the Seine and the Pont de Sevres; to the northwest, the Pare de Saint-Cloud: between the Pavilion de Breteuil (circled) and the bridge: the Manufacture Nationale de Porcelaine de Sevres. The new laboratories (1964) are situated north of the circle and are scarcely visible; they were built in a way to preserve the countryside. (Document Institute (leographique National, Paris). Medal commeiiKiraUn-i the centennial (if the Convention cif tlie Metre and the International Bureau of Weights and Measures. (Desifined by R. Corbin. Monnaie de Paris) The International Bureau of Weights and Measures 1875-1975 Edited by Chester H. Page National Bureau of Standards, U.S.A. and Pan I Vigoiireiix National Physieal Laboratory, U.K. Translation of tlie BIPM Centennial Volume Piibli>lieH on the ocrasioii <>( the lOOth Aniiiver^ai y ol tlie Treaty of tlie Metre May 20, 1975 U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Direcior Issued May 1 975 National Bureau of Standards Special Publication 420 Nat. Bur. Stand. (U.S.), Spec. Publ. 420. 256 pages (May 1975) CODEN: XNBSAV U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1975 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402 Paper cover Price $3.00 Stock Number 003-003-01408 Catalog Number C13.10:420 FOREWORD The metric system was made legal by Congress in 1866, the United States of America signed the Treaty of the Metre in 1875, and we have been active in international coordination of measurements since that time. -
Universal Gravitational Constant EX-9908 Page 1 of 13
Universal Gravitational Constant EX-9908 Page 1 of 13 Universal Gravitational Constant EQUIPMENT 1 Gravitational Torsion Balance AP-8215 1 X-Y Adjustable Diode Laser OS-8526A 1 45 cm Steel Rod ME-8736 1 Large Table Clamp ME-9472 1 Meter Stick SE-7333 INTRODUCTION The Gravitational Torsion Balance reprises one of the great experiments in the history of physics—the measurement of the gravitational constant, as performed by Henry Cavendish in 1798. The Gravitational Torsion Balance consists of two 38.3 gram masses suspended from a highly sensitive torsion ribbon and two1.5 kilogram masses that can be positioned as required. The Gravitational Torsion Balance is oriented so the force of gravity between the small balls and the earth is negated (the pendulum is nearly perfectly aligned vertically and horizontally). The large masses are brought near the smaller masses, and the gravitational force between the large and small masses is measured by observing the twist of the torsion ribbon. An optical lever, produced by a laser light source and a mirror affixed to the torsion pendulum, is used to accurately measure the small twist of the ribbon. THEORY The gravitational attraction of all objects toward the Earth is obvious. The gravitational attraction of every object to every other object, however, is anything but obvious. Despite the lack of direct evidence for any such attraction between everyday objects, Isaac Newton was able to deduce his law of universal gravitation. Newton’s law of universal gravitation: m m F G 1 2 r 2 where m1 and m2 are the masses of the objects, r is the distance between them, and G = 6.67 x 10-11 Nm2/kg2 However, in Newton's time, every measurable example of this gravitational force included the Earth as one of the masses. -
Metric System.Pdf
METRIC SYSTEM THE METRIC SYSTEM The metric system is much easier. All metric units are related by factors of 10. Nearly the entire world (95%), except the United States, now uses the metric system. Metric is used exclusively in science. Because the metric system uses units related by factors of ten and the types of units (distance, area, volume, mass) are simply-related, performing calculations with the metric system is much easier. METRIC CHART Prefix Symbol Factor Number Factor Word Kilo K 1,000 Thousand Hecto H 100 Hundred Deca Dk 10 Ten Base Unit Meter, gram, liter 1 One Deci D 0.1 Tenth Centi C 0.01 Hundredth Milli M 0.001 Thousandth The metric system has three units or bases. Meter – the basic unit used to measure length Gram – the basic unit used to measure weight Liter – the basic unit used to measure liquid capacity (think 2 Liter cokes!) The United States, Liberia and Burma (countries in black) have stuck with using the Imperial System of measurement. You can think of “the metric system” as a nickname for the International System of Units, or SI. HOW TO REMEMBER THE PREFIXES Kids Kilo Have Hecto Dropped Deca Over base unit (gram, liter, meter) Dead Deci Converting Centi Metrics Milli Large Units – Kilo (1000), Hecto (100), Deca (10) Small Units – Deci (0.1), Centi (0.01), Milli (0.001) Because you are dealing with multiples of ten, you do not have to calculate anything. All you have to do is move the decimal point, but you need to understand what you are doing when you move the decimal point.